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Introduction

[2] In actively deforming regions, faults create the landscape by repeatedly slipping in earthquakes. The landscape therefore contains signals which, if read correctly, tell us about fault development and can greatly enhance the information about active tectonics available from other sources, such as earthquake seismology and geodesy. With this in mind, we have investigated the evolution of a young buried reverse fault beneath an anticline in the Central Otago region of the South Island, New Zealand, using both in situ cosmogenic isotopes and geomorphology. This is a region where we had earlier used observations of geomorphology and drainage to make qualitative inferences about the relative ages of faults and their propagation directions [START_REF] Jackson | The structural evolution of fault and fold systems in Central Otago, New Zealand: Evidence revealed by drainage patterns[END_REF]. Then, in a preliminary study of in situ cosmogenic 10 Be concentrations, we demonstrated that these earlier inferences were, in principle, correct and that the fault growth has been active over the last 500,000 years [START_REF] Jackson | Fault growth and landscape development rates in Otago, New Zealand, using in situ cosmogenic 10 Be[END_REF]. However, the 10 Be measurements also suggested that evolution of the fault-related geomorphology was not continuous, but episodic, in a manner that we could not explain. Now, with additional cosmogenic isotope measurements, including both 10 Be and 26 Al, and a more detailed examination of the geomorphology, we can show how the geochemical and landscape observations are connected, which is the principal purpose of this paper. We also investigated petrological influences on the erosional behavior of the rocks sampled, which provide insights that will guide future sampling programs for cosmogenic studies.

Geological and Tectonic Setting

[3] In the Central Otago region of the South Island of New Zealand, the development of asymmetric anticlines above buried reverse faults has exposed elongated ridges of basement schist as the overlying Tertiary sediments are uplifted and eroded, which occurs rapidly once uplift begins [START_REF] Youngson | Sarsen stones' at German Hill, Central Otago, New Zealand, and their potential for in situ cosmogenic isotope dating of landscape evolution[END_REF]. The Tertiary sediments were deposited on an erosion surface of probable late Cretaceous to early Miocene age [START_REF] Bishop | Extent and regional deformation of the Otago peneplain[END_REF] cut into the schist, which provides a useful reference surface for evaluating the late Cenozoic deformation. Near the base of the Tertiary sequence are patchy occurrences of very hard silicacemented horizons formed originally by diagenesis within the quartz-rich sediments. They occur typically within 1 -3 m of the old erosion surface. These horizons now form stone pavements of large boulders and slabs up to 4m thick on the schist after the rest of the Tertiary sediments have been eroded [START_REF] Jackson | Fault growth and landscape development rates in Otago, New Zealand, using in situ cosmogenic 10 Be[END_REF][START_REF] Cotton | Block mountains in New Zealand[END_REF]. The very resistant lithology of the boulders results in their preservation during erosion of surrounding sediments and underlying schist. The occurrence of these boulders is patchy as they are Miocene fluvial channel sediments [START_REF] Youngson | Redefinition and interpretation of late Miocene-Pleistocene terrestrial stratigraphy, Central Otago, New Zealand[END_REF], mainly quartz-pebble conglomerates and quartz sandstones. In the area of interest here, a Miocene fluvial channel crossed an area of the erosion surface which now forms the crest of South Rough Ridge and adjacent strath terraces. Discrete fields of these quartzite boulders exist elsewhere in Central Otago [START_REF] Youngson | Sarsen stones' at German Hill, Central Otago, New Zealand, and their potential for in situ cosmogenic isotope dating of landscape evolution[END_REF]. The fact that these fields have such well-defined boundaries demonstrates that the boulders have not moved significantly during or after emplacement on the schist surface.

[4] The scattered boulders, known locally as ''sarsen stones,'' are made of almost pure quartz, and are an ideal target for in situ cosmogenic 10 Be and 26 Al analysis. This study, and that of [START_REF] Jackson | Fault growth and landscape development rates in Otago, New Zealand, using in situ cosmogenic 10 Be[END_REF], focuses on the propagating tip of one of the anticline ridges, called South Rough Ridge (Figure 1).

[5] The situation prior to this current study is summarized in Figure 2. South Rough Ridge is a relatively low anticline, parallel to the higher Rough Ridge (Figures 1 and2a). Prominent dry valleys (''wind gaps'') along the crest of South Rough Ridge indicate that streams once flowed across it from Rough Ridge. Those streams were diverted by the uplifting frontal ridge and their catchments combined into larger streams that still cross the line of the ridge in the gorges, for example at Dingo Creek in Figure 2b. All the streams crossing South Rough Ridge have asymmetric catchments, with their drainage arising from south of the gorges (Figure 2b). These observations led [START_REF] Jackson | The structural evolution of fault and fold systems in Central Otago, New Zealand: Evidence revealed by drainage patterns[END_REF] to conclude that South Rough Ridge was both younger than Rough Ridge and propagating northward. These conclusions were verified by in situ 10 Be measurements along the northern 600 m of the nose of South Rough Ridge near Oliverburn, showing a progression of minimum exposure ages from 550 ka in the south to 100 ka in the north (Figure 2c), and by much older minimum exposure ages of 900-1050 ka on the higher crest of Rough Ridge itself [START_REF] Jackson | Fault growth and landscape development rates in Otago, New Zealand, using in situ cosmogenic 10 Be[END_REF]. Although the age progression in Figure 2c is consistent with an average propagation rate of 0.8-1.5 mm yr À1 for the anticline tip over the last 550 kyr, the actual 10 Be minimum exposure ages appear to cluster into two groups, of 450 -550 ka in the distance range 500 -800 m and of 100-170 ka in the range 200 -400 m. When examined more closely, new geomorphological evidence (described below) shows that this clustering is real and easily explained. Additional cosmogenic isotope measurements also help to clarify and confirm this analysis. By connecting the geomorphology and cosmogenic measurements in this way, we can demonstrate that the 10 Be concentrations in the rocks we sampled are not in steady state with respect to erosion, even though their minimum ages are several hundred ka. This important result confirms the potential of these rocks for wider landscape evolution studies of this region.

New Geomorphological Observations

[6] New geomorphological analysis shows that the deflection of the Oliverburn stream round the propagating northern tip of South Rough Ridge was not a continuous process, but occurred as a series of discrete events. The evidence for this conclusion is a series of E-W strath terraces west of the South Rough Ridge axis, cut into the schist by the Oliverburn stream, which were progressively uplifted and abandoned as the stream was deflected north (Figures 3 and4). With an accurate, newly available, digital elevation model from the NASA Topographic Synthetic Aperture Radar (TOPSAR) mission and new digital air orthophotos from Land Information New Zealand (LINZ), these terraces can now clearly be traced in maps and profiles (Figure 4 inset and Figure 5). The lower terraces T1, T2 and T3 in Figures 345can all be traced across the axis of South Rough Ridge, with T2 and T3 corresponding to the wind gaps identified by [START_REF] Jackson | The structural evolution of fault and fold systems in Central Otago, New Zealand: Evidence revealed by drainage patterns[END_REF] either side of the 638 m spot height in Figure 2b. Elevation profiles along those terraces (Figure 6b) and perpendicular to the ridge are shown in Figure 7a. The height difference between T1, T2, and T3 on the west side of the axis of South Rough Ridge is greater than on the east side due to uplift on South Rough [START_REF] Jackson | The structural evolution of fault and fold systems in Central Otago, New Zealand: Evidence revealed by drainage patterns[END_REF]). Solid black lines are drainage divides on the crests of Rough Ridge (west) and South Rough Ridge (east). Open circles are dry valleys (wind gaps) on the crest of South Rough Ridge; numbers are spot heights in meters. Shaded areas are the drainage catchments of Oliverburn and Dingo Creek. The asymmetry of the river catchments feeding the gorges through South Rough Ridge and the positions of wind gaps along its crest suggest that the blind fault beneath South Rough Ridge (2 in Figure 2a) is younger than that beneath Rough Ridge (1) and is also propagating north [START_REF] Jackson | The structural evolution of fault and fold systems in Central Otago, New Zealand: Evidence revealed by drainage patterns[END_REF]. (c) Plot of 10 Be ages against distance along the nose of South Rough Ridge (adapted from [START_REF] Jackson | Fault growth and landscape development rates in Otago, New Zealand, using in situ cosmogenic 10 Be[END_REF]). Ages have been recalculated using a sea level, high-latitude production rate of 4.53 atoms g À1 (see Table 1 footnotes). Solid circles are minimum ages assuming no erosion, with error bars (the assigned 10% error in production rate dominates the error from the measurement of nuclide concentration) representing extreme possible ranges. Open circles and open error bars are the maximum ages and their equivalent extreme ranges allowing for the maximum erosion rate in the region (see section 5). Straight lines fitted to the data give propagation rates of 1.3 mm yr À1 with no erosion (thick line) or 0.8 mm yr À1 allowing for erosion (thin line). Shaded boxes mark the positions and ages of the terraces T1 -T3 crossing the ridge crest, based on the new data presented in this paper (see text). The inset shows the expected evolution of 10 Be concentration (10 6 atoms g À1 ) with time at the top of Rough Ridge with no erosion (thick line) and allowing for erosion (thin line), with the erosion rate calculated assuming the samples at the top of Rough Ridge have reached saturated steady state values.

Ridge. The lowest terrace (T1) is essentially parallel to the Oliverburn stream itself, but is $7 m higher (Figure 7b). This terrace is not visibly affected by the topographic expression of the ridge, so the 7 m elevation change is mostly due to a change in regional base level. To the east of the ridge, T2 is $7 m higher than T1, but to the west of the ridge the elevation change is $27 m, indicating that this terrace has been uplifted $20 m after abandonment. The same can be seen for the highest terrace, T3, which to the east of the ridge is $13 m higher than T1 but on the west side of the ridge crest is on average 40 m higher than T1. Therefore the terraces have been progressively uplifted and warped on the west side of the ridge by the continuing growth of the ridge. Since the terraces continue to the east of the topographic expression of South Rough Ridge, one of the reasons for terrace formation must have been regional base level changes. These erosional terraces are preserved because of the continuing northward deflection of the Oliverburn by the propagating ridge. Incision events are then likely to be due to the interplay between local tectonic uplift, regional base level changes and changing climatic conditions. A 2 m high knickpoint in the Oliverburn just upstream of the axis of South Rough Ridge is not associated with any lithological variation and demonstrates that local tectonic uplift is a component of strath terrace formation. Thus, regardless of whether or not the ridge itself grew continuously, the response of the drainage system to that growth was not continuous, but episodic, with the Oliverburn being deflected north and incising in discrete (or rapid) events as the ridge was uplifted.

[7] It is now clear that in our earlier study [START_REF] Jackson | Fault growth and landscape development rates in Otago, New Zealand, using in situ cosmogenic 10 Be[END_REF], by sampling along the ridge axis itself, we sampled the remnants of discrete terrace levels, and hence sarsen stones that were exposed while the Oliverburn occupied those levels, which is why our 10 Be dates are clustered in Figure 2c. In order to test this interpretation of the geomorphology, we sampled sarsen stones for cosmogenic isotope analysis from sites on the terraces west of the ridge axis.

Sampling and Analytical Procedure

[8] As part of this present study, we revisited all the sites sampled and measured earlier, to reflect on our sampling strategy in the light of our 10 Be analyses. We always sampled from the tops of large slabs (typically 4 -10 m 2 or bigger) that appeared to be in situ, firmly embedded in the soil, and showed no signs of recent dislodgement. We avoided slabs on steep slopes, where they might have slid or rolled to new positions. Bedding can be identified in the boulders, and we only sampled from boulders which were the right way up. Some toppling of the boulders may occur as the 1 -3 m of underlying sediment is eroded, but as sediment stripping occurs rapidly, this is only a problem early on in the exposure history of the boulder, and is unlikely to significantly affect our results. Generally, all our previous sites stood at least several tens of cm above the soil. However, one of them (NZ97-8), which had an anomalously young minimum 10 Be age for its position (see Figure 2c), was virtually at soil level and clearly at greater risk from partial burial during its history than the others. With our new experience, we would not have sampled this site.

[9] The sarsen stones can be quite varied in character. Some are massive quartz-pebble conglomerates or breccias, cemented by quartz. Others are relatively fine grained, homogeneous sands, also with quartz cements. All those we sampled were essentially pure quartz with pure quartz cement, were extremely hard, and very difficult to break. We generally took samples from two boulders or slabs at each site. We avoided any that looked impure, or showed signs of exfoliation or bedding-parallel splitting during weathering, except for one (discussed later) that we deliberately sampled to show that such effects lead, as expected, to higher erosion rates.

[10] The samples were crushed and sieved to yield 0.25 -1.0 mm fragments, which were then cleaned in HCl and sequentially leached in HF to eliminate potential surface contamination by 10 Be produced in the atmosphere [START_REF] Brown | Examination of surface exposure ages of Antarctic moraines using in situ produced 10 Be and 26 Al[END_REF]. The pure quartz separates ($30 g) were then dissolved in HF in the presence of 9 Be carrier ($250mg). Extraction and separation of beryllium and aluminum was achieved using ion exchange columns, based on the method of [START_REF] Licciardi | Alpine glacier and pluvial lake records of late Pleistocene climate variability in the western United States, Ph.D. dissertation[END_REF]. The Al and Be hydroxides are then precipitated and heated in quartz crucibles to convert them to oxides. The 10 Be/ 9 Be ratio of the resulting BeO was measured relative to National Institute of Technology and Standards (NIST) standard reference material (SRM) 4325 (2.68 Â 10 À11 ) at the Tande ´tron AMS facility at Gif-sur-Yvette, France [START_REF] Raisbeck | Measurements of 10 Be and 26 Al with a Tande ´tron AMS facility[END_REF][START_REF] Raisbeck | The AMS facility at Gif-sur-Yvette: Progress, perturbations and projects[END_REF]. Blanks prepared in parallel with the new samples gave 10 Be/ 9 Be ratios in the range of 1 to 6 Â 10 À14 , with one as high as 1.2 Â 10 À13 . These values are about 5 times higher than the blanks reported by [START_REF] Jackson | Fault growth and landscape development rates in Otago, New Zealand, using in situ cosmogenic 10 Be[END_REF], for reasons that are not clear, but are still <5% of the smallest measured ratio in the newly sampled quartzites.

[11] After dissolving the quartz in HF and converting to chloride (prior to the ion exchange column chemistry), a small aliquot of the sample was taken to measure the total aluminum content by a Varian Vista inductively coupled Note that T3 is warped around the crest of the ridge and therefore appears lower down on the eastern side of the crest than on the western side. The oblique view makes T3 look much narrower than it is (see Figure 6). Open circles are sample sites on the crest of South Rough Ridge; solid circles are sample sites on terraces T2 and T3. At each site, two boulders were sampled. The adjacent numbers are the oldest apparent 10 Be ages from each pair at each site, in ka. (For all the ages, see Figure 6.) plasma-atomic emission spectrometry (ICP-AES). The measurements were calibrated with respect to external standards, as this was found to give more reproducible results than calibration by standard additions. The machine calibration was checked against three U.S. Geological Survey rocks with certified concentrations of aluminum. The 26 Al/ 27 Al ratio was measured relative to an in-house standard having a 26 Al/ 27 Al ratio of 9.8 Â 10 À11 at Gif-sur-Yvette. Blanks prepared in parallel gave 26 Al/ 27 Al ratios of <1 Â 10 À14 , which is less than 0.7% of the lowest measured ratio.

Results for 10 Be

[12] All our isotopic measurements are presented in Table 1. To interpret these, we first estimated the in situ 10 Be production rates (P 0 ), which are a function of latitude and altitude. We used a high-latitude, sea level production rate of 5.17 atoms g À1 yr À1 [START_REF] Stone | Air pressure and cosmogenic isotope production[END_REF]. This value was adjusted to allow for the fact that a different accelerator mass spectrometry (AMS) standard was used here compared to that used for most production rate determinations (see caption Table 1). Site-specific production rates are then 6b for locations). Shaded bounds are extreme height variations along the swaths. Sample locations are extrapolated schematically onto the profiles, and the oldest 10 Be age in ka for each pair is given (as in Figure 5b). (b) Plot with variations omitted and with average slopes shown through the terrace surfaces east of the ridge axis. When projected west of the axis, the terraces show the progressively increasing height offset through the sequence T1 -T3 (see text). calculated using a scaling factor for the site location using the expressions of [START_REF] Lal | Cosmic ray labelling of erosion surfaces: In situ nucleide production rates and erosion models[END_REF]. Production rates for the NZ02 series of samples were also scaled for the thickness of sample collected [START_REF] Gosse | Terrestrial in situ cosmogenic nuclides: Theory and application[END_REF], as the very hard nature of the rock meant that it was sometimes impossible to collect only surface chips. We then calculated minimum exposure ages assuming no initial (inherited) 10 Be, using equation (4b) of [START_REF] Brown | Examination of surface exposure ages of Antarctic moraines using in situ produced 10 Be and 26 Al[END_REF]. To estimate errors in the absolute ages, we assumed an uncer-tainty in P 0 of 10%, which dominates the assigned errors. There is continuing debate about the appropriate production rate and scaling factors [Bierman et al., 2002;Bierman and Caffee, 2002] and the value of NIST standard 4325 [START_REF] Hotchkis | Accelerator mass spectrometry analyses of environmental radionucleides: Sensitivity, precision and standardization[END_REF], but for our purposes it is the relative production rates, 10 Be concentrations and model ages that are most important, and they are almost independent of the above parameters. In order to compare all the sample sites together, our 16 earlier measurements (NZ97 series) are All 10 Be samples are measured relative to the certified value for NIST SRM 4325 = 2.68 Â 10 À11 , and the half-life of 1.34 Myr (listed on the NIST SRM certificate) is used when calculating ages and erosion rates. The sea level, high-latitude production rate of 5.17 atoms g À1 [START_REF] Stone | Air pressure and cosmogenic isotope production[END_REF] was determined relative to a value for the NIST SRM 4325 of 3.06 Â 10 À11 . We therefore adjust this production rate to 4.53 atoms g À1 . We assume a sea level, high-latitude production rate for 26 Al of 31.02, which is 6 times the 10 Be production rate given by [START_REF] Stone | Air pressure and cosmogenic isotope production[END_REF]. Note that the production ratio 26 Al/ 10 Be for our samples is therefore 6.84. Uncertainties for 10 Be and 26 Al concentration are fully propagated from AMS counting statistics, replication errors, weight of carrier in the case of 10 Be and stable Al measurement in the case of 26 Al. In order to allow a full assessment of the errors involved for 26 Al measurements, 27 Al measurements and errors, quartz weight and 26 Al/ 27 Al ratios are included. Minimum Be and Al ages are calculated assuming no erosion. Age errors are propagated in quadrature from errors in nuclide concentrations and production rate uncertainty. The 10% production rate uncertainty is not significant when comparing samples over a small geographic region. b Samples are the same as those discussed by [START_REF] Jackson | Fault growth and landscape development rates in Otago, New Zealand, using in situ cosmogenic 10 Be[END_REF], but the ages have been recalculated using a sea level, high-latitude production rate of 4.53 atoms g À1 . included with the 20 new (mostly NZ02 series), reanalyzed with the same production rates and scaling factors. We now have 20 sarsen stone measurements from 10 sites on South Rough Ridge, 9 sarsen stone measurements from 6 sites on Rough Ridge, 5 measurements from schists (4 on South Rough Ridge and 1 on Rough Ridge), and 2 measurements from an exfoliating quartz sandstone.

[13] With no erosion, 10 Be concentrations at this latitude and altitude should increase with time until they reach a steady state at which the rates of production and decay are equal at about 18.6 Â 10 6 atoms g À1 for the samples on the crest of Rough Ridge, and 13.4 Â 10 6 atoms g À1 for the samples on South Rough Ridge, which is much more than anything measured in our samples. The effect of erosion is to remove 10 Be, causing the steady state to be achieved sooner and at lower concentrations (Figure 2c, inset). A single 10 Be concentration is therefore fundamentally ambiguous, yielding either a minimum exposure age or a maximum erosion rate for that latitude and elevation. All the 10 Be ages from sarsen stones on the top of Rough Ridge are older than the oldest measured on South Rough Ridge itself (Table 1), with minimum ages for the Rough Ridge crest of 900-1059 ka, and as old as 1379 ka on the Rough Ridge plateau/flank of North Rough Ridge, compared with a maximum of 661 ka for South Rough Ridge. The Rough Ridge samples prove that the sarsen stones are capable of reaching ages well beyond those of South Rough Ridge before reaching steady state. From geomorphological arguments, the exposure of Rough Ridge is expected to predate that of South Rough Ridge (Figures 2a and2b), so [START_REF] Jackson | Fault growth and landscape development rates in Otago, New Zealand, using in situ cosmogenic 10 Be[END_REF] used these isotopic observations to conclude that the South Rough Ridge samples were probably not in steady state with respect to erosion. If we then assume that the sarsen stones on the Rough Ridge plateau have reached steady state, we can estimate the maximum possible erosion rate that would allow saturation to occur at those concentrations (see Brown et al. [1991, equation 3], using an attenuation path length of 150 g cm À2 ), which is 1.18 Â 10 À4 g cm À2 yr À1 or 0.4 Â 10 À3 mm yr À1 if we assume an average density of 2.7 g cm À3 . These maximum erosion rates can be used to estimate the maximum possible corrections that can be made to the minimum ages on South Rough Ridge. These corrections increase the ages by $50% at 500 ka and by $5% at 100 ka. Such age corrections and erosion rates are maximum values: there is no guarantee that the sarsen stones on the top of Rough Ridge are really in steady state, and their concentrations are still much less than the erosion-free saturation level of 18.6 Â 10 6 atoms g À1 .

[14] All the South Rough Ridge sarsen stone sites are shown in Figure 6a. At most sites, the two samples from separate boulders give roughly similar minimum ages, but there are two substantial exceptions. One anomaly is NZ97-8 on the ridge crest (259 ka), which we have already discussed above (Figure 2c), and discard. The other is the pair NZ02-54 (450 ka) and NZ02-55 (212 ka). Most effects we can envisage, such as partial burial during exposure history or enhanced erosion, will tend to reduce the apparent age. Only inherited 10 Be from earlier exposure can increase the apparent age, and for reasons discussed by [START_REF] Jackson | Fault growth and landscape development rates in Otago, New Zealand, using in situ cosmogenic 10 Be[END_REF] this is unlikely to be a problem here. Therefore the oldest of a pair of ages is likely to be closer to the true exposure age, and we have simplified the presentation of these results by showing only the oldest apparent minimum age in each site pair on the perspective view in Figure 5b; but all the ages are shown in Figure 6a. Figure 5b shows the age progression along the South Rough Ridge axis (open circles) and also the greater age of the terrace T3 (410-529 ka) compared with T2 (283 ka) and T1 (178 ka). Note that the higher terraces do not project directly (i.e., perpendicular) on to the ridge axis, but are deflected by the axis as they cross it (Figures 5 and6). Terrace T2 crosses the ridge axis between the sample sites at 178 and 468 ka, while T3 crosses the axis between the 468 and 519 ka sites.

[15] The 10 Be measurements therefore support the interpretation of the geomorphology outlined in section 3, with a set of progressively higher and older terraces from the ancestral Oliverburn deflected and uplifted by the propagating axis of South Rough Ridge. The alternative is to argue that all 10 Be concentrations are saturated with respect to erosion, which would require erosion rates to vary systematically and inversely with altitude (those at lowest elevation being the fastest), and also spatially in such a way as to precisely, and misleadingly, correlate with the terrace morphology: which seems extremely far-fetched and unlikely. The simplest interpretation, consistent with both the geomorphology and relative minimum ages, therefore requires the 10 Be concentrations on South Rough Ridge to have not yet reached steady state with respect to erosion, even though they are as old as 661 ka (minimum) or 1004 ka (maximum, assuming the samples on Rough Ridge are saturated, with an erosion rate of 0.4 Â 10 À3 mm yr À1 ).

[16] Meanwhile, all the schist samples (4 on South Rough Ridge, south of Dingo Creek, and 1 on Rough Ridge near site NZ97-33) are almost certainly saturated, with much lower minimum ages of 54-91 ka, whereas their expected ages are >661 ka on South Rough Ridge and !900 ka on the crest of Rough Ridge. These minimum ages correspond to erosion rates of the order of 10 À2 mm yr À1 in the schist, or roughly 20 times faster than the maximum erosion rates in the sarsen stones, which is no surprise. This differential erosion rate is corroborated by field evidence. In a few places we see quartzite boulders resting on schist pedestals, as the boulder protects the patch of underlying schist from erosion, while the surrounding schist is subjected to a faster erosion rate. These boulders can topple off their pedestal, and in this case we see bedding at an obvious angle to the schist surface, or that the boulder has broken into pieces.

[17] The sarsen stones on Rough Ridge are interesting in their own right. Their minimum 10 Be ages of up to 1379 ka are among the oldest found anywhere, comparable to those reported in parts of Antarctica [START_REF] Brook | Constraints on age, erosion, and uplift of Neogene glacial deposits in the Transantarctic Mountains determined from in situ cosmogenic 10 Be and 26 Al[END_REF] and Australia [Bierman and Caffee, 2002], corresponding to extraordinarily low maximum erosion rates of order 0.3 mm kyr À1 . Given that the $660 ka ages on South Rough Ridge are not saturated, there must be a possibility that, even at minimum ages of $1000 ka on the crest of Rough Ridge, the sarsen stones may not be in steady state with respect to erosion.

Results for 26 Al

[18] We measured 26 Al concentrations in 16 of the new (NZ02 series) and 6 of the old (NZ97 series) sarsen stone samples, with a view to trying to resolve the ambiguity between exposure age and erosion. The 27 Al and 26 Al measurements, the 26 Al/ 10 Be ratios, and the resulting minimum 26 Al ages are shown in Table 1.

[19] For many of the sample sites on South Rough Ridge the minimum 26 Al ages are similar to, and roughly track, the minimum 10 Be ages, but there are several anomalies (e.g., 53,55). The age anomalies are far worse for the older samples on Rough Ridge. There is a great deal of scatter in the 26 Al/ 10 Be ratios, and it seems likely that these problematic ratios are the result of some undetected analytical problem, such as the measurement of 27 Al. We find that others have had similar problems [START_REF] Vance | Erosion and exhumation in the Himalaya from cosmogenic isotope inventories of river sediments[END_REF].

[20] The measurement of 26 Al concentration along with 10 Be in a sample should make it possible to place further constraints on the sample's exposure and erosion history. As in most other similar studies we have seen (e.g., four case studies outlined by Bierman et al. [2002] and [START_REF] Belton | Quantitative resolution of the debate over antiquity of the central Australian landscape: Implications for tectonic and geomorphic stability of cratonic interiors[END_REF]), the formal errors for 26 Al concentrations are greater than for 10 Be, and dominate the values of the 26 Al/ 10 Be ratios. Unfortunately, even for the samples with the smallest of errors, the magnitude of the error makes it impossible to distinguish between exposure age and erosion rates (a conclusion also reached by others, such as Bierman and Caffee [2002]).

Lithological Influences on Erosion Rates

[21] Finally, in order to improve our understanding of the preservation and erosion controls in the sarsen stones, we analyzed two samples (NZ02-60, 61) from a site between South Rough Ridge and Rough Ridge, marked by triangles in Figure 6a. At this place, the quartzites occur as bedded slabs of fine grained sandstone, cemented but relatively porous, and clearly exfoliating parallel to original bedding (Figure 8). With such an appearance in outcrop, we would not ordinarily have sampled this site, but we did so in the expectation that it would show a relatively young minimum age or high maximum erosion rate, even though its location would suggest a real age substantially older than the oldest age of 661 ka found at the nose of South Rough Ridge. This expectation was confirmed, with minimum 10 Be ages for the two samples of only 55 and 128 ka. For the difference in nuclide concentration (and hence calculated exposure age) to be due to erosion, around 50cm of material must have been eroded relatively recently. The low exposure ages may be because the bulk of the rock is simply more friable and more easily eroded everywhere, as it was certainly less well cemented and easier to break than the quartzites we sampled in earnest, and the lower age is similar to those found in the schists. An alternative explanation is that the style of erosion is by exfoliation of bedding-parallel slabs, abruptly removing layers of material and suddenly exposing new bedding surfaces beneath (Figure 8). The surface relief on these boulders is on the order of 30 cm, and there are numerous exfoliated sheets scattered on the ground beside the boulders. The older age (128 ka) was from a prominent remnant knob, while the younger age (55 ka) at the same site was from the top of a flat, lower, bedding surface, which we interpret to have been exposed by exfoliation relatively recently. The reason for the contrast between this site and others is apparent when thin sections of NZ02-61 (minimum 10 Be age 128 ka) and NZ02-52 (410 ka) are compared (Figure 9). Both consist of at least 95% quartz grains, but in NZ02-52 the grains are interlocked with undulating sutures and all pore space is filled with cement, whereas in NZ02-61 the grains are not sutured, the interstices are partially open, and the matrix contains some clay minerals, which probably swell when wet and contribute to the mechanical weakening of the rock. NZ02-52 was a typical ''hard'' quartzite of the sort we sampled elsewhere in this study: massive, very difficult to break, with no sign of erosion by slab exfoliation.

[22] This result is important, demonstrating the necessity of petrographical analysis before lengthy sample processing is begun. In order to compare exposure ages, the samples must be petrologically similar, otherwise lithologically controlled erosion rates may dominate the patterns. We took thin sections of many of our samples to check this aspect of the sampling, and avoided analyzing those that were suspect on these grounds.

Discussion and Conclusions

[23] The most important result of this study is that we can now tie together the cosmogenic isotope evidence with the geomorphology to produce a quantitative, coherent and consistent account of how the nose of South Rough Ridge has propagated northward in the late Quaternary. [START_REF] Jackson | Fault growth and landscape development rates in Otago, New Zealand, using in situ cosmogenic 10 Be[END_REF] could not explain the clustering of the cosmogenic dates obtained from the quartzite boulders on the crest of South Rough Ridge, and inferred that these could be related to episodic propagation of the ridge. The geometry and uplift of the abandoned river terraces shows unequiv-ocally that the drainage evolution is related to ridge growth as well as regional base level change. The elevation changes and the 10 Be exposure ages show that the ridge uplifted by $60 m and propagated by $800 m over the last 550 kyr. It is interesting to note that when the terrace positions and ages on the ridge axis are plotted (Figure 2c) they form a more regular pattern than the apparently episodic ages, perhaps suggesting that ridge propagation was relatively steady after all. However, whether or not the ridge propagated continuously (i.e., by semiregular earthquakes), the corresponding response of the drainage was not continuous; it involved instead the switching of the Oliverburn stream to new courses in discrete (or relatively rapid) events, leaving behind a series of terraces. The average propagation rates (0.8 -1.5 mm yr À1 ) and uplift rates (0.08-0.12 mm yr À1 ) only differ from those estimated earlier by [START_REF] Jackson | Fault growth and landscape development rates in Otago, New Zealand, using in situ cosmogenic 10 Be[END_REF] because of the use of a different production rate. When the two data sets are normalized to the same production rate, the propagation and uplift rates are in agreement. The ratio of $10 between the rate of propagation and the rate of uplift is that expected in simple fault growth models, and is also observed elsewhere (see [START_REF] Jackson | Fault growth and landscape development rates in Otago, New Zealand, using in situ cosmogenic 10 Be[END_REF] for a discussion). However, a significant enigma raised by these estimates is that the propagation rates are too small to generate the observed $20 km length of South Rough in the time of $2 Myr that is thought to be available from stratigraphic evidence [START_REF] Youngson | Redefinition and interpretation of late Miocene-Pleistocene terrestrial stratigraphy, Central Otago, New Zealand[END_REF], though the uplift rate can generate the observed relief (300-400 m) in that time. Detailed discussion of the issue of fault growth styles is beyond the scope of this paper, but there are several possibilities: (1) the stratigraphic evidence may not be secure, (2) propagation rates were much faster earlier in the Quaternary, and (3) naive models of incremental growth by progressive lengthening of single fault segments [e.g., [START_REF] Jackson | The structural evolution of fault and fold systems in Central Otago, New Zealand: Evidence revealed by drainage patterns[END_REF] are unrealistic. The apparent very rapid growth of large structures in a short time is not a situation peculiar to Central Otago: [START_REF] Goldsworthy | Migration of activity within normal fault systems: Examples from the Quaternary of mainland Greece[END_REF] describe active faults in central Greece that must have initiated, grown to lengths of $20 km, and achieved offsets of at least 1 -2 km, all in the space of 1 -2 Myr. There too, late Quaternary fault slip rates can produce the total observed offset in the time available, but early propagation rates must have been very fast. Suggestion (3) is very probable, and it may be that the early growth of faults involves the rapid merger along strike of small fault segments that join up to achieve a substantial length quickly, before settling down to smaller propagation rates as offsets on the fault accumulate, in a manner simulated in the models of [START_REF] Cowie | A healing-reloading feedback control on the growth rate of seismogenic faults[END_REF].

[24] The demonstration of a coherent story between the geomorphology and relative cosmogenic 10 Be exposure ages requires that the quartzites on South Rough Ridge are not in steady state relative to erosion, in spite of apparent minimum exposure ages as great as 661 ka. This behavior is clearly a consequence of the extremely low erosion rates in the quartzites themselves, caused mostly by their hard, resistant nature and interlocking grain structure, and helped by the low annual rainfall of $300 mm yr À1 . With the much older ages of 750-1400 ka on the higher Rough Ridge, where erosion rates related to wind, rain and ice are likely to be higher, not lower, than on South Rough Ridge, there is the real possibility that even quartzites with 9a is characterized by undulating, interlocking sutures between grains and very few impurities. It was extremely hard and has a minimum 10 Be age of 410 ka. By contrast, the quartzite in Figure 9b contains a significant amount of clay minerals, and other impurities and grain boundaries are typical detrital, unsutured contacts. This rock was considerably weaker and more porous than that in Figure 9a and was eroding by exfoliation along bedding planes (Figure 8a). It has a minimum 10 Be age of 128 ka. minimum 10 Be exposure ages significantly older than 600 ka may not be in saturated steady state with respect to erosion.

[25] In a regional context, the combination of isotopic data and detailed study of the geomorphology provides evidence that cosmogenic dating can be used to give valuable insights into the growth of the other ranges in Central Otago, and future papers will broaden this study to the other ranges. Of more general significance is that the extremely old ages and low erosion rates in this region allow us to study the evolution of anticlines over long time periods, and gain insights into the growth style and rates of these blind reverse faults.

Figure 1 .

 1 Figure 1. (a) Perspective view looking NW of the Rough Ridge system of ranges in Central Otago. The image was made by draping a Landsat 7 image over a digital elevation model (DEM) from the Department of Survey and Land Information (DOSLI), New Zealand. (b) Annotated version, showing the low South Rough Ridge dying out to the NE in front of the higher parallel Rough Ridge, with the solid black lines being the crest lines of each ridge and the dotted lines being the bases of the steep range flanks. Sample sites for cosmogenic isotope analysis on Rough Ridge are shown by open circles, with the two on the left being close to the ridge crest and the others being farther north (Rough Ridge plateau/flank of North Rough Ridge). The sample area on South Rough Ridge is marked by the box. Inset shows the location of Central Otago (black box) in the South Island of New Zealand.

Figure 2 .

 2 Figure 2. (a) Schematic cartoon illustrating the structure and drainage around the tip of South Rough Ridge. (b) Detail of the drainage system around the tip of South Rough Ridge (adapted from[START_REF] Jackson | The structural evolution of fault and fold systems in Central Otago, New Zealand: Evidence revealed by drainage patterns[END_REF]). Solid black lines are drainage divides on the crests of Rough Ridge (west) and South Rough Ridge (east). Open circles are dry valleys (wind gaps) on the crest of South Rough Ridge; numbers are spot heights in meters. Shaded areas are the drainage catchments of Oliverburn and Dingo Creek. The asymmetry of the river catchments feeding the gorges through South Rough Ridge and the positions of wind gaps along its crest suggest that the blind fault beneath South Rough Ridge (2 in Figure2a) is younger than that beneath Rough Ridge (1) and is also propagating north[START_REF] Jackson | The structural evolution of fault and fold systems in Central Otago, New Zealand: Evidence revealed by drainage patterns[END_REF]. (c) Plot of 10 Be ages against distance along the nose of South Rough Ridge (adapted from[START_REF] Jackson | Fault growth and landscape development rates in Otago, New Zealand, using in situ cosmogenic 10 Be[END_REF]). Ages have been recalculated using a sea level, high-latitude production rate of 4.53 atoms g À1 (see Table1 footnotes). Solid circles are minimum ages assuming no erosion, with error bars (the assigned 10% error in production rate dominates the error from the measurement of nuclide concentration) representing extreme possible ranges. Open circles and open error bars are the maximum ages and their equivalent extreme ranges allowing for the maximum erosion rate in the region (see section 5). Straight lines fitted to the data give propagation rates of 1.3 mm yr À1 with no erosion (thick line) or 0.8 mm yr À1 allowing for erosion (thin line). Shaded boxes mark the positions and ages of the terraces T1 -T3 crossing the ridge crest, based on the new data presented in this paper (see text). The inset shows the expected evolution of

Figure 3 .

 3 Figure 3. View WSW from the northern tip of South Rough Ridge, showing the three terraces T1 -T3 above the Oliverburn stream, also shown in Figures 4 -7. In the foreground is a quartzite boulder on terrace T1, where other boulders gave minimum 10 Be ages of 103-178 ka. Note the car (circled) on T2, for scale.

Figure 4 .

 4 Figure4. Oblique air photo looking south from the northern tip of South Rough Ridge (see Figure2a), showing terraces T1 -T3 and the lines of trees marked in Figure5. Inset shows a cross section, taken from the topographic synthetic aperture radar (TOPSAR) DEM, along line X-X 0 in Figure6b, parallel to the axis of South Rough Ridge and across terraces T1 -T3 on the west side of the ridge. The shaded width of the profile shows the height variations within a swath 50 m wide along the section.

Figure 5 .

 5 Figure5. Perspective views looking south at the tip of South Rough Ridge (see Figure2a). This view was constructed from the NASA TOPSAR DEM, overlain by an air orthophoto from LINZ. (a) Flat surfaces of terraces T1-T3, marked by thin parallel lines. The lines of trees marked 1 and 2 mark the positions of trees visible in Figure4. (b) Flat surface of terraces T1-T3, shaded. Note that T3 is warped around the crest of the ridge and therefore appears lower down on the eastern side of the crest than on the western side. The oblique view makes T3 look much narrower than it is (see Figure6). Open circles are sample sites on the crest of South Rough Ridge; solid circles are sample sites on terraces T2 and T3. At each site, two boulders were sampled. The adjacent numbers are the oldest apparent 10 Be ages from each pair at each site, in ka. (For all the ages, see Figure6.)

Figure 6 .

 6 Figure 6. (a) Orthophoto from LINZ showing the locations of sample sites on the crest of South Rough Ridge (open circles), on terraces T1 -T3 (solid circles), and at the exfoliating sandstone discussed in section 7 (open triangles). At each site the minimum 10 Be ages in ka are shown for both samples (only the oldest is shown in Figure5). The sample at 259 ka (outlined with a black box) is the anomalous NZ97-8 (see Figure2c), discussed in the text. Flat terrace surfaces are shaded to indicate the position of the samples with respect to the terraces (see Figure6bfor terrace labels). The dotted lines indicate that tracing the exact terrace extents to the eastern side of the ridge crest is interpretative, as the height difference between the terraces decreases. (b) TOPSAR DEM, illuminated from the south, of approximately the same area as Figure6aand at approximately the same scale (the look angle is different in each case). X-X 0 is the line of the cross section shown in the inset to Figure4. Solid lines are the lines of the cross sections in Figure7along the Oliverburn stream floodplain (A), and terrace surfaces T1-T3 (B -D). Dotted lines are the bases of the terrace risers. The dashed line is the axis of South Rough Ridge.

Figure 7 .

 7 Figure 7. (a) Swath profiles following the flat surfaces of terraces T1 -T3 (B -D) and the Oliverburn floodplain (A) across the crest of South Rough Ridge (see Figure 6b for locations). Shaded bounds are extreme height variations along the swaths. Sample locations are extrapolated schematically onto the profiles, and the oldest 10 Be age in ka for each pair is given (as in Figure 5b). (b) Plot with variations omitted and with average slopes shown through the terrace surfaces east of the ridge axis. When projected west of the axis, the terraces show the progressively increasing height offset through the sequence T1 -T3 (see text).

Figure 8 .

 8 Figure 8. (a) Photo of exfoliating sarsen stone at sample sites 60 and 61 (note compass for scale). The top layers are being lost quickly because of exfoliation along bedding planes and the clay-rich nature of the rock. (b) Photo of sarsen stone at sample site NZ02-57. This is a typical example of all of the other sarsen stones sampled, which were not eroding in such an obvious manner when compared with those at samples sites 60 and 61.

Figure 9 .

 9 Figure 9. Thin sections under crossed polars of samples (a) NZ02-52 and (b) NZ02-61. The field of view is approximately 1.7 mm for Figure 9a and 3 mm for Figure 9b. The sarsen stone in Figure9ais characterized by undulating, interlocking sutures between grains and very few impurities. It was extremely hard and has a minimum 10 Be age of 410 ka. By contrast, the quartzite in Figure9bcontains a significant amount of clay minerals, and other impurities and grain boundaries are typical detrital, unsutured contacts. This rock was considerably weaker and more porous than that in Figure9aand was eroding by exfoliation along bedding planes (Figure8a). It has a minimum 10 Be age of 128 ka.

Table 1 .

 1 The 10 Be and 26 Al Concentrations and Calculated Minimum Exposure Ages for the South Rough Ridge and Rough Ridge Samples a

		Latitude	ongitude	eight,	10 Be P 0 , atoms	10 Be Concentration,	Quartz Weight,	26 Al/ 27 Al Ratio	Total 27 Al,	26 Al Concentration,	10 Be Age,
	Samples	45°L	169°H	m	g À1 yr À1	10 6 atoms g À1	g	10 À13	mg	10 6 atoms g À1	ka	26 Al Age 26 Al/ 10 Be
									SRR Quartzites		
	NZ97-1 b	13.360 54.525		540	7.25	3.57 ± 0.20					568 ± 76
	NZ97-3 b	13.360 54.252		540	7.25	3.46 ± 0.20 38.4165 53.6 ± 3.0	5.87 ± 0.29 18.3 ± 1.36 548 ± 74 456 ± 57 5.3 ± 0.5
	NZ97-5	13.398 54.320		540	7.25	4.06 ± 0.28					661 ± 96
	NZ97-8 b	13.330 54.355		530	7.19	1.74 ± 0.21					259 ± 43
	NZ97-6 b	13.330 54.355		530	7.19	3.27 ± 0.18 13.3786 41.7 ± 4.1	1.83 ± 0.09 12.7 ± 1.41 519 ± 68 297 ± 45 3.9 ± 0.5
	NZ97-10 b	13.277 54.343		520	7.13	3.30 ± 0.19 18.7129 61.9 ± 4.3	2.84 ± 0.14 21.0 ± 1.80 529 ± 70 556 ± 73 6.3 ± 0.7
	NZ97-9 b	13.277 54.343		520	7.13	2.84 ± 0.20					446 ± 61
	NZ97-12 b	13.213 54.406		510	7.07	2.94 ± 0.26					468 ± 71
	NZ97-16 b	13.126 54.395		500	7.01	1.19 ± 0.08 30.7152 30.5 ± 2.6	2.36 ± 0.12 5.23 ± 0.51 178 ± 23 115 ± 16 4.4 ± 0.5
	NZ97-17 b	13.126 54.395		500	7.01	1.02 ± 0.07					151 ± 19
	NZ97-18 b	13.056 54.378		490	6.95	0.70 ± 0.07					103 ± 15
	NZ97-19 b	13.056 54.378		490	6.95	0.85 ± 0.06 36.3652 21.1 ± 1.8	3.57 ± 0.18 4.62 ± 0.45 126 ± 16 102 ± 14 5.4 ± 0.7
	NZ02-50SRR 13.214 54.234		530	6.91	1.82 ± 0.12 31.0884 93.2 ± 3.7	2.20 ± 0.09 14.8 ± 0.83 283 ± 37 373 ± 43 8.1 ± 0.7
	NZ02-51SRR 13.200 54.271		530	7.00	1.75 ± 0.11 17.6829 38.4 ± 3.0	1.33 ± 0.05 6.43 ± 0.56 268 ± 34 144 ± 19 3.8 ± 0.4
	NZ02-52SRR 13.279 54.230		540	6.96	2.57 ± 0.17 22.2625 48.2 ± 2.4	3.14 ± 0.13 15.2 ± 0.96 410 ± 55 381 ± 45 5.9 ± 0.5
	NZ02-53SRR 13.288 54.220		540	6.93	2.37 ± 0.16 37.4190 90.6 ± 3.5	3.76 ± 0.15 20.3 ± 1.13 376 ± 50 552 ± 63 8.6 ± 0.7
	NZ02-54SRR 13.366 53.687		600	7.47	3.00 ± 0.20 32.4117 77.3 ± 3.4	3.39 ± 0.14 18.1 ± 1.07 450 ± 61 433 ± 50 6.0 ± 0.5
	NZ02-55SRR 13.353 53.667		600	7.31	1.47 ± 0.09 26.2325 47.3 ± 2.4	3.16 ± 0.13 12.7 ± 0.82 212 ± 27 292 ± 35 8.7 ± 0.8
	NZ02-56SRR 13.456 53.617		622	7.61	2.86 ± 0.19 42.2615 202.2 ± 5.6 1.65 ± 0.07 17.6 ± 0.86 418 ± 56 409 ± 46 6.2 ± 0.5
	NZ02-57SRR 13.455 53.543		630	7.69	2.63 ± 0.17 24.7812 72.0 ± 3.4	2.98 ± 0.12 19.3 ± 1.20 376 ± 50 452 ± 53 7.4 ± 0.7
	NZ02-60SRR 14.013 53.062		640	7.49	0.41 ± 0.03 24.2863 13.9 ± 1.4	2.32 ± 0.09 2.97 ± 0.32 55 ± 7	60 ± 9	7.2 ± 0.9
	NZ02-61SRR 14.029 53.041		640	7.55	0.94 ± 0.06 36.1302 36.2 ± 2.1	4.20 ± 0.17 9.39 ± 0.66 128 ± 16 200 ± 25 10.0 ± 1.0
									SRR Schists		
	NZ97-4	13.473 54.459		540	7.25	0.64 ± 0.05					91 ± 12
	NZ97-21 b	13.676 54.459		550	7.32	0.45 ± 0.03					62 ± 8
	NZ97-22 b	13.973 54.459		600	7.64	0.60 ± 0.04					80 ± 10
	NZ97-23 b	14.149 54.351		615	7.73	0.41 ± 0.03					54 ± 7
								RR Quartzites, Ridge Crest		
	NZ97-30 b	11.081 51.757		880	9.64	7.64 ± 0.39					1020 ± 151
	NZ97-32 b	11.081 51.757		880	9.64	7.86 ± 0.41					1059 ± 159
	NZ97-33	11.081 51.757		880	9.64	6.94 ± 0.45 16.0898 27.4 ± 2.6 10.70 ± 0.54 40.7 ± 4.33 900 ± 137 938 ± 132 5.8 ± 0.6
								RR Quartzites, Plateau/Flank of NRR	
	NZ02-142RR 10.966 52.524		880	9.26	6.45 ± 0.40 28.5265 428.2 ± 18.3 0.76 ± 0.03 25.6 ± 1.50 864 ± 128 512 ± 59 4.0 ± 0.4
	NZ02-143RR 10.429 51.935		870	8.90	5.85 ± 0.36 29.9211 146.3 ± 5.7 2.36 ± 0.09 25.8 ± 1.43 803 ± 117 544 ± 62 4.4 ± 0.4
	NZ02-144RR 10.426 51.954		870	9.22	5.91 ± 0.37 36.1761 200.6 ± 6.3 1.43 ± 0.06 17.7 ± 0.90 779 ± 113 327 ± 37 3.0 ± 0.3
	NZ02-145RR 09.898 51.858		840	8.92	5.94 ± 0.37 32.9188 115.0 ± 5.6 2.95 ± 0.12 23.0 ± 1.44 816 ± 120 468 ± 55 3.9 ± 0.4
	NZ02-147RR 09.722 51.298		820	8.70	8.58 ± 0.53 24.2019 162.9 ± 7.2 1.70 ± 0.07 25.6 ± 1.52 1379 ± 237 556 ± 64 3.0 ± 0.3
	NZ02-148RR 09.708 51.288		820	8.78	8.19 ± 0.50 35.3625 245.7 ± 7.1 1.35 ± 0.05 20.9 ± 1.03 1273 ± 212 424 ± 47 2.6 ± 0.2
									RR Schist		
	NZ97-34	11.081 51.757		880	9.64	0.65 ± 0.06					68 ± 9
	a											
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