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of the SU(2) group in a noncanonical basis1

M.R. Kibler
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IN2P3-CNRS et Université Claude Bernard Lyon 1

43 bd du 11 novembre 1918

69622 Villeurbanne Cedex, France

Abstract

The Lie algebra su(2) of the classical group SU(2) is built from two commuting quon

algebras for which the deformation parameter is a common root of unity. This construc-

tion leads to (i) a not very well-known polar decomposition of the generatorsJ− andJ+

of the SU(2) group, withJ+ = J†
− = HUr whereH is Hermitean andUr unitary, and

(ii) an alternative to the{J2, Jz} quantization scheme, viz., the{J2, Ur} quantization

scheme. The representation theory of the SU(2) group can be developed in this nonstan-

dard scheme. The key ideas for developing the Wigner-Racah algebra of the SU(2) group

in the{J2, Ur} scheme are given. In particular, some properties of the coupling and re-

coupling coefficients as well as the Wigner-Eckart theorem in the{J2, Ur} scheme are

examined in great detail.

1Dedicated to Professor Josef Paldus on the occasion of his 70th birthday.
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1 Introduction

The concepts of symmetry (introduced in a group theoreticalcontext in the 1930’s), of

supersymmetry (introduced in a supergroup context in the 1970’s) and of deformations

(introduced in a bi-algebra context in the 1980’s) are of paramount importance for quan-

tum chemistry and/or quantum physics. These concepts are often used in the exploration

of dynamical systems as for example the Coulomb system and the oscillator system which

can be viewed as two paradigms for the study of atomic and molecular interactions.1,2

In these directions, the works3 of Paldus and its collaborators on the second quantiza-

tion method, the unitary group approach and its extension bymeans of Clifford algebras

proved to be very useful in numerous domains of theoretical chemistry.

In recent years, the use of deformed oscillator algebras proved to be useful for many

applications of quantum mechanics. For instance, one- and two-parameter deformations

of oscillator algebras and Lie algebras were applied to statistical mechanics4 and to molec-

ular and nuclear physics.5

It is the purpose of this work to apply deformed oscillator algebras or quon algebras to

the representation theory and the Wigner-Racah algebra of the SU(2) group. The notion

of deformation is very familiar to the theoretician. In thisconnection, quantum mechan-

ics may be considered as a deformation (the deformation parameter being the rationalised

Planck constant̄h) of classical mechanics. In the same vein, relativistic mechanics is, to

some extent, another deformation (with the inverse of the velocity of light c−1 as deforma-

tion parameter) of classical mechanics. The idea of a deformation of an oscillator algebra

and of a Lie algebra also relies on the introduction of a deformation parameterq such that

the limiting situation whereq = 1 corresponds to the nondeformed algebraic structure.

The organisation of this paper is as follows. Section 2 is devoted to some generalities

on the notion of a Wigner-Racah algebra of a finite or compact group. In Section 3, we

construct the Lie algebra of SU(2) from two quon algebrasA1 and A2 corresponding

to the same deformation parameterq taken as a root of unity. Section 4 deals with an
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alternative to the{J2, Jz} scheme of SU(2), viz. the{J2, Ur} scheme, and with the basic

elements for the representation theory of SU(2) in this scheme. Finally, we develop in

Section 5 the Wigner-Racah algebra of SU(2) in the{J2, Ur} scheme.

Throughout the present work, we use the notation[A, B] for the commutator ofA and

B. As usual,z∗ denotes the complex conjugate of the numberz andA† stands for the

Hermitean conjugate of the operatorA.

2 Wigner-Racah algebra of SU(2)

The mathematical structure of a Wigner-Racah algebra (WRa)associated with a group

takes its origin in the works by Wigner6 on a simply reducible group, with emphasis

on the ordinary rotation group, and by Racah7 on chains of groups of type SU(2ℓ +

1) ⊃ SO(2ℓ + 1) ⊃ SO(3), mainly with ℓ = 2, 3. From a practical point of view, the

WRa of a group deals with the algebraic relations satisfied byits coupling and recoupling

coefficients. From a more theoretical point of view, the WRa of a finite or compact group

can be defined to be the infinite-dimensional Lie algebra spanned by the Wigner unit

operators (i.e., the operators whose matrix elements are the coupling or Clebsch-Gordan

or Wigner coefficients of the group).8

The WRa of the SU(2) group is well known. It is generally developed in the standard

basis{|jm〉 : 2j ∈ N, m = −j,−j + 1, · · · , j} arising in the simultaneous diagonaliza-

tion of the Casimir operatorJ2 and of one generator, sayJz, of SU(2). Besides this basis,

there exist several other bases. Indeed, any change of basisof type

|jµ〉 =
j
∑

m=−j

|jm〉〈jm|jµ〉 (1)

(where the(2j+1)×(2j+1) matrix with elements〈jm|jµ〉 is an arbitrary unitary matrix)

defines another acceptable basis for the WRa of SU(2). In thisbasis, the matrices of the

irreducible representation classes of SU(2) take a new formas well as the coupling coef-

ficients (and the associated 3-jm symbols). As a matter of fact, the coupling coefficients
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(j1j2m1m2|jm) are simply replaced by

(j1j2µ1µ2|jµ) =
j1
∑

m1=−j1

j2
∑

m2=−j2

j
∑

m=−j

(j1j2m1m2|jm)

〈j1m1|j1µ1〉∗ 〈j2m2|j2µ2〉∗ 〈jm|jµ〉 (2)

when passing from the{jm} quantization to the{jµ} quantization while the recoupling

coefficients, and the corresponding 3(n − 1)-j symbols, for the coupling ofn (n > 2)

angular momenta remain invariant.

The various bases for SU(2) may be classified into two types: group-subgroup type

and nongroup-subgroup type. The standard basis corresponds to a group-subgroup type

basis associated with the chain of groups SU(2) ⊃ U(1). Another group-subgroup type

basis may be obtained by replacing U(1) by a finite groupG∗ (generally the double, i.e.,

spinor group, of a point groupG of molecular or crystallographic interest). Among the

SU(2) ⊃ G∗ bases, we may distinguish: the weakly symmetry-adapted bases for which

the basis vectors are eigenvectors ofJ2 and of the projection operators ofG∗ (e.g., see

Ref. [9]) and the strongly symmetry-adapted bases for whichthe basis vectors are eigen-

vectors ofJ2 and of an operator defined in the enveloping algebra of SU(2) and invariant

under the groupG (e.g., see Ref. [10]). We shall see that the basis for SU(2) described

in the present paper interpolates between the group-subgroup type and the nongroup-

subgroup type.

3 A quon realization of the algebra su(2)

3.1 Two quon algebras

The concept of quon takes its origin in the replacement of thecommutation (sign−) and

anticommutation (sign+) relations

a−a+ ± a+a− = 1 (3)

by the relation

a−a+ − qa+a− = 1 (4)
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whereq is a constant. Following the works in Ref. [11], we define two commuting quon

algebrasAi = {ai−, ai+, Ni} with i = 1 and2 by

ai−ai+ − qai+ai− = 1, [Ni, ai±] = ±ai±, N †
i = Ni (5)

(ai+)k = (ai−)k = 0 (6)

∀x1 ∈ A1, ∀x2 ∈ A2 : [x1, x2] = 0 (7)

where

q = exp
(

2πi

k

)

with k ∈ N \ {0, 1} (8)

Equation (5) corresponds to theà la Arik and Coon11 relations defining a quon algebra

except that, in the present work,q is a root of unity instead of being a positive real number.

The deformation parameterq is the same for each of the algebrasA1 andA2 so thatA1 and

A2 can be considered as two copies of the same quon algebra. Equation (6) constitutes

nilpotency conditions which are indeed compatibility relations to account for the fact that

q is not a positive number (rememberqk = 1). Equation (7) reflects the commutativity

of the algebrasA1 andA2. The generatorsai± andNi of A1 andA2 are linear operators.

As in the classical caseq = 1, we say thatai+ is a creation operator,ai− an annihilation

operator andNi a number operator (withi = 1, 2). However, the operatorai+ cannot be

considered as the adjoint of the operatorai− except fork = 2 andk → ∞. In contrast,

the operatorNi can be taken to be a Hermitean operator for any value ofk in N \ {0, 1}.

It should be observed thatNi is different fromai+ai− except fork = 2 andk → ∞. Note

that the casek = 2 (⇒ q = −1) corresponds to fermion operators and the casek → ∞

(⇒ q → 1) to boson operators. In other words, each of the algebrasAi describes fermions

for q = −1 and bosons forq = 1 with Ni = ai+ai− for fermions and bosons (i = 1, 2).

To close this subsection, let us mention that algebras similar toA1 andA2 with N1 ≡

N2 were introduced by Daoud, Hassouni and Kibler11 for definingk-fermions which are,

like anyons, objects interpolating between fermions (corresponding tok = 2) and bosons

(corresponding tok → ∞).
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3.2 Representation of the quon algebras

We can find several Hilbertian representations of the algebrasA1 andA2. In this work,

we take the representation ofA1 ⊗ A2 defined by the following action

a1+|n1, n2) = |n1 + 1, n2), a1+|k − 1, n2) = 0 (9)

a1−|n1, n2) = [n1]q |n1 − 1, n2), a1−|0, n2) = 0 (10)

a2+|n1, n2) = [n2 + 1]q |n1, n2 + 1), a2+|n1, k − 1) = 0 (11)

a2−|n1, n2) = |n1, n2 − 1), a2−|n1, 0) = 0 (12)

N1|n1, n2) = n1|n1, n2), N2|n1, n2) = n2|n1, n2) (13)

on a finite (Fock) spaceFk = {|n1, n2) : n1, n2 = 0, 1, · · · , k−1} of dimension dimFk =

k2. In Eqs. (10) and (11), we use

[x]q =
1 − qx

1 − q
for x ∈ R (14)

which yields

[n]q = 1 + q + · · ·+ qn−1 for n ∈ N∗ and [0]q = 0 (15)

as a particular case. We shall also use theq-deformed factorial defined by

[n]q! = [1]q [2]q · · · [n]q for n ∈ N
∗, [0]q! = 1 (16)

so that[n + 1]q! = [n]q! [n + 1]q for n ∈ N.

The spaceFk is a unitary space with a scalar product noted( | ). The k2 vectors

|n1, n2) are taken in a form such that

(n′
1, n

′
2|n1, n2) = δ(n′

1, n1) δ(n′
2, n2) (17)
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(i.e., they constitute an orthonormalized basis ofFk). The spaceFk turns out to be

the direct productF(1) ⊗ F(2) of two truncated Fock spacesF(i) = {|ni) : ni =

0, 1, · · · , k − 1} of dimensiondimF(i) = k (i = 1, 2) corresponding to two truncated

harmonic oscillators. At this stage, we realize why the cases k = 0 andk = 1 should be

excluded. The casek = 1 would give trivial algebrasAi with ai− = ai+ = 0 (i = 1, 2)

and the casek = 0 would lead to a nondefined value ofq.

3.3 Two important operators

We now define the two linear operators

H =
√

N1 (N2 + 1) (18)

and

Ur =

[

a1+ + e
1

2
iφr

1

[k − 1]q!
(a1−)k−1

] [

a2− + e
1

2
iφr

1

[k − 1]q!
(a2+)k−1

]

(19)

where the arbitrary real parameterφr is taken in the form

φr = π(k − 1)r with r ∈ R (20)

It is immediate to show that the action ofH andUr onFk is given by

H|n1, n2) =
√

n1(n2 + 1)|n1, n2) for ni = 0, 1, 2, · · · , k − 1 with i = 1, 2 (21)

and

Ur|n1, n2) = |n1 + 1, n2 − 1) for n1 6= k − 1 and n2 6= 0 (22)

Ur|k − 1, n2) = e
1

2
iφr |0, n2 − 1) for n2 6= 0 (23)

Ur|n1, 0) = e
1

2
iφr |n1 + 1, k − 1) for n1 6= k − 1 (24)

Ur|k − 1, 0) = eiφr |0, k − 1) for n1 = k − 1 and n2 = 0 (25)

The operatorsH andUr satisfy interesting properties. First, it is obvious that the

operatorH is Hermitean. Second, the operatorUr is unitary. In addition, the action ofUr
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on the spaceFk is cyclic. More precisely, we can check that

(Ur)
k = eiφrI (26)

whereI is the identity operator.

From the Schwinger work on angular momentum,12 we introduce

J =
1

2
(n1 + n2) , M =

1

2
(n1 − n2) (27)

Consequently, we can write

|n1, n2) = |J + M, J − M) (28)

We shall use the notation

|JM〉 ≡ |J + M, J − M) (29)

for the vector|J +M, J −M). For a fixed value ofJ , the labelM can take2J +1 values

M = −J,−J + 1, · · · , J . Equations (28) and (29) proved to be of central importance

for the connection between angular momentum and a coupled pair of ordinary harmonic

oscillators.12 We guess here that they shall play an important role for connecting the Lie

algebra of su(2) to a coupled pair of truncated harmonic oscillators.

For fixedk, the maximum value ofJ is

J = Jmax = k − 1 (30)

and the following value ofJ

J = j =
1

2
(k − 1) (31)

is admissible. For a given value ofk ∈ N \ {0, 1}, the2j + 1 = k vectors|jm〉 belong to

the vector spaceFk. Let ε(j) be the subspace ofFk, of dimensiondim ε(j) = k, spanned

by thek vectors|jm〉. We can thus associate the space

ε(j) = {|jm〉 : m = −j,−j + 1, · · · , j} (32)

8



for j = 1
2
, 1, 3

2
, · · · to the valuesk = 2, 3, 4, · · ·, respectively. The caseε(j = 0) can be

seen to correspond to the limiting situation wherek → ∞.

The action of the operatorsH andUr on the spaceε(j) can be described by

H|jm〉 =
√

(j + m)(j − m + 1)|jm〉 (33)

and

Ur|jm〉 = [1 − δ(m, j)] |jm + 1〉 + δ(m, j)eiφr |j − j〉 (34)

which are a simple rewriting, in terms of the vectors|jm〉, of Eqs. (21) and (22)-(25),

respectively. The subspaceε(j) of Fk is thus stable underH andUr. Furthermore, the

action of the adjointU †
r of Ur on the spaceε(j) is given by

U †
r |jm〉 = [1 − δ(m,−j)] |jm − 1〉 + δ(m,−j)e−iφr |jj〉 (35)

We can check that the operatorH is Hermitean and the operatorUr is unitary on the

spaceε(j). Equation (26) can be rewritten as

(Ur)
2j+1 = eiφrI (36)

which reflects the cyclic character ofUr on ε(j).

Finally let us mention that, as far as the operatorsH, Ur andU †
r act on the spaceε(j),

one can write

H =
j
∑

m=−j

√

(j + m)(j − m + 1)|jm〉〈jm| (37)

Ur =
j−1
∑

m=−j

|jm + 1〉〈jm| + e+iφr |j − j〉〈jj| (38)

U †
r =

j
∑

m=−j+1

|jm − 1〉〈jm| + e−iφr |jj〉〈j − j| (39)

where we have introduced̀a la Dirac projectors onε(j).
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3.4 The SU(2) generators

We are now in a position to give a realization of the Lie algebra of the group SU(2) in

terms of the generators ofA1 andA2. Let us define the three operators

J+ = HUr, J− = U †
r H (40)

and

Jz =
1

2
(N1 − N2) (41)

It is straightforward to check that the action on the vector|jm〉 of the operators defined

by Eqs. (40) and (41) is given by

J+|jm〉 =
√

(j − m)(j + m + 1)|jm + 1〉 (42)

J−|jm〉 =
√

(j + m)(j − m + 1)|jm − 1〉 (43)

and

Jz|jm〉 = m|jm〉 (44)

Consequently, we have the commutation relations

[Jz, J+] = +J+, [Jz, J−] = −J−, [J+, J−] = 2Jz (45)

which correspond to the Lie algebra of SU(2).

We have here an unsual result for Lie algebras. In the contextof deformations, we

generally start from a Lie algebra, then deform it and finallyfind a realization in terms

of deformed oscillator algebras. Here we started from twoq-deformed oscillator algebras

from which we derived the nondeformed Lie algebra su(2).

4 An alternative basis for the representation of SU(2)

4.1 An alternative to the{J2, Jz} scheme

The decomposition (40) of the shift operatorsJ+ andJ− in terms ofH andUr coincides

with the polar decomposition introduced in Ref. [13] in a completely different way. This is
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easily seen by taking the matrix elements ofUr andH in the{J2, Jz} quantization scheme

and by comparing these elements to the ones of the operatorsΥ andJT in Ref. [13]. We

are thus left with

H = JT (46)

and, by identifying the arbitrary phaseϕ of Ref. [13] withφr = 2πjr = π(k − 1)r, we

obtain that

Ur = Υ (47)

so that Eq. (40) corresponds toJ+ = JTΥ andJ− = Υ†JT.

It is immediate to check that the Casimir operator

J2 =
1

2
(J+J− + J−J+) + J2

z (48)

of su(2) can be rewritten as

J2 = H2 + J2
z − Jz = U †

r H
2Ur + J2

z + Jz (49)

or

J2 =
1

4
(N1 + N2)(N1 + N2 + 2) (50)

in terms of the generatorsN1 andN2 of A1 andA2, respectively. It is a simple matter of

calculation to prove thatJ2 commutes withUr for any value ofr. (Note that the commu-

tator [Ur, Us] is different from zero forr 6= s.) Therefore, forr fixed, the commuting set

{J2, Ur} provides us with an alternative to the familiar commuting set {J2, Jz} of angular

momentum theory. It is to be observed that the operatorsJ2 andUr can be expressed as

functions of the generators ofA1 andA2 (see Eqs. (19) and (50)).

4.2 Eigenvalues and eigenvectors

The next step is to determine the eigenvalues and eigenvectors of Ur. The eigenvalues

and the common eigenvectors of the complete set of commutingoperators{J2, Ur} can
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be easily found. This leads to the following result. The spectra of the operatorsUr andJ2

are given by

Ur|jα; r〉 = q−α|jα; r〉

J2|jα; r〉 = j(j + 1)|jα; r〉 (51)

where

|jα; r〉 =
1√

2j + 1

j
∑

m=−j

qαm|jm〉 (52)

with the range of values

α = −jr,−jr + 1, · · · ,−jr + 2j, 2j ∈ N, r ∈ R (53)

modulo2j + 1. The parameterq in Eqs. (51) and (52) is

q = exp

(

i
2π

2j + 1

)

(54)

(cf. Eq. (8) withk = 2j + 1 for k ∈ N \ {0, 1} andk → ∞ for j = 0).

The labelµ used in Section 2 is here of the formµ ≡ α; r with a fixed value ofr. It

is important to note that the labelα in Eqs. (51) and (52) goes, by step of 1, from−jr to

−jr + 2j; it is only for r = 1 thatα goes, by step of 1, from−j to j.

The inter-basis expansion coefficients

〈jm|jα; r〉 =
1√

2j + 1
qαm =

1√
2j + 1

exp

(

i
2π

2j + 1
αm

)

(55)

(with m = −j,−j + 1, · · · , j andα = −jr,−jr + 1, · · · ,−jr + 2j) in Eq. (52) define

a unitary transformation that allows to pass from the well-known orthonormal standard

spherical basis

S = {|jm〉 : 2j ∈ N, m = −j,−j + 1, · · · , j} (56)

to the orthonormal nonstandard basis

Br = {|jα; r〉 : 2j ∈ N, α = −jr,−jr + 1, · · · ,−jr + 2j} (57)
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for the space

ε =
⊕

j=0, 1
2
,1,···

ε(j) (58)

whereε(j) is a subspace of constant angular momentumj (see Eq. (32)). For fixedr, the

expansion coefficients satisfy the unitarity property

j
∑

m=−j

〈jm|jα; r〉∗ 〈jm|jα′; r〉 = δ(α′, α) (59)

and

−jr+2j
∑

α=−jr

〈jm|jα; r〉 〈jm′|jα; r〉∗ = δ(m′, m) (60)

Then, the development

|jm〉 =
1√

2j + 1

−jr+2j
∑

α=−jr

q−mα |jα; r〉 (61)

with

m = −j,−j + 1, · · · , j, 2j ∈ N (62)

is the inverse of Eq. (52) and makes it possible to pass from the nonstandard basisBr to

the standard basisS.

The representation theory of SU(2) can be transcribed in the{J2, Ur} scheme. In this

scheme, the rotation matrix elements for the rotationR of SO(3) assumes the form

D(j)
r (R)αα′ =

1

2j + 1

j
∑

m=−j

j
∑

m′=−j

q−αm+α′m′ D(j)(R)mm′ (63)

in terms of the standard matrix elementsD(j)(R)mm′ . Then, the behavior of the vector

|jα; r〉 under an arbitrary rotationR is given by

PR|jα; r〉 =
∑

α′

|jα′; r〉 D(j)
r (R)α′α (64)

wherePR stands for the operator associated withR. If R is a rotation around thez-axis,

Eq. (64) takes a simple form. Indeed, ifR(ϕ) is a rotation of an angle

ϕ = p
2π

2j + 1
with p = 0, 1, 2, · · · , 2j (65)

13



around thez-axis, we have

PR(ϕ) |jα; r〉 = |jα′; r〉 (66)

where

α′ = α − p, mod(2j + 1) (67)

Consequently, the set{|jα; r〉 : α = −jr,−jr + 1, · · · ,−jr +2j} spans a representation

of dimension2j + 1 of the cyclic subgroupC2j+1 of SO(3). It can be seen that this

representation is nothing but the regular representation of C2j+1. The nonstandard basis

Br presents some characteristics of a group-subgroup type basis in the sense that the

set{|jα; r〉 : α = −jr,−jr + 1, · · · ,−jr + 2j} carries a representation of a subgroup

of SO(3). However, this representation is reducible exceptfor j = 0. Therefore, the

labelµ ≡ α; r does not correspond to some irreducible representation of asubgroup of

SU(2) orSO(3) ≡ SU(2)/Z2 so that the basisBr also exhibits some characteristics of a

nongroup-subgroup type basis.

The behavior of the vector|jα; r〉 under the time-reversal operatorK is given by

K|jα; r〉 =
∑

α′

(

j j
α α′

)

r

|jα′; r〉 (68)

where
(

j j
α α′

)

r

=
1

2j + 1

j
∑

m=−j

j
∑

m′=−j

q−αm−α′m′

(

j j
m m′

)

(69)

Here, the 2-jm symbol (also called a 1-jm symbol for evident reasons) reads
(

j j
m m′

)

= (−1)j+mδ(m′,−m) (70)

and defines the metric tensor introduced by Wigner.6 (The normalization chosen for the

Wigner metric tensor is the one of Edmonds.14)

The 2-jα metric tensor allows us to pass from a given irreducible representation ma-

trix of SU(2) to its complex conjugate. Indeed, we have

D(j)
r (R)∗ββ′ =

∑

αα′

(

j j
β α

)∗

r

D(j)
r (R)αα′

(

j j
β ′ α′

)

r

(71)
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(the twoj’s in the 2-jα metric tensor are identical because the irreducible representation

class (j) of SU(2) is identical to its complex conjugate).

For any value ofr, the basisBr is an alternative to the spherical basisS of the spaceε.

Two basesBr andBs with r 6= s are thus two equally admissible orthonormal bases forε.

The vectors of the basesBr andBs are common eigenvectors of{J2, Ur} and{J2, Us},

respectively. The overlap between the basesBr andBs is controlled by

〈j′α; r|jβ; s〉 = δ(j′, j)
1

2j + 1

sin(α − β)π

sin(α − β) π
2j+1

(72)

with α = −jr,−jr + 1, · · · ,−jr + 2j andβ = −js,−js + 1, · · · ,−js + 2j.

4.3 Some examples

As an illustration, we continue with some examples concerning the subspacesε(1
2
) and

ε(1).

4.3.1 The casej = 1
2

For r = 1, Eq. (52) gives

|1
2
− 1

2
; 1〉 =

1√
2

(

ρ|1
2
− 1

2
〉 + ρ−1|1

2
+

1

2
〉
)

|1
2

+
1

2
; 1〉 =

1√
2

(

ρ−1|1
2
− 1

2
〉 + ρ|1

2
+

1

2
〉
)

(73)

whereρ = ei π

4 . Forr = 0, we have

|1
2
0; 0〉 =

1√
2

(

|1
2
− 1

2
〉 + |1

2
+

1

2
〉
)

|1
2
1; 0〉 =

1√
2

(

ρ−2|1
2
− 1

2
〉 + ρ2|1

2
+

1

2
〉
)

(74)

4.3.2 The casej = 1

By puttingω = ei 2π

3 , we obtain

|1 − 1; 1〉 =
1√
3

(

ω|1 − 1〉 + |10〉 + ω−1|1 + 1〉
)
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|10; 1〉 =
1√
3

(|1 − 1〉 + |10〉 + |1 + 1〉)

|1 + 1; 1〉 =
1√
3

(

ω−1|1 − 1〉 + |10〉 + ω|1 + 1〉
)

(75)

for r = 1 and

|10; 0〉 =
1√
3

(|1 − 1〉 + |10〉 + |1 + 1〉)

|11; 0〉 =
1√
3

(

ω−1|1 − 1〉 + |10〉 + ω|1 + 1〉
)

|12; 0〉 =
1√
3

(

ω|1 − 1〉 + |10〉 + ω−1|1 + 1〉
)

(76)

for r = 0.

We thus foresee that it is quite possible to achieve the construction of the WRa of the

group SU(2) in the{J2, Ur} scheme. This furnishes an alternative to the WRa of SU(2)

in the SU(2)⊃ U(1) basis corresponding to the{J2, Jz} scheme.

5 A new approach to the Wigner-Racah algebra of SU(2)

In this section, we give the basic ingredients for the WRa of SU(2) in the{J2, Ur} scheme.

The Clebsch-Gordan coefficients (CGc’s) or coupling coefficients adapted to the{J2, Ur}

scheme are defined from the SU(2)⊃ U(1) CGc’s adapted to the{J2, Jz} scheme. The

adaptation to the{J2, Ur} scheme afforded by Eq. (52) is transferred to SU(2) irreducible

tensor operators. This yields the Wigner-Eckart theorem inthe{J2, Ur} scheme.

5.1 Coupling coefficients in the{J2, Ur} scheme

When passing from the{J2, Jz} scheme to the{J2, Ur} scheme, the CGc’s(j1j2m1m2|j3m3)

are replaced by the coefficients

(j1j2α1α2|j3α3)r =
1

√

(2j1 + 1)(2j2 + 1)(2j3 + 1)

j1
∑

m1=−j1

j2
∑

m2=−j2

j3
∑

m3=−j3

q−α1m1

1 q−α2m2

2 qα3m3

3 (j1j2m1m2|j3m3) (77)
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where theqa’s are given in terms ofja by

qa = exp

(

i
2π

2ja + 1

)

, a = 1, 2, 3 (78)

(cf. Eq. (54)).

The new CGc’s(j1j2α1α2|jα)r in the {J2, Ur} scheme are simple linear combina-

tions of the SU(2)⊃ U(1) CGc’s. The symmetry properties of the coupling coefficients

(j1j2α1α2|jα)r cannot be expressed in a simple way (except the symmetry under the in-

terchangej1α1 ↔ j2α2). Let us introduce thefr symbol via

fr

(

j1 j2 j3

α1 α2 α3

)

= (−1)2j3
1√

2j1 + 1
(j2j3α2α3|j1α1)

∗

r (79)

Its value is multiplied by the factor(−1)j1+j2+j3 when its two last columns are inter-

changed. However, the interchange of two other columns cannot be described by a simple

symmetry property. Nevertheless, thefr symbol is of central importance for the calcula-

tion of matrix elements of irreducible tensor operators viathe Wigner-Eckart theorem in

the{J2, Ur} scheme (see Eq. (106) below).

Following Ref. [9], we define a more symmetrical symbol, namely the fr symbol,

through

fr

(

j1 j2 j3

α1 α2 α3

)

=
1

√

(2j1 + 1)(2j2 + 1)(2j3 + 1)

j1
∑

m1=−j1

j2
∑

m2=−j2

j3
∑

m3=−j3

q−α1m1

1 q−α2m2

2 q−α3m3

3

(

j1 j2 j3

m1 m2 m3

)

(80)

The 3-jm symbol on the right-hand side of Eq. (80) is an ordinary Wigner symbol for the

SU(2) group in the SU(2)⊃ U(1) basis. It is possible to pass from thefr symbol to thefr

symbol and vice versa by means of the metric tensor introduced in Section 4. Indeed, we

can check that

fr

(

j1 j2 j3

α1 α2 α3

)

=
∑

α′

3

(

j3 j3

α3 α′
3

)

r

fr

(

j3 j2 j1

α′
3 α2 α1

)∗

(81)

or alternatively

fr

(

j1 j2 j3

α1 α2 α3

)

=
∑

α′

1

(

j1 j1

α′
1 α1

)

r

fr

(

j1 j3 j2

α′
1 α3 α2

)∗

(82)
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Thefr symbol is more symmetrical than thefr symbol. Thefr symbol exhibits the same

symmetry properties under permutations of its columns as the 3-jm Wigner symbol: Its

value is multiplied by(−1)j1+j2+j3 under an odd permutation and does not change under

an even permutation. In other words, we have

fr

(

j1 j2 j3

α1 α2 α3

)

= εabc fr

(

ja jb jc

αa αb αc

)

(83)

whereεabc = 1 or (−1)j1+j2+j3 according to whetherabc corresponds to an even or odd

permutation of123.

The orthogonality properties of the highly symmetricalfr symbol easily follow from

the corresponding properties of the 3-jm Wigner symbol. Thus, we have

∑

j3α3

(2j3 + 1) fr

(

j1 j2 j3

α1 α2 α3

)∗

fr

(

j1 j2 j3

α′
1 α′

2 α3

)

= δ(α′
1, α1)δ(α

′
2, α2) (84)

and

∑

α1α2

fr

(

j1 j2 j3

α1 α2 α3

)

fr

(

j1 j2 j′3
α1 α2 α′

3

)∗

=
1

2j3 + 1
∆(0|j1 ⊗ j2 ⊗ j3) δ(j′3, j3) δ(α′

3, α3) (85)

where∆(0|j1⊗j2⊗j3) = 1 or 0 according to whether the Kronecker product(j1)⊗(j2)⊗

(j3) contains or does not contain the identity irreducible representation class (0) of SU(2).

Note that the real numberr is the same for all thefr symbols occurring in Eqs. (84) and

(85).

The values of the SU(2) CGc’s in the{J2, Ur} scheme as well as of thefr andfr

coefficients are not necessarily real numbers. For instance, we have the following property

under complex conjugation

fr

(

j1 j2 j3

α′
1 α′

2 α′
3

)∗

=
∑

α1α2α3

(

j1 j1

α′
1 α1

)∗

r

(

j2 j2

α′
2 α2

)∗

r

(

j3 j3

α′
3 α3

)∗

r

fr

(

j1 j2 j3

α1 α2 α3

)

(86)
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Then, the behavior of thefr symbol under complex conjugation is completely different

from the one of the ordinary 3-jm Wigner symbol. In this respect, we have

fr

(

j1 j2 j3

α1 α2 α3

)∗

= (−1)j1+j2+j3 fr

(

j1 j2 j3

α1 α2 α3

)

(87)

Hence, the value of thefr coefficient is real ifj1 + j2 + j3 is even and pure imaginary if

j1 + j2 + j3 is odd.

It is to be noted that the 2-jα symbol introduced in Section 4 is a particular case of

thefr symbol since we have

(

j j
α α′

)

r

=
√

2j + 1 fr

(

j 0 j
α 0 α′

)

(88)

Consequently, the orthogonality property

∑

α

(

j j
α β

)

r

(

j j
α β ′

)∗

r

= δ(β ′, β) (89)

and the symmetry property

(

j j
α′ α

)

r

= (−1)2j

(

j j
α α′

)

r

(90)

follow from the corresponding properties of thefr symbol.

The caser = 1 deserves a special attention. In that case, we have specific relations

because the labelα may be0 for j integer. For example, the value of

fr

(

j1 j2 j3

0 0 0

)

=
1

√

(2j1 + 1)(2j2 + 1)(2j3 + 1)

j1
∑

m1=−j1

j2
∑

m2=−j2

j3
∑

m3=−j3

(

j1 j2 j3

m1 m2 m3

)

(91)

is equal to0 if j1 + j2 + j3 is odd.

5.2 Recoupling coefficients in the{J2, Ur} scheme

The recoupling coefficients of the SU(2) group are rotational invariants.14 Therefore, they

can be expressed in terms of coupling coefficients of SU(2) inthe{J2, Ur} scheme. For
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example, the 9-j symbol can be expressed in terms offr symbols by replacing, in its

decomposition in terms of 3-jm symbols, the 3-jm symbols byfr symbols. On the

other hand, the decomposition of the 6-j symbol in terms offr symbols requires the

introduction of six metric tensors corresponding to the sixarguments of the 6-j symbol.

These matters shall be developed by following the approach initiated in Ref. [9].

We start with the case of the 6-j symbol. Relations involving the 6-j Wigner symbol

(or W Fano and Racah coefficient7) andfr symbols, with fourfr symbols, can be easily

derived. First, the 6-j symbol can be expressed as

W
(

j1 j2 j3

j4 j5 j6

)

=
∑

all α′

∑

all α

(

j1 j1

α1 α′
1

)∗

r

(

j2 j2

α2 α′
2

)∗

r

(

j3 j3

α3 α′
3

)∗

r
(

j4 j4

α4 α′
4

)∗

r

(

j5 j5

α5 α′
5

)∗

r

(

j6 j6

α6 α′
6

)∗

r

fr

(

j1 j2 j3

α1 α2 α3

)

fr

(

j1 j5 j6

α′
1 α5 α′

6

)

fr

(

j4 j2 j6

α′
4 α′

2 α6

)

fr

(

j4 j5 j3

α4 α′
5 α′

3

)

(92)

which involves 0+4 fr symbols (nofr symbol on the left-hand side and four on the right-

hand side). With the help of Eq. (86), Eq. (92) can be rewritten as

W
(

j1 j2 j3

j4 j5 j6

)

=
∑

α′

4
α′

5
α′

6

∑

all α

(

j4 j4

α4 α′
4

)∗

r

(

j5 j5

α5 α′
5

)∗

r

(

j6 j6

α6 α′
6

)∗

r

fr

(

j1 j2 j3

α1 α2 α3

)∗

fr

(

j1 j5 j6

α1 α5 α′
6

)

fr

(

j4 j2 j6

α′
4 α2 α6

)

fr

(

j4 j5 j3

α4 α′
5 α3

)

(93)

An expression involving 1+3 fr symbols is

fr

(

j1 j2 j3

α1 α2 α3

)

W
(

j1 j2 j3

j4 j5 j6

)

= ∆(0|j1 ⊗ j2 ⊗ j3)
∑

α′

4
α′

5
α′

6

∑

α4α5α6

(

j4 j4

α4 α′
4

)∗

r

(

j5 j5

α5 α′
5

)∗

r

(

j6 j6

α6 α′
6

)∗

r

fr

(

j1 j5 j6

α1 α5 α′
6

)

fr

(

j4 j2 j6

α′
4 α2 α6

)

fr

(

j4 j5 j3

α4 α′
5 α3

)

(94)
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We also have a 2+2 relationship

∑

j3α3

(2j3 + 1)fr

(

j1 j2 j3

α1 α2 α3

)

fr

(

j4 j5 j3

α4 α5 α3

)∗

W
(

j1 j2 j3

j4 j5 j6

)

=
∑

α′

4
α′

5
α′

6

∑

α6

(

j4 j4

α4 α′
4

)∗

r

(

j5 j5

α′
5 α5

)∗

r

(

j6 j6

α6 α′
6

)∗

r

fr

(

j1 j5 j6

α1 α′
5 α′

6

)

fr

(

j4 j2 j6

α′
4 α2 α6

)

(95)

and a 3+1 relationship

∑

j3α3

∑

α′

4
α′

5
α′

6

∑

α1α5

(2j3 + 1)
(

j4 j4

α′
4 α4

)

r

(

j5 j5

α5 α′
5

)

r

(

j6 j6

α6 α′
6

)

r

fr

(

j1 j2 j3

α1 α2 α3

)

fr

(

j1 j5 j6

α1 α5 α′
6

)∗

fr

(

j4 j5 j3

α′
4 α′

5 α3

)∗

W
(

j1 j2 j3

j4 j5 j6

)

=
1

2j6 + 1
∆(0|j1 ⊗ j5 ⊗ j6) fr

(

j4 j2 j6

α4 α2 α6

)

(96)

By using the orthonormality of thefr symbol in conjunction with Eq. (96), we would

obtain a 4+0 relationship which turns out to be the well-known orthonormality relation7

for theW coefficient.

We continue with the 9-j Wigner symbol (orX Fano and Racah coefficient7). Rela-

tions involving sixfr symbols and one 9-j symbol can be obtained in a straightforward

way. First, we have the very symmetrical expression of the type 0+6

X







j11 j12 j13

j21 j22 j23

j31 j32 j33





 =
∑

all α

fr

(

j11 j21 j31

α11 α21 α31

)

fr

(

j12 j22 j32

α12 α22 α32

)

fr

(

j13 j23 j33

α13 α23 α33

)

fr

(

j11 j12 j13

α11 α12 α13

)∗

fr

(

j21 j22 j23

α21 α22 α23

)∗

fr

(

j31 j32 j33

α31 α32 α33

)∗

(97)

Other relations with sixfr symbols can be derived by combining Eq. (97) and the or-

thonormality relations of thefr symbols. For instance, we have the relation of the type

1+5

fr

(

j31 j32 j33

α31 α32 α33

)

X







j11 j12 j13

j21 j22 j23

j31 j32 j33





 = ∆(0|j31 ⊗ j32 ⊗ j33)
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∑

α11α12α13

∑

α21α22α23

fr

(

j11 j21 j31

α11 α21 α31

)

fr

(

j12 j22 j32

α12 α22 α32

)

fr

(

j13 j23 j33

α13 α23 α33

)

fr

(

j11 j12 j13

α11 α12 α13

)∗

fr

(

j21 j22 j23

α21 α22 α23

)∗

(98)

and the relation of the type 2+4

∑

j31α31

(2j31 + 1)fr

(

j11 j21 j31

α11 α21 α31

)∗

fr

(

j31 j32 j33

α31 α32 α33

)

X







j11 j12 j13

j21 j22 j23

j31 j32 j33





 =
∑

α12α13

∑

α22α23

fr

(

j12 j22 j32

α12 α22 α32

)

fr

(

j13 j23 j33

α13 α23 α33

)

fr

(

j11 j12 j13

α11 α12 α13

)∗

fr

(

j21 j22 j23

α21 α22 α23

)∗

(99)

Relations involving coupling and recoupling coefficients are of considerable interest

for the calculation of matrix elements. In particular,W andX coefficients occur in matrix

elements of scalar product and tensor product of two irreducible tensor operators.

5.3 Wigner-Eckart theorem in the {J2, Ur} scheme

5.3.1 Irreducible tensor operators

From the spherical componentsT (k)
m (with m = −k,−k + 1, · · · , k) of an SU(2) irre-

ducible tensor operatorT(k), we define the2k + 1 components

T (k)
α;r =

1√
2k + 1

k
∑

m=−k

qαm T (k)
m (100)

with

α = −kr,−kr + 1, · · · ,−kr + 2k, 2k ∈ N (101)

wherer is fixed inR. The behavior ofT (k)
α;r under a rotationR is described by

PR T (k)
α;r P−1

R =
∑

α′

T
(k)
α′;r D(j)

r (R)α′α (102)
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Following Racah,7 given two SU(2) irreducible tensor operatorsT
(k1) andU

(k2), we

can define the tensor product{T(k1)
U

(k2)}(k) of components

{T(k1)U
(k2)}(k)

α;r =
∑

α1α2

(k1k2α1α2|kα)r T (k1)
α1;r U (k2)

α2;r (103)

As a particular case, we get the scalar product

(

T
(k) · U(k)

)

= (−1)k
√

2k + 1 {T(k)
U

(k)}(0)
0;r (104)

More specifically, we have

(

T
(k) · U(k)

)

= (−1)−k
∑

αα′

(

k k
α α′

)

r

T (k)
α;r U

(k)
α′;r (105)

which can be identified with the scalar product introduced byRacah.7

5.3.2 Matrix elements of tensor operators

In the{J2, Ur} scheme, the Wigner-Eckart theorem reads

〈τ1j1α1; r|T (k)
α;r |τ2j2α2; r〉 =

(

τ1j1||T (k)||τ2j2

)

fr

(

j1 j2 k
α1 α2 α

)

(106)

where
(

τ1j1||T (k)||τ2j2

)

denotes an ordinary reduced matrix element. Such a reduced

matrix element is clearly basis-independent. The reduced matrix element in Eq. (106)

is identical with the one introduced by Racah.7 It is a rotational invariant that can be in

general expressed in terms of basic invariants (e.g., reduced matrix element of Wigner

unit operator,W andX coefficients). Therefore, it does not depend on the labelsα1, α2

andα. On the contrary, thefr coefficient in Eq. (106), defined by Eq. (79), depends on

the labelsα1, α2 andα. The information on the geometry is entirely contained in the fr

coefficient.

6 Concluding remarks

The main results presented in this paper are the following. (i) The nondeformed Lie al-

gebra su2 may be constructed from two commutingq-deformed oscillator algebras with

23



q being a root of unity; the latter oscillator algebras are associated with (truncated) har-

monic oscillators having a finite number of eigenvectors. (ii) This construction leads to

the polar decomposition of the generatorsJ+ andJ− of SU(2) originally introduced by

Lévy-Leblond.13 (iii) The familiar {J2, Jz} quantization scheme with the (usual) stan-

dard spherical basis{|jm〉 : 2j ∈ N, m = −j,−j + 1, · · · , j}, corresponding to the

canonical chain of groups SU(2)⊃ U(1), is thus replaced by the{J2, Ur} quantization

scheme with a (new) basis, namely, the nonstandard basisBr = {|jα; r〉 : 2j ∈ N, α =

−jr,−jr+1, · · · ,−jr+2j}. (iv) The Wigner-Racah algebra of SU(2) may be developed

in the{J2, Ur} scheme.

These various results should be useful in problems involving axial symmetry and in

the investigation of quantum mechanics on a finite Hilbert space as developed by several

authors.15 To make the latter point clear, let us writeS (see Eq. (56)) andBr (see Eq. (57))

as

S =
∞
⋃

j=0

sj (107)

and

Br =
∞
⋃

j=0

bj
r (108)

wheresj andbj
r are two bases that span the subspaceε(j). It is clear thatsj andbj

r are

two mutually unbiased bases (MUB’s) in the sense that

|〈jm|jα; r〉| = 1
√

dim ε(j)
(109)

It is known that the MUB’s are especially useful in the theoryof quantum information.

In this respect, a connection between our results and some ofthe ones in Ref. [15] is

presently under study.
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Florek, D. Lipiński and T. Lulek (World Scientific, Singapore, 1993).

M. Daoud, Y. Hassouni and M. Kibler, inSymmetries in Science X, Eds. B. Gruber

and M. Ramek (Plenum Press, New York, 1998).

M. Daoud and M. Kibler,Phys. Lett. A321, 147 (2004).

M. Kibler and M. Daoud, inFundamental World of Quantum Chemistry, Vol. III,
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