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Representation theory and Wigner-Racah algebra
of the SU(2) group in a noncanonical basfs

M.R. Kibler

Institut de Physique Nucléaire de Lyon
IN2P3-CNRS et Université Claude Bernard Lyon 1
43 bd du 11 novembre 1918
69622 Villeurbanne Cedex, France

Abstract

The Lie algebra su(2) of the classical group SU(2) is budtrfrtwo commuting quon
algebras for which the deformation parameter is a commonafenity. This construc-
tion leads to (i) a not very well-known polar decompositidritee generators_ and.J.
of the SU(2) group, with/, = J' = HU, whereH is Hermitean and/, unitary, and
(i) an alternative to the[J?, J,} quantization scheme, viz., the/?, U,} quantization
scheme. The representation theory of the SU(2) group caeveaped in this nonstan-
dard scheme. The key ideas for developing the Wigner-Rdgabia of the SU(2) group
in the {J2, U, } scheme are given. In particular, some properties of thelompnd re-
coupling coefficients as well as the Wigner-Eckart theorarthe {J?, U,} scheme are

examined in great detail.

!Dedicated to Professor Josef Paldus on the occasion of tiioitthday.
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1 Introduction

The concepts of symmetry (introduced in a group theoretioatext in the 1930's), of
supersymmetry (introduced in a supergroup context in th®’sP and of deformations
(introduced in a bi-algebra context in the 1980’s) are ofpayunt importance for quan-
tum chemistry and/or quantum physics. These concepts tme v$ed in the exploration

of dynamical systems as for example the Coulomb system aakttillator system which
can be viewed as two paradigms for the study of atomic and culaeinteractions:?

In these directions, the work®f Paldus and its collaborators on the second quantiza-
tion method, the unitary group approach and its extensiomégns of Clifford algebras
proved to be very useful in numerous domains of theoreticairastry.

In recent years, the use of deformed oscillator algebrageprto be useful for many
applications of quantum mechanics. For instance, one-wwo¢garameter deformations
of oscillator algebras and Lie algebras were applied tissizdl mechanicsand to molec-
ular and nuclear physics.

It is the purpose of this work to apply deformed oscillatgeddras or quon algebras to
the representation theory and the Wigner-Racah algebized®t)(2) group. The notion
of deformation is very familiar to the theoretician. In tlesisnnection, quantum mechan-
ics may be considered as a deformation (the deformatiompeea being the rationalised
Planck constant) of classical mechanics. In the same vein, relativisticmaedcs is, to
some extent, another deformation (with the inverse of thacity of light c—! as deforma-
tion parameter) of classical mechanics. The idea of a deftbom of an oscillator algebra
and of a Lie algebra also relies on the introduction of a de&dion parameter such that
the limiting situation wherg = 1 corresponds to the nondeformed algebraic structure.

The organisation of this paper is as follows. Section 2 i©tEto some generalities
on the notion of a Wigner-Racah algebra of a finite or compemtiig In Section 3, we
construct the Lie algebra of SU(2) from two quon algehfgsand A, corresponding

to the same deformation parametetaken as a root of unity. Section 4 deals with an



alternative to th€ J2, J,} scheme of SU(2), viz. theJ? U, } scheme, and with the basic
elements for the representation theory of SU(2) in this seheFinally, we develop in
Section 5 the Wigner-Racah algebra of SU(2) infHhé, U,} scheme.

Throughout the present work, we use the notaltibn3] for the commutator ofi and
B. As usual,z* denotes the complex conjugate of the numband A' stands for the

Hermitean conjugate of the operatér

2 Wigner-Racah algebra of SU(2)

The mathematical structure of a Wigner-Racah algebra (VRsdciated with a group
takes its origin in the works by Wigrfeon a simply reducible group, with emphasis
on the ordinary rotation group, and by Ratain chains of groups of type SR¥ +

1) D SO2¢ + 1) D SO(3), mainly with¢ = 2,3. From a practical point of view, the
WRa of a group deals with the algebraic relations satisfieitslgoupling and recoupling
coefficients. From a more theoretical point of view, the WRa finite or compact group
can be defined to be the infinite-dimensional Lie algebra sparby the Wigner unit
operators (i.e., the operators whose matrix elements aredtpling or Clebsch-Gordan
or Wigner coefficients of the group).

The WRa of the SU(2) group is well known. It is generally depsld in the standard
basis{|jm) :2j € N, m = —j,—j +1,---,j} arising in the simultaneous diagonaliza-
tion of the Casimir operataf? and of one generator, say, of SU(2). Besides this basis,
there exist several other bases. Indeed, any change ofdfagse

j
gy = > lim)(Gmlin) (1)
m=—j
(where thg2;5+1) x (27+1) matrix with elements;jm|ju) is an arbitrary unitary matrix)
defines another acceptable basis for the WRa of SU(2). Irbdsss, the matrices of the
irreducible representation classes of SU(2) take a new &xrmuell as the coupling coef-

ficients (and the associated;j8: symbols). As a matter of fact, the coupling coefficients



(j1jamims|jm) are simply replaced by

J1 J2 J
Grjepapelim) = Y. > > (Jijarmama|im)

mi1=—j1 mg=—ja m=—j

(Jima i)™ (Gama|jape)™ (Gmljp) (2)
when passing from théjm} quantization to thd ju} quantization while the recoupling
coefficients, and the correspondin@:3- 1)-; symbols, for the coupling of (n > 2)
angular momenta remain invariant.

The various bases for SB) may be classified into two types: group-subgroup type
and nongroup-subgroup type. The standard basis corresporadgroup-subgroup type
basis associated with the chain of groups3U> U(1). Another group-subgroup type
basis may be obtained by replacinglVby a finite groupG* (generally the double, i.e.,
spinor group, of a point grou@ of molecular or crystallographic interest). Among the
SU(2) D G* bases, we may distinguish: the weakly symmetry-adapteesidas which
the basis vectors are eigenvectors/éfand of the projection operators 6f (e.g., see
Ref. [9]) and the strongly symmetry-adapted bases for wthietbasis vectors are eigen-
vectors of.J? and of an operator defined in the enveloping algebra of SW@)ravariant
under the groug- (e.g., see Ref. [10]). We shall see that the basis for SU(&}rdeed
in the present paper interpolates between the group-supgype and the nongroup-

subgroup type.
3 A quon realization of the algebra su(2)

3.1 Two quon algebras

The concept of quon takes its origin in the replacement ottdmemutation (sign-) and

anticommutation (sigr-) relations
a_ay tara_ =1 (3)
by the relation

a_ay —qara_ =1 4)



whereq is a constant. Following the works in Ref. [11], we define tvwonenuting quon

algebrasd; = {a;_, a;, N;} with i = 1 and2 by

ai—Qiy — qaipa; =1, [Nz'7 aii] = *a;4, N@'T = N; (5)
(ai-i-)k = (ai—)k =0 (6)
VSUl € Al, v.’L'Q € A2 . [371,372] =0 (7)
where
O
¢ = exp (%) with ke N\ {0,1} )

Equation (5) corresponds to tlaela Arik and Coon! relations defining a quon algebra
except that, in the present worikis a root of unity instead of being a positive real number.
The deformation parameteis the same for each of the algebrésand A, so that4; and
A, can be considered as two copies of the same quon algebratidq(®) constitutes
nilpotency conditions which are indeed compatibility tedas to account for the fact that
¢ is not a positive number (remembgr = 1). Equation (7) reflects the commutativity
of the algebrasi; and A,. The generators,. andNV; of A; and A, are linear operators.
As in the classical casg= 1, we say that;;, is a creation operatos,_ an annihilation
operator andV; a number operator (with= 1, 2). However, the operatar;, cannot be
considered as the adjoint of the operator except fork = 2 andk — oo. In contrast,
the operatorV; can be taken to be a Hermitean operator for any valueiofN \ {0, 1}.
It should be observed tha{; is different froma,  a;_ except fork = 2 andk — oo. Note
that the casé = 2 (= ¢ = —1) corresponds to fermion operators and the dase oo
(= ¢ — 1) to boson operators. In other words, each of the algelrdgscribes fermions
for ¢ = —1 and bosons fog = 1 with N; = a;, a;_ for fermions and bosons & 1, 2).

To close this subsection, let us mention that algebrasainald,; and A, with N, =
N, were introduced by Daoud, Hassouni and Kibidor definingk-fermions which are,
like anyons, objects interpolating between fermions @gponding td: = 2) and bosons

(corresponding té& — o).



3.2 Representation of the quon algebras

We can find several Hilbertian representations of the almgehr and A,. In this work,

we take the representation df ® A, defined by the following action

ajq|ny,ng) = |ng+1,n9), arlk—1,n9)=0 (9)
ai—|ni,n2) = [, [n1 — 1,ns),  a1-10,m5) =0 (10)
agy|ni, ng) = [n2 + 1], [n1,n2 + 1), agyni, k—1)=0 (11)
as_|ni,ng) = |ny,ng — 1), as_|ny,0)=0 (12)
Ni|ny,mo) = ni|ng,na), No|ng, ng) = ne|ng, na) (13)

on afinite (Fock) spacg&;, = {|n1,ns) : n1,n2 = 0,1,---, k—1} of dimension dimF;, =

k2. In Egs. (10) and (11), we use

1—gq"
2], = = for z€R (14)
which yields
n],=14+q+---+¢"* for neN* and [0],=0 (15)

as a particular case. We shall also usegtfieformed factorial defined by
]t =1[1],[2],---[n], for mneN* [0]!=1 (16)

sothatin + 1] ! = [n] ! [n + 1], forn € N.
The spaceF; is a unitary space with a scalar product noted). The k? vectors

|n1, n) are taken in a form such that

(n/lvn/2|n17n2) = 5(71/1,711) 5(71/2,712) (17)
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(i.e., they constitute an orthonormalized basisf@). The spaceF, turns out to be
the direct productF(1) ® F(2) of two truncated Fock spaceB(i) = {|n;) : n, =
0,1,---,k — 1} of dimensiondim F (i) = k (: = 1,2) corresponding to two truncated
harmonic oscillators. At this stage, we realize why the sase 0 andk = 1 should be
excluded. The caske = 1 would give trivial algebrasi; witha;, = a;, =0 = 1,2)

and the casé = 0 would lead to a nondefined value @f

3.3 Two important operators

We now define the two linear operators

H = /Ny (N, +1) (18)
and
U, = a4 + e2i?r L (a1 )Y as + 2" L (agy)*! (19)
r — 1+ [k’ _ ]_]q' 1— 2— [k} _ 1]q' 2+
where the arbitrary real parametgris taken in the form
¢ =m(k—1)r with reR (20)

It is immediate to show that the action Bf andU,. on F;, is given by

Hni,ng) = y/ni(ne + 1)|ny,ne) for n; =0,1,2,--- k—1 with i=1,2 (21)

and
Urni,ne) =1Iny+1,ny—1) for ny#k—1 and ny #0 (22)
Urlk —1,n9) = e%i¢r|0,n2 —1) for ny #0 (23)
Urng,0) = 2% |ny + 1,k —1) for ny #£k—1 (24)
Uk —1,0) =€?0,k—1) for ny=k—1 and ny=0 (25)

The operatordd and U, satisfy interesting properties. First, it is obvious thag t

operatorH is Hermitean. Second, the operatgris unitary. In addition, the action @f,

7



on the spacé;, is cyclic. More precisely, we can check that
(U)F =eT (26)

wherel is the identity operator.

From the Schwinger work on angular momenttfnwe introduce

1 1
Jzé(n1+n2), Mza(nl—ng) (27)

Consequently, we can write

|ny,ne) =|J+M,J— M) (28)
We shall use the notation

\JM) = |J+M,J— M) (29)

for the vectorl.J + M, J — M). For a fixed value of/, the label)M can take2.J + 1 values

M =-J—-J+1,---,J. Equations (28) and (29) proved to be of central importance
for the connection between angular momentum and a coupiedfpardinary harmonic
oscillators!? We guess here that they shall play an important role for cctimgpthe Lie
algebra of su(2) to a coupled pair of truncated harmonidlasais.

For fixedk, the maximum value of is
J=Jpax =k —1 (30)
and the following value off
. 1
J=j=gk=1) (31)

is admissible. For a given value bfe N\ {0, 1}, the2;j + 1 = k vectors|jm) belong to
the vector spacé;.. Lete(j) be the subspace ¢, of dimensiondim ¢(j) = k, spanned

by thek vectors|jm). We can thus associate the space
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forj = 3,1,2,-- to the values: = 2,3,4, -, respectively. The cas€;j = 0) can be
seen to correspond to the limiting situation whére» occ.

The action of the operato#s andU, on the space(j) can be described by

Hjm) = /(j +m)(j —m + 1)|jm) (33)
and
Uy |jm) = [L = 6(m, j)] [im + 1) + 6(m, )" |j — ) (34)

which are a simple rewriting, in terms of the vectgys:), of Egs. (21) and (22)-(25),
respectively. The subspaegj) of F; is thus stable undell andU,. Furthermore, the

action of the adjoint/! of U, on the space(j) is given by
Ullgm) = [1 = 6(m, —5)] ljm — 1) + 8(m, —j)e™*" |jj) (35)

We can check that the operatBris Hermitean and the operatby. is unitary on the

space:=(j). Equation (26) can be rewritten as
(U)7H =T (36)

which reflects the cyclic character &f one(j).
Finally let us mention that, as far as the opera#dr4/, andU; act on the space(j),

one can write

H= 3 \/(j+m)(i—m+Dljm)(m (37)

U= 3 ljme+ Dml + el = )il (38)

ul="% lim=1(ml+e 5 -l (39)
m=—j+1

where we have introducedla Dirac projectors on(7).



3.4 The SU(2) generators

We are now in a position to give a realization of the Lie algebf the group SU(2) in

terms of the generators df, and A,. Let us define the three operators

J.=HU, J_.=UH (40)
and
1
JZ: §(N1—N2) (41)

It is straightforward to check that the action on the ve¢jot) of the operators defined

by Egs. (40) and (41) is given by

Tiljm) = /(G —m)(j +m+1)jm+1) (42)
J_ljm) = /(G +m)(j —m+1)jm 1) (43)

and
J.|jm) = m|jm) (44)

Consequently, we have the commutation relations
[, Jil =+, [, J|=—J_, [Jy,J]=2J, (45)

which correspond to the Lie algebra of SU(2).

We have here an unsual result for Lie algebras. In the coofedeformations, we
generally start from a Lie algebra, then deform it and finéilig a realization in terms
of deformed oscillator algebras. Here we started fromgva@formed oscillator algebras

from which we derived the nondeformed Lie algebra su(2).

4 An alternative basis for the representation of SU(2)
4.1 An alternative to the {J?, J.} scheme

The decomposition (40) of the shift operatorsand.J_ in terms of H andU, coincides

with the polar decomposition introduced in Ref. [13] in a g@etely different way. This is

10



easily seen by taking the matrix elementé/pofand H in the{.J?, J.} quantization scheme
and by comparing these elements to the ones of the opefatansl /1 in Ref. [13]. We

are thus left with
H=Jr (46)

and, by identifying the arbitrary phageof Ref. [13] with ¢, = 27jr = n(k — 1)r, we
obtain that

U, =T (47)

so that Eq. (40) correspondsfq = J; Y and.J_ = YT Jr.

It is immediate to check that the Casimir operator

J? = % (Jod_+J_Jy)+J? (48)
of su(2) can be rewritten as
JP=H?*+J?—J, =UHU, +J*+ J, (49)
or
J? = i(z\f1 + No)(Ny + Ny +2) (50)

in terms of the generators; and N, of A; and A,, respectively. It is a simple matter of
calculation to prove thaf? commutes witHU, for any value ofr. (Note that the commu-
tator [U,., U] is different from zero for- # s.) Therefore, for- fixed, the commuting set
{J?,U,} provides us with an alternative to the familiar commuting{sg, J, } of angular
momentum theory. It is to be observed that the operatdémndU, can be expressed as

functions of the generators df, and A, (see Eqgs. (19) and (50)).

4.2 Eigenvalues and eigenvectors

The next step is to determine the eigenvalues and eigemsent®,.. The eigenvalues

and the common eigenvectors of the complete set of commapeeators{.J2, U, } can

11



be easily found. This leads to the following result. The $geaf the operators, and.J>

are given by
Ulja;r) = q “[ja;r)
Pliosr)y = (G +1)|ja;r) (51)
where
1 J
o) = a4 52
lja;T) NoTES m;jq jm) (52)
with the range of values
a=—jr,—jr+1,---,—jr+2j, 2jeN, reR (53)

modulo2; + 1. The parametey in Egs. (51) and (52) is

2T
— ' 54
q = exp (12j 1) (54)

(cf. Eq. (8) withk = 25 + 1 for k € N\ {0,1} andk — oo for j = 0).

The labely used in Section 2 is here of the form= «; r with a fixed value of-. It
is important to note that the labelin Eqgs. (51) and (52) goes, by step of 1, frefjr to
—jr + 2j; itis only for » = 1 thata goes, by step of 1, fromj to j.

The inter-basis expansion coefficients

(imljosr) = —— g = o (55)
m\ja;r) = = = = ex 1— am

I NoTES 11 P11

withm = —j,—j +1,---,7anda = —jr,—jr + 1,---, —jr + 25) in Eq. (52) define

a unitary transformation that allows to pass from the waltwkn orthonormal standard

spherical basis
to the orthonormal nonstandard basis

BT:{UQ;T> : 2.7 EN? a = _JT7_3T+177_.7T+2]} (57)

12



for the space
e= @D () (58)
j:07%71,...
wherez(j) is a subspace of constant angular momenjusee Eq. (32)). For fixed, the

expansion coefficients satisfy the unitarity property

J

Y (mljasr)* (gmlja’;r) = d(d/, @) (59)
m=—j
and
—jr+2j
Y mljasr) (Gm'ljas )" = 8(m/,m) (60)
a=—jr

Then, the development

1 —jr+2j

im) = —ma | 61
ljm) W@Z_jrq o) (61)

with

is the inverse of Eq. (52) and makes it possible to pass fremémstandard basis, to
the standard basis.

The representation theory of SU(2) can be transcribed i fRel, } scheme. In this
scheme, the rotation matrix elements for the rotafioof SO(3) assumes the form

1

i '
T2t oo X gt DO(R) (63)

m=—jm/=—j

in terms of the standard matrix eleme®$)(R),..... Then, the behavior of the vector

|7a; ) under an arbitrary rotatioR is given by
Prljo;r) = Z |j0/§ T) Dﬁj)(R)a’a (64)

where Py stands for the operator associated withIf R is a rotation around the-axis,
Eq. (64) takes a simple form. Indeed Hf ) is a rotation of an angle

2
27+1

13



around thez-axis, we have

Pr) |jasr) = [ja's) (66)
where
o' =a—p, mod(25+1) (67)
Consequently, the sétjo;r) : « = —jr,—jr+1,---, —jr+ 27} spans a representation

of dimension2j + 1 of the cyclic subgroug’s;;, of SO(3). It can be seen that this
representation is nothing but the regular representafi@r,g ;. The nonstandard basis
B, presents some characteristics of a group-subgroup typs imathe sense that the
set{|jo;r) : « = —jr,—jr +1,---, —jr + 25} carries a representation of a subgroup
of SO(3). However, this representation is reducible exéept = 0. Therefore, the
label x = «;r does not correspond to some irreducible representatiorsabgroup of
SU(2) orSO(3) = SU(2)/Z, so that the basi®, also exhibits some characteristics of a
nongroup-subgroup type basis.

The behavior of the vectdy«; ) under the time-reversal operatiris given by

Kljosr) =32 (1 1) lio'sr) (69

~“\a o
o
where

j j _ 1 4 / —am—a'm/ <] j>
<a Oz')r_2j+1 2 > mm' (69)

m=—j m/=—j

Here, the 2ym symbol (also called a }m symbol for evident reasons) reads

(j J > — (—1)7*78(m!, —m) (70)

m m'
and defines the metric tensor introduced by Wign@he normalization chosen for the
Wigner metric tensor is the one of Edmoridk.
The 24« metric tensor allows us to pass from a given irreduciblegsgntation ma-
trix of SU(2) to its complex conjugate. Indeed, we have

POR) =3

aao!

D (pl) o

(0% (0%

14



(the twoj’s in the 25« metric tensor are identical because the irreducible reptason
class () of SU(2) is identical to its complex conjugate).

For any value of, the basig3, is an alternative to the spherical baSisf the space.
Two bases3, and B, with r £ s are thus two equally admissible orthonormal bases.for
The vectors of the basds,. and B, are common eigenvectors ¢, U,} and{J?, U},
respectively. The overlap between the baBeand B, is controlled by

1 sin(a — B)m

2j + 1 sin(a = B) g7

(J'asr|jBss) = 0(5", 7) (72)
witha = —jr,—jr+1,---, —jr+2jandg = —js, —js+1,---, —js + 2j.
4.3 Some examples

As an illustration, we continue with some examples conceriine subspaces%) and

g(1).
43.1 Thecasg =1

Forr =1, Eq. (52) gives

1 1 1 1 1 1

1) = -z -1z _)

1 1 1 1 1 1 1

s+ = (5 - +alz+3) 73
wherep = e'i. Forr = 0, we have

1 1 1 1 1 1

20:0) = —(|=== 4z

120:0 \/5(‘2 2>+‘2+2>)

1 1 1 1 1 1

L0)y = —=(p s —2)+ %5 —) 74

4.3.2 Thecase =1

By puttingw = ¢%", we obtain

1-1;1) = (w1 = 1) +[10) + w1+ 1))

Sl

15



1

10:1) = = (1=1)+[10)+[1+1)
1+1;1) = %(w1|1—1)+|10>+w\1—0—1>) (75)
for » = 1 and
10,0) = %(|1—1>+|10)+|1+1>)
111:0) = %(w1\1—1>+\10)+w|1+1))
112:0) = %(w|1—1>+|10>+w_1|1+1)) (76)
for r = 0.

We thus foresee that it is quite possible to achieve the nactgin of the WRa of the
group SU(2) in the[ J?, U, } scheme. This furnishes an alternative to the WRa of SU(2)
in the SU(2)> U(1) basis corresponding to tdg?, J.} scheme.

5 A new approach to the Wigner-Racah algebra of SU(2)

In this section, we give the basic ingredients for the WRa§2 in the{.J?, U, } scheme.
The Clebsch-Gordan coefficients (CGc’s) or coupling coieffits adapted to thg/?, U, }

scheme are defined from the SU(2)U(1) CGc's adapted to theJ?, J.} scheme. The
adaptation to th¢.J2, U, } scheme afforded by Eq. (52) is transferred to SU(2) irrdaleci

tensor operators. This yields the Wigner-Eckart theorethéq J?, U, } scheme.

5.1 Coupling coefficients in the{.J?, U,} scheme
When passing from thgJ?, J.} scheme to thé.J?, U, } scheme, the CGclg, jom ms|jzms)
are replaced by the coefficients

1
(21 +1)(272 + 1)(2j3 + 1)

(J1j2010jsas), = \/

J1 J2 J3
oD D ar ™ g 5™ (Jujamama|jzms) (77)

m1=—j1 ma=—jz m3=—j3

16



where they,’s are given in terms of, by

2T
2Jq +1

(o = €XP (i ), a=1,2,3 (78)
(cf. EqQ. (54)).

The new CGC'S(jijoa1 | ja), in the {J? U,} scheme are simple linear combina-
tions of the SU(2D U(1) CGc’s. The symmetry properties of the coupling coedfits
(J1jec1a2]jar), cannot be expressed in a simple way (except the symmetry timelén-
terchange,a; < joas). Let us introduce the, symbol via

J1 o J2 U3 2j 1 . s
— (1)
fr <a1 s a3) ( ) \/m (]2]3a2a3|jla1)r

Its value is multiplied by the factof—1)71"72%Js when its two last columns are inter-

(79)

changed. However, the interchange of two other columnsatdrendescribed by a simple
symmetry property. Nevertheless, tfiesymbol is of central importance for the calcula-
tion of matrix elements of irreducible tensor operatorstii@ Wigner-Eckart theorem in
the{J?, U, } scheme (see Eqg. (106) below).

Following Ref. [9], we define a more symmetrical symbol, njntbe f, symbol,

through

A ( JioJ2 3 ) _ 1
oy g \/(2j1+1)(2j2+1)(2jg+1)
2 S - Ji J2 J3
—aimy ,—Q2mz ,—Qa3ms
m1§j1 ngjz msgjs o - b (ml My M3 ) (80)
The 34m symbol on the right-hand side of Eq. (80) is an ordinary Wiggyenbol for the
SU(2) group in the SU(2D U(1) basis. It is possible to pass from tfiesymbol to thef,
symbol and vice versa by means of the metric tensor intratlic8ection 4. Indeed, we

can check that
(7 J2 I3\ _ Jjs  J3 g3 J2 g1\
f’“(Ozl o as)_Z(as Oéé)rﬁ(aé Qs oq) (81)
Qg
or alternatively

fr(jl J2 j3>:azll<j1/ j1>rﬁ(j1/ Js j2>* (82)

a1 Qg (O3 ;. O a3 Qo



The f. symbol is more symmetrical than tifesymbol. Thef, symbol exhibits the same
symmetry properties under permutations of its columns @8#m Wigner symbol: Its
value is multiplied by(—1)71+72+3s under an odd permutation and does not change under
an even permutation. In other words, we have

E(jl Ja j?’):eabcﬁ(j“ o jc) (83)

a1 Qo9 QO3 a, Op O

wheree ;. = 1 or (—1)71772%Js according to whethetbc corresponds to an even or odd
permutation ofi 23.
The orthogonality properties of the highly symmetrigakymbol easily follow from
the corresponding properties of theg @ Wigner symbol. Thus, we have
: (1 Jo 3\ F (0 Jo Js
2o 1) ) 7 ( )
j% ( J3 ) f a; ay  as f 0/1 0/2 Qs

= §(a), a1)d(ady, ap) (84)

and

Zf—<j1 Jo j3)7<j1 J2 j:'),)*
"Ny ay az/) "\ s of

ajan

1 . ) . oo /
= % + 1 A(0|]1 X J2 ® ]3) 5(]37]3) 5(a37 043) (85)

whereA(0]7; ®j2®J3) = 1 or 0 according to whether the Kronecker prodye} ® (j2) ®
(73) contains or does not contain the identity irreducible repngation class (0) of SU(2).
Note that the real numberis the same for all the,. symbols occurring in Egs. (84) and
(85).

The values of the SU(2) CGc's in thg/?, U, } scheme as well as of thg and f,
coefficients are not necessarily real numbers. For instavehave the following property

under complex conjugation

f—<j1 Jo j3)*: Z <j1 j1>* <j2 j2>* <j3 j3>*
"\o] o) of oo of a1/, \oy ), \aj az/,
7 ( Ji J2 I3 ) (86)

a1 Qg Q3
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Then, the behavior of thé. symbol under complex conjugation is completely different

from the one of the ordinary 3= Wigner symbol. In this respect, we have

fr (041 &%) 043) ( 1) fr Qa1 Qg Qg (87)
Hence, the value of thé. coefficient is real ifj; + j» + j; is even and pure imaginary if
j1+ j2 + j3 is odd.
It is to be noted that the 2a symbol introduced in Section 4 is a particular case of

the f. symbol since we have

(2 2), =il b 2)

Consequently, the orthogonality property

= (1 4),(2 3=
and the symmetry property
(i i)rz(—l)zj (é i) (90)

follow from the corresponding properties of tfiesymbol.
The case: = 1 deserves a special attention. In that case, we have speddions
because the label may be0 for j integer. For example, the value of
) B 1
25+ D22+ 1)(2)s + 1)

m1=—j1 mo=—7j2 m3=—j3

(71 J2 Js
fT(O 0 0

is equal ta0 if j; + jo + j3 is odd.

5.2 Recoupling coefficients in thg J?, U, } scheme

The recoupling coefficients of the SU(2) group are rotationariants'* Therefore, they

can be expressed in terms of coupling coefficients of SU(er{ J2, U, } scheme. For
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example, the 9- symbol can be expressed in terms fofsymbols by replacing, in its
decomposition in terms of 3m symbols, the 3 symbols by f. symbols. On the
other hand, the decomposition of thej &ymbol in terms off, symbols requires the
introduction of six metric tensors corresponding to theasguments of the §-symbol.
These matters shall be developed by following the appraathted in Ref. [9].

We start with the case of the Bsymbol. Relations involving the Wigner symbol
(or W Fano and Racah coefficiéptand f, symbols, with fourf, symbols, can be easily

derived. First, the §-symbol can be expressed as
W(]l j2 33) (]1 Jl) (j2 jz) (j3 js)
Ja J5  Je a% auzi a S\ ay ) \ag oy )/,
(]4 ]4)*<j5 jB)*<j6 jﬁ)*
ay Al as : ag ag/,
= (7 e ) ( Js Je )
fr (Oq Qg fr 1 Qs 0/6
J2 s Ja Js s
fr< oy oy 056)fr<054 s ag) (92)

which involves 0-4 f, symbols (nof, symbol on the left-hand side and four on the right-

hand side). With the help of Eq. (86), Eq. (92) can be rewnritte

W(]l jz 33) ( Ja J4) (]5 j5) (]6 jﬁ)
Ja Js e a;@é, a%;l as o), . \og g/,
—(h Jo B\ (N I Je
I <041 %) 043) fr <041 a5 Oéé)
—(Ja Jo Je \+(Js Js J3
I (ozi; Qg oza) Jr (oz4 ag ag) (93)

An expression involving 43 f, symbols is

e

Q

= (7 J2 js)W(jl J2 j?’):AO'@'@

fr (Oél Oy Q3 j4 j5 .j6 ( ‘jl I '73 a4aza% a4az5a6
(j4 j4)*(j5 j5) <J6 ]6)
Qy Oéil r \Q5 aé &7} 0/6 r

- (J1 Js Jo Je \+(Js Js J3
f’"(oq as )f’"(oq Qg oza)f(oz4 af ag) (94)
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We also have a-22 relationship

Z(2j3+1)ﬁ<j1 J2 j3)ﬁ(j4 J5 j3>*W<j1 J2 j3>

jaos ap Gz Qa3 Ja Js Je
_ <j4 j4)*<j5 j5)*<j6 jG)*
/ ap o), \ay a5/ \as ag/,
7 ( ]11 Js s > IR < Ja 2 s ) (95)
and a 3+1 relationship

4 Ja  Ja Js  Js J6  Jo
0 (o ) (5 %) ()
]% aﬁlaz/sag Of;s( . ) ay o r \NQ5 o r \ Q6 g r

f_(jl J2 j3)f_(j1 Js jG)*f—(j4 Js js)*
"Ny ar a3/ " \aq a5 ag/) T \a) ar as

W(j.l 72 9.3): —— A(0]j1 ® 5 ® ] T(J“ )2 96) 96
Ja J5  Js 276 +1 (011 @ Js ® Js) f Qy Qg Qg (96)

By using the orthonormality of thg. symbol in conjunction with Eq. (96), we would
obtain a 4-0 relationship which turns out to be the well-known orthanality relatiord
for the W coefficient.

We continue with the §-Wigner symbol (orX Fano and Racah coefficiéiht Rela-
tions involving six f, symbols and one 9-symbol can be obtained in a straightforward

way. First, we have the very symmetrical expression of the )6

Jin Jiz Jis oy _ o _ _
X | Jo1 Jo2 Jo3 :Zfr(]ll J21 ]31)fr(312 J22 j32)

. . 11 921 31 19 929 39
11
J31 J32 J33 a

E(jl?; J23 j33)ﬁ(j11 Ji2 j13)*

Q13 Qo3 (33 a1 g g3
L oot B G B
Other relations with sixf, symbols can be derived by combining Eq. (97) and the or-
thonormality relations of th¢, symbols. For instance, we have the relation of the type
1+5
jll j12 j13

A ( J31 J32 J33 ) X | jor Jo2 Joz | = A(0]j31 ® Jaz2 @ Ja3)
Q31 Q32 (33 . ; i
J31 J32 J33
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Z Z f—(jn Jo1 jsl)
" Q11 Qo1 Q31

Q11120013 (21 (2223

A ( Ji2 Jo2 J32 > 7 ( Jis  J23  J33 >

Q1 Qag  (X32 Q3 Qigz (33

—(]11 Ji2 ]13> f—<]21 J22 ]23) (98)

T T
Q11 Q2 Qg3 Qo1 Qg2 (23

and the relation of the typet24

‘ —(Jun  Ju Jsi\ = (Js1 Js2  Jss
2jsa + T ) 7 ( )
jng«g,l( J31 )f Q11 Qo1 (31 f Q31 Q32 (33
Juu J1i2 Ji3
X | Jja J2 Js|= Z Z

Ja1 J32  Js3 X213 022023

f—(ju J22 j32)f—(j13 J23 j33)
"\an g Q32 " Q13 Qi3 (33

i jll j12 j13 - j21 j22 j23 :

(2 )7 ( ) (99)
11 G2 g3 Qo1 Qigg (o3

Relations involving coupling and recoupling coefficients af considerable interest

for the calculation of matrix elements. In particuldr,and X coefficients occur in matrix

elements of scalar product and tensor product of two irrédieitensor operators.
5.3 Wigner-Eckart theorem in the {.J2, U,.} scheme
5.3.1 Irreducible tensor operators

From the spherical componerit§®) (with m = —k, —k + 1,---, k) of an SU(2) irre-

ducible tensor operat®*), we define th€k + 1 components

1 k
W — —— am (k) 100
;T /2k _'_ 1 mzz_kq m ( )
with
oa=—kr,—kr+1,---,—kr+2k, 2keN (101)

wherer is fixed inR. The behavior of (") under a rotatiorR is described by

PrT® Pt = 3" T DY(R)wa (102)

osT
a/
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Following RacaH, given two SU(2) irreducible tensor operat@§™) andU®*2), we

can define the tensor product 1)U *2)}(*) of components

{TEUELE = N (k kyayas)ka), T Uk2) (103)

ap;r T aogr
Q12

As a particular case, we get the scalar product
(T® - UW) = (=1)* V2k + T{T®U®}E) (104)
More specifically, we have

(T® . ) = (-1 ¥ <k k) T Ul (105)

aa’

which can be identified with the scalar product introduced®agah’
5.3.2 Matrix elements of tensor operators

In the {J?, U, } scheme, the Wigner-Eckart theorem reads

(rujran; v T8 [rajocin; ) = (11 ||TW| o) 1, (ill fz a) (106)

where (rljl\\T(’“)HszQ) denotes an ordinary reduced matrix element. Such a reduced
matrix element is clearly basis-independent. The reducatlixnelement in Eqg. (106)

is identical with the one introduced by Racal.is a rotational invariant that can be in
general expressed in terms of basic invariants (e.g., eslotatrix element of Wigner
unit operator}¥ and X coefficients). Therefore, it does not depend on the labgls:,
anda. On the contrary, the, coefficient in Eq. (106), defined by Eq. (79), depends on
the labelsay, o, anda. The information on the geometry is entirely contained ia fh

coefficient.

6 Concluding remarks

The main results presented in this paper are the followinglhe nondeformed Lie al-

gebra sy may be constructed from two commutipgdeformed oscillator algebras with
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q being a root of unity; the latter oscillator algebras areeamsded with (truncated) har-
monic oscillators having a finite number of eigenvectorg. Tlhis construction leads to
the polar decomposition of the generatdisand .J_ of SU(2) originally introduced by
Lévy-Leblond!? (i) The familiar {J?, J.} quantization scheme with the (usual) stan-
dard spherical basi§|jm) : 2j € N, m = —j,—5 + 1,---,j}, corresponding to the
canonical chain of groups SU(2) U(1), is thus replaced by thgJ? U, } quantization
scheme with a (new) basis, namely, the nonstandard Basis {|jo;r) : 27 € N, a =
—jr,—jr+1,---, —jr+25}. (iv) The Wigner-Racah algebra of SU(2) may be developed
inthe{J?,U,} scheme.

These various results should be useful in problems invglaxial symmetry and in
the investigation of quantum mechanics on a finite Hilbeaicgpas developed by several

authors'® To make the latter point clear, let us writgsee Eq. (56)) and, (see Eq. (57))

as
S=U¢ (107)
j=0
and
B, = (108)
j=0

wheres’ andd’ are two bases that span the subspage. It is clear thats’ andb’ are

two mutually unbiased bases (MUB’s) in the sense that

C 1
[(Jmlja;r)| = —— (109)
dime(y)
It is known that the MUB'’s are especially useful in the theofyguantum information.
In this respect, a connection between our results and sorttfeeaines in Ref. [15] is

presently under study.
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