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When a matrix is reduced to Lanczos tridiagonal form, its matrix elements can be divided into an analytic
smooth mean value and a fluctuating part. The next-neighbor spacing distribution P (s) and the spectral rigidity
�3 are shown to be universal functions of the average value of the fluctuating part. It is explained why the
behavior of these quantities suggested by random matrix theory is valid in far more general cases.
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I. INTRODUCTION

The core of random matrix theory (RMT) is a corpus of
exact results concerning the canonical Gaussian ensembles
of matrices, invariant under three types of transformations:
orthogonal Gaussian orthogonal ensemble (GOE), unitary
Gaussian unitary ensemble (GUE), and symplectic Gaussian
symplectic ensemble (GSE). The matrix elements are, re-
spectively, real, complex, and quaternionic numbers normally
distributed. The pioneering papers by Wigner, Dyson, Porter,
Gaudin, Metha, and others are collected in [1]. Extensions
to other ensembles are reviewed in [2], but there are few
exact results for them, and numerical simulations become
the rule. One important exception is the work of Mon and
French, which shows how the level densities evolve from a
semicircle law for GOE to a Gaussian one as the number of
particles increase for many-body random Hamiltonians [3].
In general, such Hamiltonians—and a fortiori nonrandom
ones—have properties that differ from those of the canonical
ensembles. Their study usually proceeds by the splitting of the
Hamiltonian as H = Hd + λV , where Hd is diagonal in some
“natural” (e.g., mean field) basis and V induces mixing, and
then the evolution of the system is followed as a function of λ.
Some authors do it through quantities that depend on the wave
functions—such as information entropy or number of principal
components—and offer good physical insight but are basis and
Hamiltonian dependent [4–6]. The widely followed alternative
relies on the fluctuation properties of the spectrum, in particular
the nearest-neighbor spacing distribution P (s, β), where s is
the difference in energy of two consecutive levels in units of
the local average spacing and β is a repulsion parameter. In its
original form, the Wigner surmise

P (s, β) = aβsβ exp(−bβs2), (1)

is valid for GOE, GUE, and GSE for β = 1, 2, and 4,
respectively. The quantities aβ and bβ are normalization
constants fixed through the condition that the integral of P (s)
and the mean level spacings be unity. The small spacing
behavior of this distribution is given by

P (s, β) ∼ sβ for s � 1, (2)

which defines the repulsion parameter β. One should note
that the values of β that correspond to the exact P (s) for the
canonical ensembles [1] may not be that of Eq. (1), which
is only a good approximation. To give an example: The
exact GOE result corresponds to β = 0.957. To adapt it to
H = Hd + λV studies (usually restricted to real-symmetric
matrices) it is necessary to find forms to extrapolate between
the Poisson law P (s, 0) ≈ exp −s characteristic of (λ = 0)
integrable systems [7] and the GOE limit, soon reached
for increasing λ and characterized by a P (s) very close
to the Wigner surmise, P (s, 1) = (πs/2) exp(−πs2/4). Two
standard forms are used to fit P (s, β) for a given λ, Brody’s [8];

PB(s, β) = α(β + 1)sβ exp(−αsβ+1), (3a)

α =
(

�

[
β + 2

β + 1

])β+1

, (3b)

and Izrailev’s [9];

PI (s, β) = Aβsβ exp

[
−π2β

16
s2 −

(
Bβ − πβ

4

)
s

]
, (4)

where Aβ and Bβ are normalization constants fixed again
through the condition that the integral of P (s) and the mean-
level spacings be unity. The advantage of this form is that it is
valid from the β = 0 (Poisson) to the β = ∞ (uniform spacing,
“picket-fence”) limits and can be viewed as a generalization
of RMT. The behavior at small spacings is the same for
both distributions and allows the identification of β with the
repulsion parameter. In the Poisson-GOE interval Brody’s and
Izrailev’s parametrizations are close, but the former does not
extrapolate well to large β.

Nearest-neighbor spacing distributions measure the short-
range correlations in the spectrum. To obtain information
about the long-range correlations we also calulate the spectral
rigidity,

�3(a, L) = 1

L
minAB

∫ a+L

a

[N (E) − AE − B]2 dE, (5)

which explores long-range correlations by measuring the
deviations of the spectrum from a truly equidistant one. �̄3(L)
is the mean value over all intervals of the same length [10]. The
�̄3(L) statistic is linear for a Poisson spectrum, logarithmic
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FIG. 1. (Color online) Example of the matrix elements of a
Lanczos matrix for H in Eqs. (8) and (9), with er = 0.07, ur = yr =
1.00, yc = 0; N = 12, m = 6, d = 924.

for the canonical RMT ensembles, and constant for a locally
equidistant spectrum.

Although the suggestions of RMT are irrelevant for many
quantities, such as level densities and information entropy, they
hold true for P (s, β). In particular, the available data on nuclear
spectra follow the Wigner law [11], a doubly significant fact
because (a) nuclear Hamiltonians are not random, and (b)
they are dominated by the integrable mean field Hd [which
naively suggests a P (s) closer to Poisson]. (Some possible
counterexamples are investigated in [12,13].)

Our purpose is to exhibit the general origin of fluctuation
properties by splitting the Hamiltonian in a way that yields a
simple universal relationship between β and a new parameter
F, which is subsequently introduced. The idea is that the
Lanczos tridiagonal reduction of a Hamiltonian matrix leads
to a canonical form for the matrix elements that are given,
within fluctuations, by the four lowest moments of H. The
off-diagonals follow an inverse binomial law (nib), whereas
the diagonals are constant or more generally logarithmic [14],
as illustrated in Fig 1. These smooth forms, which can be
viewed as ensemble averages, define a matrix Hs , and the
fluctuating part is given by H − Hs . The new strategy amounts
to diagonalizing

HF
ij = Hs

ij + F
(
Hij − Hs

ij

)
(6)

as a function of F and at each stage extract β.
We have chosen three cases: a spin Hamiltonian, a shell-

model matrix, and a GOE one, all having β = 1 at F = 1. A
universal law emerges:

β = 1

F 2
. (7)

In establishing it, we will discover why RMT fluctuation
properties are also universal.

In Sec. II the spin model is introduced as a generic example
of Lanczos matrices. It allows a simple analysis of the role
of coherence. Section III explains how to extract the P (s, β)
distributions from the spectra, the advantage of doing so with

Lanczos matrices, and the reasons for prefering Izrailev’s
parametrization.

II. LANCZOS MATRICES IN A SPIN MODEL.
THE ROLE OF COHERENCE

To explain how Eq. (7) comes about, let us start with an
updated summary of [14] concerning Lanczos matrices at fixed
quantum numbers. This condition guarantees no subblock
decomposition and hence level repulsion. The canonical char-
acterization of the smooth part of H holds for all tridiagonal
matrix elements Hii and Hii+1, except for small values of
i <≈ ln d, where d is the dimensionality of the matrix. For a
number of particles m <≈ 5 the off-diagonals move slowly to
the m = 2 GOE limit. Then, Hii+1 = √

(1 − i/d).
These conjectures were suggested by the study of nuclear

shell-model matrices, but they apply more generally. As we are
interested in assessing the influence of coherence effects, it is
easiest to introduce them through a Hamiltonian of N spins,

H =
∑
i,i<j

[
εiS

0
i + uijS

0
i S

0
j + yij (S+

i S−
j + S−

i S+
j )

]
, (8)

where S+
i = u+

i di, S
−
i = d+

i ui, S0 = u+
i ui − d+

i di obey SU(2)
commutation rules, and u, u+, d, d+ are the usual fermion
annihilation and creation operators. For m spins up, S0 =∑

i S
0
i = 2m − N is a conserved quantum number. H can also

be interpreted as a general pairing problem for m pairs.

εi = err
ε
i , uij = 1

N
urr

u
ij , yij = 1

N

[
yc + yrr

y

ij

]
, (9)

where the random numbers rε
i are uniformly distributed in

the interval [−0.5,0.5], and rij are normally distributed with
σ ≈ 0.09.

The parameters er and ur are associated with operators that
are diagonal in the basis (Hd ), i.e., the separable part of H,
which can be viewed as a mean field by setting

∑
ij

uij S
0
i S

0
j =

∑
i


∑

j

uijS
0
j


 S0

i ≡
∑

i

εiS
0
i . (10)

The coherent contribution is represented by yc(S+S− +
S−S+), where S± = ∑

i S
±
i are the total-spin operators. This

term can be interpreted as the classic schematic pairing.
The typical tridiagonal behavior for yc = 0—shown in

Fig. 1 for the set of parameters we shall use later—will evolve
as yc increases, at first leading to logarithmic diagonals (as
in Fig. 3 in [14]). Eventually S will become an approximately
conserved quantum number, thus violating our assumption that
the matrix has no subblock decompositions: The tridiagonal
elements in Fig. 1 will split in badly fluctuating pieces.

This evolution can be followed in Fig. 2 for the cumulated
level density N (E). For moderate values of |yc| the level
density remains binomial, a behavior that persists as long as
γ 2

1 /γ2 < 1, where γ1 is the skewness of the level density and
γ2 is its excess (or kurtosis) [15]. When the third and fourth
moments of the Hamiltonian violate this condition no binomial
can be constructed. An interesting update of [14] is that for
some large, but not too large, values such as yc = −0.25 in
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FIG. 2. (Color online) Cumulated level densities for different
values of yc in Eqs. (9). There are well-detached ground-state points
at about E = −0.7 for yc = −0.25 and E = −1.5 for yc = −0.5.

Fig. 2 the nib and log forms still work well in spite of the
fact that the level density is no longer binomial. When |yc|
becomes truly large, the low-lying spectrum splits in pieces of
good total spin (or seniority). It is worth noting the existence
of a region where the ground state is well separated but the
bulk of the spectrum remains binomial.

The advantage of using random matrix elements is that
small diagonalizations can be assumed to become representa-
tive of the large ones associated to realistic conditions. As
Fig. 2 makes clear, the role of yc is to set limits to the
plausibility of this assumption: When yc = −0.03 it is easy
to guess what will happen for large N−. When yc = −0.5 it
is a major challenge. Nonetheless, the preceding arguments
indicate that substantial coherence can be absorbed by the
canonical Lanczos forms.

III. FLUCTUATIONS PROPERTIES OF THE SPECTRA
AND THE LANCZOS MATRIX

To analyze fluctuation properties, the energy eigenvalues
Ei must be mapped into a dimensionless spectrum εi with
unit local mean level spacing. This is usually accomplished
through

Ei −→ εi = N (Ei) −→ si = εi+1 − εi, (11)

where N (E) is the cumulated mean level density (as shown in
Fig. 2) and si is the variable in P (s, β). The procedure is called
unfolding, and it can be quite delicate whenever N (E) must
be extracted from the numerical spectrum [16,17]. It becomes
simple if one knows the analytic form of the level density,
which is the case for GOE (Wigner’s semicircle law) and for
matrices having a binomial density

ρ(E) = p(NE/S)(1 − p)N(1−E/S)d
N

S

× �(N + 1)

�(NE/S + 1)�[N (1 − NE/S) − 1]
, (12)

where S is the spectrum span, p is the asymmetry parameter
equal to 1/2 if the density is symmetric with respect to its
centroid, N is the effective number of particles, and d is
the dimensionality of the space. The way to compute these
parameters as functions of the first four moments of the
Hamiltonian is explained in [15]. Then N (E) becomes a
well-defined smooth function NS . As explained in Sec. II,
there are situations in which the level density ceases to be
a binomial, but the smooth Lanczos matrices still can be
constructed with the four lowest moments. As they amount
to integrable systems, they have picket-fence spectra, and the
eigenvalues ES

i can be directly used to provide

si = Ei+1 − Ei

ES
i+1 − ES

i

= NS(Ei+1) − NS(Ei), (13)
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FIG. 3. Two examples of the ensemble-averaged P (s) distributions and the best fit for the Brody and Izrailev distributions for the cases
discussed in the text. The left-hand panel has F = 0.25, in this case β > 1, and the Izrailev distribution fits much better than the Brody
distribution the numerical P (s), describing correctly the behavior for small and large s. The right-hand panel has F = 2, β < 1, and both
distributions do a good job.

064317-3
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FIG. 4. The repulsion parameter β in Eq. (4) as a function of F. Left-hand panel: results for an ensemble average of 100 matrices of the
spin model explained in the text. Right-hand panel: results for a shell-model matrix for the 48Ca, J = 4+ states in the pf shell [18] and for a
single GOE matrix of dimension d = 1000. The errors in the fitted value of β are given approximately by the size of the symbols. They are
smaller in the left-hand panel because of the ensemble average.

where the first equality is si by definition, and it takes a
little geometry to check the second equality, i.e., the standard
prescription that we have followed relying on Eq. (12). Let
us compare now the Brody and Izrailev parametrizations of
P (s, β) for ensemble averages of the spin system at F = 0.25
and F = 2 in Fig. 3. For F = 2, and in general for F > 1,
the form of both distributions and the value of β are almost
the same and the fit is very good. For F < 1 the values of β

become different, and Izrailev’s prescription is much closer
to the Wigner surmises [Eq. (1)] and accounts better for the
behavior at large and small spacings. Therefore we adopt it
from now on.

0 10 20 30 40 50

L

0

0.2

0.4

 ∆
3(L

)

GOE
GUE
GSE
Poisson

FIG. 5. The �̄3(L) statistic for different values of the ampli-
tude of matrix fluctuations F for the system of interacting spins.
Diamonds: F = 3, β = 0.17; the result is close to Poisson. Filled
circles: F = 1, β = 1.0, and the result coincides with GOE. Squares:
F = 0.75, β = 1.9, and results are near the GUE curve. Triangles:
F = 0.5, β = 3.87 are very near the GSE result (dashed-dotted line).
For F = 0, the picket-fence spectrum �3(L) (open circles) is constant
and equal to 1/12.

IV. UNIVERSALITY OF FLUCTUATION PROPERTIES

To establish the general validity of Eq. (7), we show results
of three different systems, a GOE matrix, the Hamiltonian of N
spins of Eq. (8), and a shell-model matrix for the states J = 4+
of 48Ca [18]. This specific case was chosen for presentation
because its dimensionality, d = 1755, makes it convenient for
statistical studies, but we have checked many other examples,
always with the same results.

In Fig. 4 the behavior of β as a function of F in Eq. (6) is
shown for ensemble averages of the spin model (parameters
are as in Fig. 1) and for single GOE and 48Ca matrices. It
is clear that the results are perfectly reproduced in the three
cases by expression (7). It appears that fluctuation properties
in any particular case are dictated by the amplitude of the
fluctuations in a single tridiagonal matrix. The results for
�̄3(L), shown in Fig. 5 for a few selected cases of a typical
realization, corroborate this conjecture. It is remarkable that
we can explore all possible values of the repulsion parameter
β, from 0 to ∞, as a function of the parameter F. Both
the short-range correlations in the spectra, as shown by the
results for the P (s), and the long-range ones, as shown by
the calculation of the �3, coincide with the prediction of the
RMT when β takes the values corresponding to the classical
ensembles.

The form of Eq. (7) is somewhat artificial and open to three
objections: (a) its simplicity is due to an accident because for
the chosen examples F = 1 corresponds to β = 1; (b) it is not
strictly exact; and (c) it does not relate β to quantities directly
associated with a given Hamilonian. Therefore, because F is
obviously proportional to the width of the fluctuations σf , we
redefine F = κ σf /σ , where σ is the width of the Hamiltonian.
Ensemble averages for matrices of dimensionality d = 50 to
800 yield the following fit:

βα ≈ 1

2d

σ 2

σ 2
f

= 1

F 2
, α = 1.08 ± 0.04, (14)
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FIG. 6. The fluctuating diagonal contribution for a spin and a
GOE matrix (below, displaced by −0.05 units). There are 100 changes
of sign for GOE, against 76 in the spin case, for a total of 184 levels
around the centroid. dim = 924.

a useful relation that defines κ and suggests β ≈ F−1.9, which
fits Fig. 4 slightly better than β = F−2.

Nothing general can be said about the correlations of the
tridiagonal fluctuations, which depend on the Hamiltonian.
For GOE matrices they can be assimilated to white noise: The
distribution is normal, and no correlations are detected. For the
spin matrices we can say that their fluctuations are definitely
not white noise and that the subject deserves further study.
Analyses in terms of 1/f noise [19] may be of interest in this
respect. Figure 6 gives some idea of the different behavior
in both cases: There is more correlation between neighboring
spin matrix elements, reflected in less-frequent changes in

sign. It follows that the universal behavior detected in
Eq. (7) is not related to the type of correlations in the
tridiagonal fluctuations. Therefore it must be viewed as a
general property emerging from the diagonalization process
itself. This result is crucial as it explains why P (s, β) is such
a robust feature of numerical simulations and why it contains
little information about specific systems. Such information is
to be found in the tridiagonal matrices, not in the spectrum.

V. CONCLUDING REMARKS

The simplicty of the form of Eq. (7) is due to an accident be-
cause, for the chosen examples, F = 1 corresponds to β = 1.
In the case of GOE the correspondence is natural. For the
spin and shell-model matrices it is related to the special status
of the GOE Wigner surmise: Physical systems do not seem
prone to deviate from it. In other words, in H = Hd + λV

studies it usually takes a small λ to move to the Wigner limit.
This is a fascinating subject outside the scope of this study.
A challenging question remains: As the extraction of β is a
tedious operation, why not use F directly as a parameter? We
hope soon to provide an answer.
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Human Potential Program (contract no. HPRN-CT-2000-
00144).

[1] C. E. Porter, ed., Statistical Theories of Spectra: Fluctuations
(Academic Press, New York, 1965).

[2] T. A. Brody, J. Flores, J. B. French, P. A. Mello,
A. Pandey, and S. S. M. Wong, Rev. Mod. Phys. 53, 385
(1981).

[3] K. K. Mon and J. B. French, Ann. Phys. (NY) 95, 90
(1975).

[4] F. M. Izrailev, Phys. Rep. 196, 299 (1990).
[5] V. Zelevinsky, B. A. Brown, N. Frazier, and M. Horoi, Phys.

Rep. 276, 85 (1996).
[6] G. P. Berman, F. Borgonovi, F. M. Izrailev, and V. I. Tsifrinovich,

Phys. Rev. E 65, 015204(R) (2001).
[7] M. V. Berry and M. Tabor, Proc. R. Ser. London Sec. A 356,

375 (1977).
[8] T. A. Brody, Lett. Nuovo Cimento 7, 482 (1973).
[9] F. M. Izrailev, Phys. Lett. A134, 13 (1988).

[10] F. J. Dyson, J. Math. Phys. 3, 140 (1962).

[11] R. U. Haq, A. Pandey, and O. Bohigas, Phys. Rev. Lett. 48, 1086
(1982).

[12] M. S. Bae, T. Otsuka, T. Mizusaki, and N. Fukunishi, Phys. Rev.
Lett. 69, 2349 (1992).
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