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Role of isospin in the nuclear liquid-gas phase transition

C. Ducoin(1,2), Ph. Chomaz(1) and F. Gulminelli(2)

(1) GANIL (DSM-CEA/IN2P3-CNRS), B.P.5027, F-14076 Caen cédex 5, France
(2) LPC (IN2P3-CNRS/Ensicaen et Université), F-14050 Caen cédex, France

We study the thermodynamics of asymmetric nuclear matter using a mean field approximation
with a Skyrme effective interaction, in order to establish its phase diagram and more particularly
the influence of isospin on the order of the transition. A new statistical method is introduced to
study the thermodynamics of a multifluid system, keeping only one density fixed the others being
replaced by their intensive conjugated variables. In this ensemble phase coexistence reduces to a
simple one dimensional Maxwell construction. For a fixed temperature under a critical value, a
coexistence line is obtained in the plane of neutron and proton chemical potentials. Along this line
the grand potential presents a discontinuous slope showing that the transition is first order except
at the two ending points where it becomes second order. This result is not in contradiction with
the already reported occurrence of a continuous transformation when a constant proton fraction is
imposed. Indeed, the proton fraction being an order parameter in asymmetric matter, the constraint
can only be fulfilled by gradual phase mixing along the first-order phase transition line leading to a
continuous pressure.

PACS numbers: 24.10.Pa,64.60.Fr,68.35.Rh

I. INTRODUCTION

Nucleons in atomic nuclei interact through a finite-
range attractive and a short-range repulsive force. For
systems of particles interacting this way, one expects to
find a phase transition analogous to the liquid-gas tran-
sition of a Van der Waals fluid [1]. As a matter of fact, it
is recognized that symmetric nuclear matter should un-
dergo a first order transition between a low (gas) and a
high (liquid) density phase up to a critical temperature
[2, 3, 4]. For such a system containing an equal number
of neutrons and protons, the isospin symmetry imposes
that the nucleons behave as one single fluid and one ex-
pects a discontinuous density versus pressure equation of
state.

The case of asymmetric matter is more complex to
study, since there is an additional degree of freedom
to consider: the isospin. Such matter plays an impor-
tant role in astrophysics where neutron rich systems are
involved in neutron stars and type-II supernova evolu-
tions [5, 6]. For asymmetric systems containing a fixed
proton fraction, it has been shown that the thermody-
namic transformations result in a continuous evolution
of the observables. In particular, the system density is
a continuous function of the pressure. This has been
interpreted as the occurrence of a continuous transition
[7, 8, 9, 10, 11, 12]. We will show in the present article
that this conclusion is not correct: it results from a con-
fusion between the notions of ’continuous transition’ and
’continuous transformation’. Indeed, the phenomenon
of isospin distillation demonstrates that the proton frac-
tion is an order parameter in asymmetric nuclear matter.
Thus, when the proton fraction is kept constant, the sys-
tem is forced to follow the first order phase transition
line, hiding the discontinuity of the thermodynamic po-
tential first derivative.

The plan of the paper is as follows: after a short defi-

nition of phase transitions and their order, we calculate
in Section III the nuclear-matter grand potential in the
mean-field approximation using a Skyrme Sly230a energy
density functional [13]. The thermodynamics of nuclear
matter has been addressed earlier with different effec-
tive forces [15, 16, 17, 18]. In section IV, the mean-field
instabilities are corrected introducing phase separation
with the construction of a concave envelope for the ther-
modynamic potential. To perform this Gibbs construc-
tion with an arbitrary number of conserved quantities,
we introduce a new method that reduces this multidi-
mensional problem to a simple one-dimensional Maxwell
construction on a carefully defined statistical potential.
The result of this analysis is that the grand-canonical po-
tential presents a discontinuous derivative on both sides
of a bi-dimensional manifold limited by a critical line in
the 3-dimensional space including the temperature and
the proton and neutron chemical potentials. The transi-
tion is thus first order for all associated proton fractions.
Only the critical line corresponds to continuous transi-
tions. An interesting point is that in this 3-dimensional
problem the critical line can be characterized by addi-
tional critical exponents as the chemical potential ap-
proaches its critical value for a given temperature. The
thermodynamic consequences of a transformation at con-
stant proton fraction are analyzed in Sections V and VI.
We show that this transformation forces the system to
follow the coexistence line, and this is the generic behav-
ior expected when a conservation law acts on an order
parameter. Then, the first order phase transition results
in a continuous transformation from a diluted to a dense
system through a phase coexistence, which should not be
confused with a continuous transition.

II. GENERALITIES ON PHASE TRANSITIONS
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For systems at the thermodynamic limit, the existence
and the order of a phase transition are intrinsically re-
lated to the singularities of the thermodynamic potential,
−T lnZ (λ) where Z (λ) is the partition sum for a given
macroscopic state characterized by the L intensive pa-
rameters λ = {λℓ} [14]. These intensive parameters are
the Lagrange multipliers introduced in the maximization
of the Shannon entropy under the L constraints < Âℓ >
associated with all the L relevant observables Âℓ.

A system presents a first-order phase transition if one
of the first partial-derivatives of lnZ (λ) shows a discon-
tinuity [1]. If a non-analyticity (discontinuity or diver-
gence) is present at a higher order derivative, there is
a continuous transition. Since the equations of states
(EOS) are the L relations < Âℓ > (λ) = −∂λℓ

lnZ ( λ)
[14], we can see that a first-order phase transition corre-
sponds to a discontinuity in at least one of the EOS, i.e.
to a jump in the mean value of at least one observable at
the transition point. This observable can then be iden-
tified with an order parameter since its value allows to
distinguish the two coexisting phases.

III. SKYRME GRAND POTENTIAL

A. Isospin dependent energy functional

We study the case of nuclear matter in a mean field
approach, with the SLy230a Skyrme effective interaction
[13]. This local interaction allows to introduce an energy
density hamiltonian H(r) so that the total energy for a
system of nucleons in a Slater determinant | ψ > reads :

〈ψ|Ĥ |ψ〉 =

∫

H(r)dr

The energy density H is a functional of the parti-
cle densities ρq and kinetic densities τq for neutrons
(q = n) and protons (q = p). Noting ρ̂q the one-body
density matrix of the particles of type q, those quan-
tities are expressed as follows: ρq(r) = 〈r|ρ̂q|r〉 and

τq(r) = 〈r| 1
~2 p̂ρ̂q p̂|r〉, such that ~

2

2mτq is the kinetic en-
ergy density.

For later convenience it is useful to introduce the
isoscalar and isovector densities :

ρ = ρn + ρp , τ = τn + τp
ρ3 = ρn − ρp , τ3 = τn − τp

In the case of homogeneous, spin-saturated matter
with no coulomb interaction, four terms contribute to
the energy density :

H = K + H0 + H3 + Heff

In this expression, K is the kinetic-energy term, H0

a density-independent two-body term, H3 a density-

dependent term, and Heff a momentum-dependent term:

K =
~

2

2m
τ

H0 = C0ρ
2 +D0ρ

2
3

H3 = C3ρ
σ+2 +D3ρ

σρ2
3

Heff = Ceffρτ +Deffρ3τ3

The coefficients Ci and Di, associated respectively
with the symmetry and asymmetry contributions, are lin-
ear combinations of the traditional Skyrme parameters :

C0 = 3t0/8
D0 = −t0(2x0 + 1)/8
C3 = t3/16
D3 = −t3(2x3 + 1)/48
Ceff = [3t1 + t2(4x2 + 5)]/16
Deff = [t2(2x2 + 1) − t1(2x1 + 1)]/16

To illustrate the SLy energy functional we present in
Figure 1 the energy density and the energy per particle as
a function of the total particle density for various proton
fractions. The kinetic-energy term has been computed
integrating over the Fermi spheres associated with the
considered proton and neutron densities. The minimum
of the energy per particle is the saturation point of sym-
metric matter ρ0 = 0.16 fm−3 and E0 = −15.99 MeV,
while the curvature gives the incompressibilityK = 230.9
MeV. The Z/A = 0 curves correspond to pure neutron
matter which does not saturate, the Sly forces being fit-
ted on realistic neutron-matter EOS calculations [13, 18].
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FIG. 1: Sly230a functional for infinite nuclear matter : en-
ergy per particle (upper part) and energy density (lower part)
as functions of the total nucleon density for regularly spaced
proton fractions from Z/A=0.5 to Z/A=0.
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B. Mean-field Hamiltonian

The mean-field effective hamiltonian Ŵq for each

particle-type q is defined by the relation δ〈Ĥ〉 =

Tr(Ŵqδρ̂q) i.e. as a functional derivative of the energy
density. In the Skyrme case this leads to the expression :

Ŵq =
∂H

∂τq

p̂2

~2
+
∂H

∂ρq
=

1

2m∗

q

p̂2 + Uq

where Uq = ∂ρq
H is the local mean-field potential :

Uq = U0q
+ U3q

+ Ueffq
(1)

= 1/2[2C0ρ+ (σ + 2)C3ρ
σ+1 + σD3ρ

σ−1ρ2
3 + Ceff τ ]

± 1/2[2D0ρ3 + 2D3ρ
σρ3 +Deffτ3]

and the effective mass m∗

q is defined by :

~

2m∗

q

= 1/2[
~

2m
+ Ceffρ±Deffρ3] (2)

In both expression, the ± sign refers to neutrons (+) or
protons (−).

In uniform nuclear matter, the eigenstates of this
mean-field hamiltonian are spin-up or spin-down plane
waves with usual quantification relations on their mo-
menta pi. The single-particle energies are given by :

ǫiq =
p2

i

2m∗

q

+ Uq

C. Finite temperature

Within a mean-field approach thermodynamic rela-
tions are easy to derive in the grand-canonical ensem-
ble. For a system of neutrons and protons, the grand-
canonical constraint imposes the average value of three
observables: energy, number of protons and neutrons.
Maximizing the Shannon entropy with these three con-
straints leads to an equilibrium partition sum :

ZGC = Tr[e−βĤ+αnN̂n+αpN̂p)]

where the inverse temperature β = 1/kT is the La-
grange multiplier associated with the energy constraint,
and αq = βµq are the Lagrange multipliers controlling

the particle numbers < N̂q >, µq being the chemical po-
tentials. The Lagrange parameters fulfill the equations
of state :

〈Ĥ〉 = −∂β lnZGC (3)

〈N̂q〉 = ∂αq
lnZGC (4)

The self-consistent mean-field approximation amounts
to use independent particle states as trial density matri-
ces in the maximum entropy variational principle: the

single-particle states of energy ǫiq are then occupied ac-
cording to the Fermi-Dirac distribution [19] :

ni
q =

1

1 + exp(β(ǫiq − µq))

In infinite matter, ni
q is a continuous distribution nq(p)

and the densities ρq and τq read :

ρq = 2

∫

∞

0

nq(p)
4πp2

h3
dp (5)

τq = 2

∫

∞

0

p2

~2
nq(p)

4πp2

h3
dp (6)

where the factor 2 come from the spin degeneracy.
The first equation establishes a self-consistent relation

between the density of q-particles ρq and their chemi-
cal potential µq. The above densities can be written as
regular Fermi integrals by shifting the chemical potential
according to µ′

q = µq −Uq. The Fermi-Dirac distribution
indeed reads :

nq(p) =
1

1 + exp(β(p2/2m∗

q − µ′

q))
(7)

Equations (7) and (5) define a self-consistent problem
since m∗

q depends on the densities according to eq.(2).
For each couple (µ′

n, µ
′

p) a unique solution (ρn, ρp) is
found by iteratively solving the self-consistency between
ρn,p and m∗

n,p. Then eq.(6) is used to calculate τn,p.
These quantities allow to compute the one-body parti-
tion sum :

Z0 = Tr[e−β(Ŵn+Ŵp−µnN̂n−µpN̂p)] = Zn
0 Z

p
0

where each partition sum Zq
0 can be expressed as a func-

tion of the corresponding kinetic energy density :

lnZq
0

V
= 2

∫

∞

0

ln(1 + e
−β( p2

2m∗
q
−µ′

q)
)
4πp2

h3
dp =

~
2

3m∗

q

βτq

At the thermodynamic limit the system volume V di-
verges together with the particle numbers 〈N̂q〉, and the
thermodynamics is completely defined as a function of
the two particle densities ρn, ρp.

D. Grand potential

We can now use the maximum-entropy variational
principle to evaluate the mean-field approximation to the
grand-canonical partition sum ZGC . We recall that the
exact grand-canonical ensemble corresponds to the max-
imum of the constrained Shannon entropy which is noth-
ing but lnZGC :

lnZGC = SGC − β(〈Ĥ〉GC − µn〈N̂n〉GC − µp〈N̂p〉GC).

The variational principle thus states that the mean-
field constrained entropy is the best approximation
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within the ensemble of independent-particle trial states
to the exact maximum lnZGC :

lnZGC ≃ S0 − β(〈Ĥ〉0 − µn〈N̂n〉0 − µp〈N̂p〉0),

where the mean-field energy and particle numbers are
defined as functions of densities, i.e. single-particle occu-
pations eq.(7), by :

〈Ĥ〉0 = VH ; 〈N̂q〉0 = V ρq

The mean-field entropy is given by :

S0 = lnZ0 + β(〈Ŵ 〉0 − µn〈N̂〉0 − µp〈N̂p〉0)

where 〈Ŵ 〉0 represents the average single particle energy
:

〈Ŵ 〉0 = 2V
∑

q

∫

∞

0

nq(p)eq(p)
4πp2

h3
dp = −∂β lnZ0

with eq(p) = p2/2m∗

q + Uq.
The grand-canonical partition sum in the mean-field

approximation is thus modified with respect to the
independent-particle partition sum Z0 as :

lnZGC ≃ lnZ0 + β
(

〈Ŵ 〉0 − 〈Ĥ〉0

)

which allows to express the grand-canonical potential
density as a function of densities :

−g =
lnZGC

βV
≃

2

3
K + H0 + (σ + 1)H3 +

5

3
Heff

At the thermodynamic limit, this quantity is equiva-
lent to the system pressure P = −g. Because of ensemble
equivalence we can then evaluate all the thermodynamic
potentials. For example, the canonical partition sum or
equivalently the free energy per unit volume is defined
through the Legendre transform :

f = −
lnZC

βV
= g + µnρn + µpρp

E. Skyrme grand potential and phase transition

Figure 2 presents the pressure as a function of the
isoscalar and isovector chemical potentials µ = µn + µp

and µ3 = µn − µp. This figure is computed for a uni-
form system at a fixed temperature T = 6MeV. For
symmetry reasons only the positive µ3 are shown. We
can see that for some values of (µ, µ3), there are three
solutions corresponding to different values for the con-
jugated observables (ρ, ρ3). This is the phase transition
region. The true equilibrium is the solution minimizing
the grand potential i.e. maximizing the pressure. Thus
only the upper part of the pressure manifold corresponds
to a thermodynamic equilibrium. At the resulting fold
the slope changes discontinuously, i.e. using ρq = ∂g/∂µ,
the equilibrium uniform system jumps from a low to a
high density solution. It is a liquid-gas first-order phase
transition.
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FIG. 2: Pressure as a function of the isoscalar and isovector
chemical potentials for a uniform system at T = 6MeV .

IV. GIBBS CONSTRUCTION

A. Phase coexistence conditions in multi-fluid

systems

At the thermodynamic limit, the entropy S, as all the
extensive variables {Ak}, is additive and thus scales like
the volume V :

S(V, {Ak}) = V s(ρk = {Ak/V })

The volume can thus be eliminated from the thermody-
namic description while the other extensive variables can
be expressed as densities ρ = {ρk}. If we consider two
isolated systems of volum V1 = αV and V2 = (1 − α)V ,
their constrained entropy is simply the sum of the two en-
tropies S = S1 + S2. When 1 and 2 are put into contact
to form a system with ρ = αρ1 +(1−α)ρ2, equilibrium is
reached by maximization of the global entropy S so that
:

S ≥ S1 + S2 .

This imposes the convexity of the entropy :

s(αρ1 + (1 − α)ρ2) ≥ αs(ρ1) + (1 − α)s(ρ2)

As a result, if the homogeneous system has a con-
strained entropy with a convex region, a linear interpo-
lation between two densities ρA and ρB coresponds to
a physical phase mixing of the two associated states and
leads to a concave envelope which maximizes the entropy
functional (Gibbs construction). The straight lines corre-
sponding to phase coexistence are defined by two points
of same tangent plane i.e. with identical first deriva-
tives or intensive variables, λk = ∂ρk

s, and equal values
of the constrained entropy, i.e. equal distance between
the entropy s(ρ) and the plane

∑

k λkρk = 0. Using
∂V S(V, {Ak}) = s({ρk}) −

∑

k λkρk this latter condition
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can be interpreted as the equality of the two system pres-
sures. This equality of all intensive variables defines the
conditions of phase equilibrium.

B. Canonical ensemble

For nuclear matter at a given temperature, the Ak

are the proton and neutron numbers: N = ρnV and
Z = ρpV. Finding two points in equilibrium means find-
ing two sets of densities {ρA

n , ρ
A
p } and {ρB

n , ρ
B
p } which

fulfill the 3 equations µA
n = µB

n , µA
p = µB

p , PA = PB,
the equality of the temperatures being insured by the
use of an isothermal ensemble. The path corresponding
to a constant µq (e.g. µn) is a curve in the (µp, P ) plane
that can be determined numerically. The problem is now
reduced to two dimensions: if this path shows a cross-
ing point, there are two sets of extensive observables for
which the intensive parameters are all equal, which is the
condition for coexistence.

This is illustrated in the central part of Fig.3. This
is a systematic way to look for phase coexistence in a
multi-component system.
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FIG. 3: Illustration of a Maxwell-Gibbs construction in the
proton-canonical and neutron grand-canonical ensemble at a
fixed neutron chemical potential µn = −30MeV and temper-
ature T = 10MeV . The bottom part presents the thermody-
namic potential density GpC/V as a function of the proton
density ρp. The straight line shows the convex envelop inter-
polating between the two phases A and B. This corresponds
to the Maxwell construction on µp as a function of ρp (left
center). The top right part shows the convex envelop of the
thermodynamic potential per particle GpC/Z as a function
of the inverse of the proton density 1/ρp which is associated
with a Maxwell construction for the pressure as a function of
1/ρp (top center). The two Maxwell constructions correspond
to the crossing of the P -µp diagram (central figure).

C. Neutron-grand-canonical, proton-canonical

ensemble

From the thermostatistics point of view, using the set
of state variables (β, µn, ρp) corresponds to defining a
neutron-grand-canonical but proton-canonical ensemble,
noted as pC in the following. The associated potential
per unit volume, GpC/V = gpC , is given by :

gpC(β, µn, ρp) = H− µnρn − s(H, ρn, ρp)/β

with s = S/V the entropy density. gpC is linked by Leg-
endre transforms both to the grand-canonical potential
gGC = −P (the pressure) and to the canonical potential
f i.e. the free energy :

gpC = −P + µpρp = f − µnρn.

Since this ensemble has only one density left, the con-
struction of its convex envelop is a one-dimensional prob-
lem akin to the usual Maxwell construction. Numerically,
we can directly perform this Maxwell construction on the
function µp(ρp) for constant β and µn. The comparison
between the results obtained using this method and the
method described in the previous section using the µp−P
crossing point gives an estimation of our numerical error,
which comes out to be less than 0.2% for all tempera-
tures.

We can additionally remark that the above reasoning
also holds if we study the pC-potential per proton leading
to a Maxwell construction for the pressure P as a func-
tion 1/ρp. Both constructions are illustrated on figure 3.
The convex envelop of GpC/V (GpC/Z) corresponds to
an equal-area Maxwell construction on µp(ρp) (P (1/ρp))
and to the crossing point between the two phases in the
µp versus P graph.

It should be noticed that the introduction of a statis-
tical ensemble in which only one density is kept, all the
other ones being replaced by their associated intensive
parameters, is a systematic way to study a phase transi-
tion with a one-dimensional order parameter. The only
condition is that the considered density is not orthogonal
to the order parameter, i.e. its value is different in the
two phases. In such an ensemble, the multidimensional
Gibbs construction reduces to a simple one-dimensional
Maxwell construction.

D. Variation with µn

In order to explore the phase diagram, the method il-
lustrated in the previous section has to be performed for
various temperatures and chemical potentials. Figure 4
illustrates the µn dependence for T = 10 MeV. We can
see that for a broad range of µn the µp(ρp) equations of
state present a back-bending associated to an instabil-
ity which must be corrected using a Maxwell construc-
tion. This defines the transition points µt

p(µn, T ) and
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FIG. 4: Maxwell construction in the µp versus ρp diagram for
a fixed temperature T = 10MeV and regularly spaced values
of µn from −80 to 10 MeV.

P t(µn, T ). The ensemble of the transition points consti-
tutes a coexistence curve at the considered temperature.
This curve is limited by two critical chemical potentials,
µ<

n (T ) and µ>
n (T ), which in turn define the proton critical

chemical potentials µ>
p (T ) = µt

p(µ
<
n (T ), T ) and µ<

p (T ) =

µt
p(µ

>
n (T ), T ), since µp is maximum when µn is minimum.

The transition is observed only in a finite range of tem-
peratures below a given temperature Tc which is nothing
but the critical temperature of symmetric matter.

E. First order phase transition

The Gibbs construction of phase coexistence leads
to well defined partition sums fulfilling the thermody-
namic stability requirement. The resulting pressure P =
T lnZGC(T, µn, µp)/V at the temperature T = 10 MeV
is shown in figure 5.

Along the coexistence line µt
p(µn, T ) the pressure

presents a fold i.e. the derivative perpendicular to the
line is discontinuous. It is by definition a region of first-
order phase transition. The coexistence line at fixed tem-
perature is limited by two points (µ<

n (T ), µ>
p (T )) and

(µ<
n (T ), µ>

p (T )). They correspond to vertical tangents in
the grand potential first derivatives ρq(µn, µp), which are
singularities in its second derivatives. Hence, the limit-
ing points are second-order critical points, i.e points of
continuous transition.

We have represented in Fig 6 the first derivative of
lnZGC in the µn direction, i.e. the neutron density
ρn = ∂µn

p, which is discontinuous on the first-order line
and continuous with a vertical tangent at the two critical
points. Because of the exact isospin symmetry of the SLy
interaction, the proton density ρp is symmetric to ρn: it
is the same surface with inversion of the axes µn and µp.

FIG. 5: Equilibrium pressure computed at a temperature
T = 10MeV as a function µn and µp after performing a
Gibbs construction for different values of µn. The resulting
fold line is the coexistence line ending at two critical points.
The traced path corresponds to a transformation at constant
proton fraction Z/A = 0.3 (see Section V).

FIG. 6: First derivative of the grand-canonical partition sum,
ρn = ∂p/∂µn, as a function of µn and µp at a temperature
T = 10MeV . The path Z/A = 0.3 is also shown.

F. Coexistence region

The first derivatives of lnZGC on both sides of the
phase transition line define couples of points (ρn, ρp) in
coexistence respectively at low (gas) and high (liquid)
density. These phases merge together at the critical
points. The coexistence region in the proton and neu-
tron density space is shown on Figure 7 for a fixed tem-
perature. The solid lines in this figure give several iso-µn

paths. Because the construction of the concave envelop
of the constrained entropy is nothing but a linear in-
terpolation between two phases, inside the coexistence
region the iso-µn lines are straight lines in (ρn, ρp) rep-
resentation. The bottom part of the figure shows the
coexistence region in the total density and proton frac-
tion (ρ, Z/A) plane, which consists in the change of vari-
ables ρ = ρn + ρp, y = Z/A = ρp/(ρn + ρp). Because
of the non linearity of the variable change, we can see
that coexistence does not correspond to a straight line in
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to a transformation at Z/A = 0.3 (see Section V).

this representation, and the value of Z/A evolves when
passing from the dense phase to the diluted phase in co-
existence. The only exception is the symmetric nuclear
matter case y = Z/A = 0.5.

G. Isospin distillation

The proton fraction difference in the two phases can
be appreciated from figure 8 which shows Z/A as a func-
tion of µn and µp for a fixed temperature T = 10MeV .
Z/A being a combination of the two order parameters ρn

and ρp, it also presents a discontinuity at the first order
phase transition border, with the only exception of the
symmetric nuclear matter point where Z/A = cst = 0.5.
Correlating this plot with fig. 6, one can see that the
dense phase (e.g. point B’ or B) is systematically closer
to isospin symmetry Z/A = 0.5 than the diluted one (e.g.
point A or A’). This phenomenon is known as isospin dis-
tillation [7, 20, 21].

FIG. 8: Z/A = ρp/(ρn + ρp) as a function of µn and µp for
a fixed temperature T = 10MeV . The path at Z/A = 0.3 is
also shown.

V. TRANSFORMATION AT CONSTANT Z/A

In low-energy heavy-ion collisions, the proton and neu-
tron numbers obey two independent conservation laws,
implying that the proton fraction Z/A is conserved in
the reaction. It is therefore of interest to consider a
transformation at constant Z/A [7, 21]. In the (ρn,ρp)
plane (or equivalently in the (ρtot,Z/A) representation)
Z/A = cst transformations are straight lines which cross
the different constant-µn curves. Inside the coexistence
region the system with a given proton fraction is de-
composed into two phases located at the intersections of
the coexistence curve with the corresponding constant-
µn curve. Since the constant-µn curves are not aligned
on constant-Z/A lines except for symmetric matter, the
constant-Z/A transformation does not make a transition
from liquid to gas at a unique value of µn but shows a
continuous smooth evolution of the intensive parameters
along the coexistence line.

The transformation Z/A = 0.3 is given as an exam-
ple by the dotted lines in Fig. 7, and the grey path in
Figs.5,6,8. Let us follow this transformation from the
low density phase. When the system reaches the coexis-
tence border (point A) a liquid phase appears in B′ at
the same value of µn, µp and T . This point coincides
with A in the representation of Fig.5. We can see from
Figs.7 and 8 that the liquid fraction is closer to symmet-
ric nuclear matter than the original system as expected
from the isospin distillation phenomenon.
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FIG. 9: Projection of the coexistence region in the Z/A versus
µn plane. Black dots are critical points, and stars are points
of maximal asymmetry. The path at Z/A = 0.3 is also shown.

Following the system inside coexistence along the line
A − B, the neutron chemical potential increases. Phase
separation implies that in this region the system is com-
posed of two phases located at the coexistence boundaries
and correponding to the same value of the intensive pa-
rameters. The diluted phase goes along coexistence from
A to A’ while the dense phase goes on the other side of
the coexistence border from B’ to B. When it reaches B
the gas is entirely transformed into a liquid, the phase
transition is over and the Z/A = 0.3 transformation cor-
responds to a homogenous system again.

The evolution of µn during the transition can be quan-
titatively discussed on figure 9 which gives a projection
of Fig.8 on the µn axis. This figure clearly shows that a
constant-Z/A transformation does not cross the coexis-
tence at a unique µn value but explores a finite range of
chemical potentials. The system is thus forced to follow
the coexistence line in the intensive parameter space as
shown in figure 5 and in Figure 10. The only exceptions
are the symmetric matter and the 2 maximum asymme-
tries of the coexistence region for each temperature.

It is important to notice that the behavior shown in
Figures 9 and 10 is the generic behavior expected when
a conservation law is imposed on an order parameter[22,
23]. Indeed, the usual discontinuity of the order param-
eter characteristic of a first order transition is prevented
by the constraint. If the system reaches coexistence, the
only way to fulfill the conservation law on the order pa-
rameter is to follow the coexistence line until the con-
servation law becomes compatible with a homogeneous
phase.

This continuous evolution by phase mixing hides the
EOS discontinuity associated with the first-order phase
transition.This is illustrated by the evolution of µn and
P as a function of the total density ρtot at Z/A = 0.3 in
fig. 11. Full lines are obtained after the thermodynamic
potential is made convex by phase mixing, i.e. with the
Gibbs construction. These functions present no plateau
in the coexistence region, and the transformation looks

 (MeV)nµ
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FIG. 10: Coexistence line, i.e. line of first order phase tran-
sition, in the intensive-parameter plane (µn, µp). The path at
Z/A = 0.3 is also shown.

like a continuous transition. Yet by definition the sys-
tem is going through a first-order phase transition since
the first derivatives of the grand potential are discontin-
uous. This clearly stresses the fact that the behavior of
specific transformations should not be confused with the
intrinsic thermodynamic properties. In particular trans-
formations involving a constraint on an order parameter
always appear continuous even in the presence of a first
order phase transition [22, 23]. The isospin degree of free-
dom does not change the order of the nuclear liquid-gas
phase transition as claimed in different articles [7, 12].
It remains first order. Only the constant proton fraction
transformations (or other transformations constraining
an order parameter) mimic a continuous transition be-
cause they do not cross the coexistence line at a single
point, but are forced to follow it to fulfill the conservation
law.

VI. TEMPERATURE DEPENDENCE

Until now we have presented a study at a fixed finite
temperature. In this section we consider the effect of
temperature on the phase diagram, from the particular
case of zero temperature to the symmetric-matter critical
temperature Tc above which there is no transition any
more.

A. T = 0 singularity

The specificity of the zero-temperature case is the pos-
sibility to reach a vanishing density with a finite chemi-
cal potential [24], while at any finite temperature a given
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: Gibbs construction. Points A and B give the coexistence-
region borders.

density can be zero only if the associated chemical po-
tential goes to −∞ (see eq.(5)). This is a trivial con-
sequence of the singularity of the Dirac distribution at
T = 0. In this case the associated thermodynamic po-
tential presents at zero density an edge with a finite slope,
the associated finite chemical potential. An example is
given by the (free) energy as a function of total density
for symmetric nuclear matter in Figure 1. Then, if the
thermodynamic potential for the uniform system presents
a concave intruder reaching zero density, the construc-
tion of the convex envelope does not reduce to the usual
tangent construction between two points in coexistence.
Indeed the interpolating plane defined by phase mixing
will not be tangent to the thermodynamic potential on
the zero density edge.

The coexistence region at T = 0 is shown in figure
12. It can be divided into three zones corresponding to
three kinds of equilibria with different conditions on the
intensive parameters. In two small regions, labeled 2 in
figure 12 and associated by isospin symmetry, both pro-
ton and neutron densities are finite in the gas phase. The
usual bi-tangential construction can then be performed.
This imposes the standard equality between all intensive
parameters in the two phases A and B: β(A) = β(B),
µn(A) = µn(B), µp(A) = µp(B) and P (A) = P (B).
This region is limited on one side by a critical point be-
yond which there is no more curvature anomaly, and on
the other side by the vanishing of one of the two densi-
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FIG. 12: Coexistence region at T=0. It is split into 3 differ-
ent types of equilibria between liquid and gas (see text). Top
: coexistence border (thick line) in the density plane. The
straight lines relate two coexisting phases. Bottom : coexis-
tence line in the plane of chemical potentials.

ties in the gas phase. This second case corresponds to
two symmetric regions noted 1 in figure 12. There, we
have equilibria for which the low density phase is on an
edge ρq = 0, the second density being finite. For simplic-
ity let us take the case of globally neutron-rich matter
where ρp = 0 and ρn > 0 at the low-density coexistence
edge. In this case, the convex envelop is tangent to the
thermodynamic potential of the uniform system only in
the dense phase. This is a mono-tangential construc-
tion. It means that phase equilibrium does not require
the equality of the potential derivative in the ρp direction,
i.e. the equality of the proton chemical potentials in the
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two coexisting phases. Since the anomaly involves only
the derivative in the ρp direction, the other equilibrium
conditions characterizing the Gibbs construction are still
satisfied in this region, namely the neutron chemical po-
tential, pressure and temperature have to be the same in
the two phases.
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FIG. 13: Singularity at T = 0 : Mono-tangential construction
for a fixed neutron chemical potential µn = 5MeV . Upper
part : corresponding path in the density plane. It reaches the
edge ρp = 0 (with a finite ρn). Middle part: thermodynamic
potential density gpC (see section IVC). The concave intruder
is corrected by phase mixing, which corresponds here to a
mono-tangential construction (straight line). Lower part: µp.
The mono-tangential construction on gpC does not correspond
to the usual Maxwell construction, that can not be performed
because of the finite value of µp on the edge.

Since the construction involves two points with the
same µn we can use the neutron-grand canonical proton-
canonical potential GpC (see section IVC) in order to re-
duce the problem to a one-dimensional case as illustrated
in figure 13. This is a way to solve the problem in prac-
tice. Looking at a fixed µn for which the proton density
reaches its edge ρp = 0 at zero temperature (upper part),
we can see that a standard equal-area Maxwell construc-
tion is not possible in this case (lower part). However, the
concave intruder in the thermodynamic potential (middle
part) has to be corrected by phase mixing. Equilibrium
is then given by a mono-tangential construction on gpC .

Such equilibrium between a neutron gas and a two-
fluid liquid leads to a discontinuous change of µp in the
gas. Because of the dominance of region 1 with respect
to region 2 in the phase diagram, the simplification is
often made in the literature [24] that phase coexistence in
neutron-star matter can be modelized as the equilibrium
between neutron rich nuclei and a pure neutron gas. It
should however be noticed that this is possible only if the
temperature is exactly zero, a finite proton fraction being
associated to the gas phase at any finite temperature.

The last case, noted 0 in figure 12, corresponds to both
ρp = 0 and ρn = 0 in the low-density phase. This case
corresponds to a dense phase in equilibrium with the
vacuum, i.e. at zero pressure. This region has a very
simple physical interpretation. If the gas phase is given
by the point (ρn, ρp) = (0, 0), this means that the co-
existence lines of zone 0 are constant Z/A lines. The
coexistence border on the liquid side is the locus of zero
pressure in the Z/A interval corresponding to region 0.
For each value of Z/A, the liquid border is then given
by the minimum of the energy per particle computed for
this constant Z/A. Zone 0 corresponds then to the chem-
ical potential interval in which a self-bound liquid can be
defined.

B. Phase diagram

In order to determine the phase diagram of nuclear
matter, we establish the ensemble of points at equilib-
rium in the (ρn, ρp) plane for different fixed values of
temperature. The result is represented in figure 14 as
a function of the variables (ρ, Z/A) in order to under-
line the role of isospin. Since protons and neutrons play
symmetric roles, the resulting curves are symmetric with
respect to the axis Z = 0.5. For this reason in the fol-
lowing only the neutron-rich part (Z/A < 0.5) will be
discussed.

The widest coexistence region corresponds to zero tem-
perature. Equilibrium points that belong to the edge
ρp = 0 make a line at Z/A = 0. When temperature is
introduced, coexistence region concerns non-zero values
of ρ and Z/A, which means that equilibrium is always
between phases containing both kinds of particles.

The critical points are also reported for each tempera-
ture. They are second order transition points. They form
a critical line. An interesting feature is that the critical
density increases with the asymmetry while the critical
temperature decreases as it can be also seen from figs. 15
and 16. This is in agreement with previous studies using
different effective interactions [7, 21].

It should be stressed that on each coexistence curve
at a fixed temperature the critical points do not corre-
spond to the minimum (or maximum) Z/A. This point
((Z/A)min, ρmin) is situated at density lower than the
critical point, i.e. on the gas side of coexistence. As a re-
sult, transformations can be performed at constant Z/A
such that the system enters at a point of coexistence as
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a gas and exits at another point still as a gas. This is
the so-called retrograde transition [1]. This happens for
the small region for which (Z/A)min < Z/A < Z/Ac.
Between those two points, there is appearance and dis-
appearance of a liquid phase at (Z/A)L > Z/A at equi-
librium with a gas at (Z/A)G < Z/A. For a too neutron-
rich system such that Z/A < (Z/A)min, there can be no
phase coexistence.

As temperature grows, the coexistence region is re-
duced. The values of (Z/A)c and (Z/A)min become closer
to the symmetry Z/A = 0.5. Densities ρc and ρmin fol-
low opposite evolutions: ρmin grows with temperature,
while ρc diminishes. The coexistence region disappears
at the critical temperature T c, for which only symmetric
matter presents a second order transition point. Criti-
cal and minimum Z/A lines join at this ultimate critical
point.

It is also interesting to look at the coexistence zone
as a function of Z/A (see Figures 15, 16). We can see
that the dependence of the critical temperature (as well
as the maximal temperature) on Z/A is weak. Only for
very high values of asymmetry the difference between the
two temperatures for a fixed Z/A can be several MeV.
This is another way to visualize the retrograde transition,
meaning that we can have saturated vapor at supercriti-
cal temperatures.
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Thick line : T = 0. Dotted lines : T = 4, 6, 8MeV . Solid
lines : T = 10, 10.5, 11, 11.5, 12, 12.5, 13, 13.5, 14MeV .
Black dots : critical points at each temperature, including
Tc = 14.54MeV .

Finally, it is interesting to look at the coexistence man-
ifold in the (β, µn, µp) space, as shown in Figure 17. One
can see that the coexistence is almost perpendicular to
the µ3 = 0 axis, stressing the fact that the nuclear liquid-
gas phase transition is dominated by its isoscalar compo-
nent [25, 26].
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VII. CRITICAL BEHAVIOR

Let us now study in more details the critical behav-
ior of the system. Conversely to the usual single-fluid
liquid-gas phase transition which presents a unique crit-
ical point, a two-fluid system is critical along a line in
the (β, µn, µp) intensive-parameter space. The criti-
cal points are obtained for each temperature below the
symmetric-matter critical temperature determining the
µn value for which the two phases with the same tan-
gent plane merge together. To evaluate this point, we
have used both the Maxwell construction in the neutron-
grand-canonical proton-canonical ensemble (see section
IVC) and the existence of a crossing point in the P ver-
sus µp curve at constant T, µn (see section IVB). The
critical points also correspond to the disappearance of a
concave intruder in the uniform system free energy. This
disappearance of the spinodal region provides an inde-
pendent way to evaluate the location of the critical line:
we can represent as a function of µn the lower value of
the free energy curvature in the (ρn, ρp) plane. The re-
sulting curve crosses the horizontal axis at the critical
value of µn. Below the symmetric matter critical point
Tc, these methods lead to the definition of two symmetric
critical lines, one for neutron-rich systems (µn = µ>

n (T ),
µp = µ<

p (T ) ) and the other for the opposite isospin
(µp = µ>

p (T ), µn = µ<
n (T ) ).
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FIG. 18: Solid lines with points : evolution of µ3 − µ3c as
a function of δ (see text) near the critical point for different
temperatures : T = 10, 10.5, 11, 11.5, 12, 12.5, 13, 13.5,
14MeV . Straight dashed-dotted lines : power laws with crit-
ical exponent ββ = 2.

At the approach of the critical point, the distance in
the space of observables between the two phases (A and
B) in equilibrium, i.e. the order parameter, goes to zero
as a power of the distance to the critical point in the
intensive-variable space. The resulting power law is char-
acterized by the critical exponent β. In order to study
this behavior for nuclear matter in the (ρn, ρp) plane, we

consider a distance δ =
√

(ρB
n − ρA

n )2 + (ρB
p − ρA

p )2. In

a two-fluid system the behavior of this distance can be
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FIG. 19: Points : evolution of T − Tc as a function of δ (see
text) near the critical point for different µn: µn = µ<

q (Tc),
µ<

q (T = 12MeV ), µ<
q (T = 10MeV ). Straight lines: power

laws with critical exponent βµn = 2.

studied in two ways.
First, for a fixed temperature T = β−1, δ is expected

to depend on the chemical potentials as :

δβ(µq) ∝ (µc
q − µq)1/ββ (8)

where ββ is the critical exponent at a fixed temper-
ature and µc

q the critical value of µq for the considered
temperature. Since µn and µp are constrained to be on
the coexistence line, the above relation is independent
of the chemical potential selected to perform the study.
For symmetry reasons we have introduced the isoscalar
µ = µn + µp and the isovector µ3 = µn − µp chemical
potentials. Since the dependence on µ is negligeable (see
Figure 17) we have focused our study on the evolution of
δ with µ3. The results are presented in Figure 18. We
can observe that our results perfectly follow the expected
critical behavior with the mean field value ββ = 2.

For a fixed value of µq, the distance δµq
goes to zero as

the temperature tends to the critical one βc. The power
law should be :

δµq
(β) ∝ (βc − βq)1/βµq (9)

where βµq
is the critical exponent at a fixed µq. Again

since the temperature β and the chemical potential µq in
coexistence are related by a Clapeyron-like relation, the
above study leads to the same critical behavior if studied
as a function of µq′ with q′ 6= q, instead of β. In figure 19
we present the evolution with temperature for different
chemical potentials. This graph shows that our results
fulfil the mean field scaling βµq

= 2.

VIII. CONCLUSION

In this paper, based on a mean-field analysis of nuclear
matter with a realistic Skyrme SLy230a effective interac-
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tion, we have established that nuclear matter presents
a first-order phase transition even when the isospin de-
gree of freedom is explicitly accounted for. This results
from the existence of a spinodal region, which is a re-
gion where the free energy of a homogeneous system is
concave. In the case of infinite systems, such curvature
anomaly is corrected by constructing the convex enve-
lope. This is a tangent construction that links couples of
points in the space of observables with the same values
for the intensive parameters. It corresponds to points
of discontinuous first derivatives for the grand-canonical
potential of the system in the space of Lagrange inten-
sive parameters, along a coexistence manifold limited by
a critical line. Except on this limit which corresponds to
a second-order phase transition, the slope discontinuity
demonstrates that the system is undergoing a first-order
phase transition. For fixed values of temperature (below
the symmetric-matter critical one), coexistence lines are
obtained in the chemical-potential plane. They are lim-
ited by critical points that correspond to proton fractions
depending on the temperature. As lower temperatures
are considered, more asymmetric nuclear matter can be

involved in a first-order phase transition.

As for the study of critical behaviors, we have found
that all the numerical data can be fitted by power laws
with critical exponents equal to 2, which is consistent
with generic mean field predictions [27]. Calculations be-
yond the mean field are needed to obtain a result which
could be characteristic of a given universality class. Look-
ing at the isospin content of the phases, we show that the
proton fraction is discontinuous at the phase transition
except at the critical points and for symmetric matter.
In asymmetric nuclear matter, the proton fraction can
be used as an order parameter. When the transition oc-
curs the liquid gets closer to symmetry while the gas is
enriched in the more abundant species. This is the well
known isospin fractionation. This has a strong influence
on the constant proton fraction transformations, since
in order to fulfill the imposed conservation on an order
parameter the transformation is forced to follow the co-
existence line instead of crossing it. This hides the slope
discontinuity characteristic of a first-order phase transi-
tion, the transformation appearing as continuous.
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