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ABSTRACT

In this paper we present numerical simulations of test particle Fermi acceleration at relativistic

shocks of the Lorentz factor �sh = 2–60, using a realistic downstream magnetic structure

obtained from the shock jump conditions. The upstream magnetic field is described as pure

Kolmogorov turbulence; the corresponding downstream magnetic field lies predominantly in

the plane tangential to the shock surface and the coherence length is smaller along the shock

normal than in the tangential plane. Acceleration is none the less efficient and leads to power-

law spectra with index � 2.6–2.7 at a large shock Lorentz factor �sh � 1, markedly steeper

than for isotropic scattering downstream. The acceleration time-scale tacc in the upstream rest

frame becomes a fraction of Larmor time tL in the ultrarelativistic limit, t acc ≈ 10 t L/�sh.

Astrophysical applications are discussed, in particular the acceleration in γ -ray bursts internal

and external shocks.

Key words: acceleration of particles – shock waves – cosmic rays.

1 I N T RO D U C T I O N

The Fermi acceleration process of charged particles bouncing back

and forth across a shock wave is the main ingredient for the gen-

eration of high-energy radiation in a variety of astrophysical en-

vironments. This observed radiation is generally synchrotron light

emitted by the accelerated electrons; in this case, it is possible to re-

cover the spectral index s of the accelerated population from the syn-

chrotron index. For example, the afterglow emission of γ -ray bursts

that is seen in X-ray through the infrared is generally interpreted as

synchrotron emission of electrons accelerated at the ultrarelativistic

external shock of the Lorentz factor � sh ∼ 300. The inferred spec-

tral index, s � 2.3 ± 0.1 (Waxman 1997; see also Meszaros 2002;

Piran 2004 for reviews), thus probes the nature of shock accelera-

tion in the ultrarelativistic regime. Similarly, synchrotron emission

of electrons accelerated in the mildly relativistic internal shocks

(� sh ∼ 2–5 in the comoving frame) with index s � 2.3 ± 0.1 could

explain the prompt γ emission (see, for example, Meszaros 2002;

Piran 2004, and references therein). These observations thus pro-

vide anchor points for studies of Fermi acceleration in the moderate

to the ultrarelativistic regime. They have actually been regarded as

a dramatic confirmation of the theory of shock acceleration in the

relativistic regime, which has been claimed to predict a ‘universal’

asymptotic spectral index s � 2.23 in the ultrarelativistic regime

� sh � 1.

Relativistic shock acceleration has been studied using a variety

of methods, either analytical (Peacock 1981, and more recently

Vietri 2002; Blasi & Vietri 2005; Keshet & Waxman 2005), semi-

�E-mail: lemoine@iap.fr (ML); revenu@iap.fr (BR)

analytical (Kirk & Schneider 1987; Gallant & Achterberg 1999;

Kirk et al. 2000; Achterberg et al. 2001), or numerical (Ellison,

Reynolds & Jones 1990; Ostrowski 1991; Ballard & Heavens 1992;

Ostrowski 1993; Bednarz & Ostrowski 1996, 1998, 1999; Ellison

& Double 2002, 2004; Lemoine & Pelletier 2003; Meli & Quenby

2003a,b; Bednarz 2004; Niemiec & Ostrowski 2004; Baring 2004).

Not all of these studies find the universal value for s; however, all the

more so when anisotropic configurations such as oblique shocks are

considered. One clear example is the demonstration that Fermi ac-

celeration in superluminal (perpendicular) shocks in the absence of

cross-field diffusion becomes inefficient (Begelman & Kirk 1990);

in the relativistic regime, oblique shocks are superluminal unless

the angle between the magnetic field and the shock normal �B �
1/� sh.

It is generally suspected that the inclusion of scattering would

make Fermi acceleration more efficient in the relativistic regime.

The simulations of Bednarz & Ostrowski (1998) and Baring (2004)

have indeed confirmed that the spectral slope tends to increase with

increasing shock obliquity and with decreasing turbulence level,

whose role is to permit cross-field line transport to the shock front.

However, a limitation of these simulations is that the scattering is

simulated in a phenomenological way by setting a ratio of the per-

pendicular to parallel diffusion lengths and drawing pitch angles

at random at each time-step. Upstream, it has been demonstrated

that an ultrarelativistic shock wave overtakes the particle before

this latter has had time to scatter efficiently (Gallant & Achterberg

1999; Achterberg et al. 2001), so that the details of particle transport

are probably not crucial. Downstream, however, the particle has to

turn back before recrossing the shock, and the approximation of

ad hoc diffusion lengths may be too naive to accurately simulate
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the transport. In fact, we can expect non-trivial correlation func-

tions between displacements along different directions as well as

subdiffusion regimes to play a significant role in the return to the

shock.

Several studies have tried to integrate out exactly the particles

trajectories in a well-defined magnetic field structure (Ballard &

Heavens 1992; Ostrowski 1993; Lemoine & Pelletier 2003; Niemiec

& Ostrowski 2004). The study of Ballard & Heavens (1992) involved

a realistic magnetic field structure, in the sense that it obeys the shock

jump conditions, but was limited to mildly relativistic shocks (� sh �
5). Nevertheless, it observed a trend of increasing spectral index with

increasing shock velocity, a result which has been disputed by the

more exhaustive simulations of Ostrowski (1993). The recent work

of Niemiec & Ostrowski (2004) considered situations of moderate

turbulence levels with varying degrees of obliquity for mildly rel-

ativistic shocks (� sh � 5). The conclusions obtained indicate that

various spectral slopes can indeed be obtained, although the noise

on the simulations is not negligible. Finally, the work of Lemoine &

Pelletier (2003) introduced a new numerical Monte Carlo method

to study relativistic Fermi acceleration, on which the present work

is based. It assumed the downstream turbulence to be isotropic and

confirmed the value s � 2.2–2.3 predicted in that case.

It seems fair to say that a clear picture of the efficiency of rel-

ativistic Fermi acceleration in a magnetic structure that includes

compression of the upstream magnetized configuration has not yet

emerged. In this paper we propose to undertake such simulations in

order to make progress along these lines. We assume that the up-

stream magnetic field is described by pure Kolmogorov turbulence,

i.e. there is no uniform component; this can be seen as the limit

δB/B → ∞ of a highly turbulent plasma. The upstream magnetic

field is compressed by the shock into an anisotropic downstream

turbulence. We conduct our simulations in the mildly and ultrarel-

ativistic regimes; simulations of this kind in this latter regime have

never been attempted before.

In Section 2, we describe in detail the numerical techniques and

the procedure used (borrowed from Lemoine & Pelletier 2003) to

simulate the Fermi acceleration process. In Section 3, we present

our results on the (downstream) return probability, the acceleration

time-scale and the accelerated spectrum as a function of the shock

Lorentz factor. In Section 4 we discuss the relaxation length of the

turbulence and argue that, for relativistic shocks at least, particles

that return to the shock downstream do not travel beyond the point

where the anisotropy of turbulence has relaxed. We also discuss the

properties of transport of particles in the strongly anisotropic tur-

bulence generated by shock compression, compare our results to

previous studies and comment on the applications of our results

to shock acceleration in γ -ray bursts and to shock acceleration of

ultrahigh-energy cosmic rays. Conclusions and a summary of the

results are provided in Section 5.

2 N U M E R I C A L S I M U L AT I O N S

2.1 Jump conditions and magnetic fields

In the present work, we assume that the magnetic field is dynamically

unimportant, i.e. its energy density can be neglected with respect to

that of the fluid. We also consider a strong shock, for which the

upstream random kinetic energy per particle can be neglected with

respect to that downstream. The corresponding hydrodynamic jump

conditions are given in Blandford & McKee (1977), and reviewed

in Kirk & Duffy (1999) and Gallant (2002). The shock Lorentz

factor is denoted � sh in the upstream frame (taken as the laboratory

frame), and the shock velocity upstream is β sh. Unless otherwise

noted, all quantities are calculated in this frame. If relevant, the

reference frame is indicated by a subscript, e.g. β sh|d refers to the

shock velocity measured in the downstream rest frame and � sh|d
refers to the shock Lorentz factor in the downstream frame. The

relative Lorentz factor between upstream and downstream is noted

� rel and reads

�rel ≡ �sh�sh|d(1 − βshβsh|d).

The downstream Lorentz factor � sh|d as well as � rel can be obtained

as a function of � sh (upstream shock Lorentz factor) using the rela-

tions derived from the shock jump conditions for a Synge equation

of state (Gallant 2002):

�2
sh|d = F(ξ )

F(ξ ) − 1
, �2

sh = G(ξ )2 F(ξ )

F(ξ ) − 1
(1)

Here, ξ ≡ mc2/T d, where T d is the downstream temperature and

m is the particle mass, G(ξ ) ≡ K 3(ξ )/K 2(ξ ), where K2 and K3 are

modified Bessel functions, and F(ξ ) ≡ [ξG(ξ ) − 1]2 − ξ 2. These

relations hold for a gas composed of possibly different particles

species but with the same ξ (Gallant 2002). Equations (1) can be

inverted numerically to obtain� sh|d as a function of� sh. In particular,

in the ultrarelativistic limit � sh → +∞, we find the well-known

results βsh|d → 1/3(�sh|d → 3/
√

8) and �rel → �sh/
√

2.

The conservation of the electromagnetic field energy–momentum

tensor implies the following jump conditions for the magnetic field

components B ‖ (aligned with the shock normal) and B⊥ (tangential

to the shock surface):

B‖,d|d
B‖,u|u

= 1,
B⊥,d|d
B⊥,u|u

= βsh|u�sh|u
βsh|d�sh|d

. (2)

As before, β sh|u ≡ β sh, � sh|u ≡ � sh. The parallel component B ‖ is

thus conserved while the perpendicular component B⊥ is amplified

by the proper shock compression ratio R = β sh|u � sh|u/β sh|d � sh|d. In

the ultrarelativistic limit R → �sh

√
8, and the total magnetic field

strength is amplified by
√

2/3R.

We assume that the upstream magnetic field is purely turbu-

lent with a power spectrum describing Kolmogorov turbulence with

maximal length-scale Lmax. It is modelled as a sum of static plane

wave modes according to

Bu(x) =
∑

k

exp(ik · x + iφk)ekGk, (3)

where ek is a unit polarization vector orthogonal to k, φk is a ran-

dom phase and |Gk|2 ∝ k−5/3 is the amplitude of the power spectrum.

The wavenumbers k range from k min = 2π/L max to some maximal

wavenumber k max � k min; numerically we employ 250 wavenum-

bers modes whose directions are drawn at random, and whose mod-

uli are spaced logarithmically between kmin and k max = 5 × 103k min.

The amplitude Gk can be chosen as real and is normalized such that

1

V

∫
dxB2(x) =

∑
k

|Gk |2 ≡ B2
rms (4)

where B2
rms is the squared turbulent magnetic field strength.

According to the shock jump conditions, the downstream mag-

netic field is described by an anisotropic turbulence: while B ‖ is con-

served, the turbulence wavenumbers k ‖ are amplified by R, which

corresponds to the compression of the eddies by 1/R along the shock

normal. The perpendicular wavenumbers k⊥ are conserved through

the shock but B⊥ is amplified as before. Hence the downstream

magnetic field is described by

Bd(x) =
∑

k̃

exp
(

ik̃ · x + iφk̃

)
ẽk̃Gk, (5)
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where k̃ is related to the wavenumber k of equation (3) by k̃‖ = R k‖
and k̃⊥ = k⊥. Similarly, ẽk is related to ek by ẽ‖,k = e‖,k and ẽ⊥,k =
R e⊥,k. Note that k̃ · ẽk̃ = k · ek = 0 as required for a divergenceless

field; φk̃ and Gk are not modified. We chose not to normalize the

above polarization vector to unity downstream and its modulus gives

the overall amplification factor of the magnetic field. This is but a

matter of convention: we can equally well embody the compression

factor in Gk and normalize ẽk̃ to unity.

2.2 Monte Carlo simulations

Our numerical procedure is summarized in Lemoine & Pelletier

(2003). It consists of two main steps. In a first stage, we conduct

Monte Carlo simulations of particle propagation in a magnetized

medium (either upstream or downstream) and derive the statistical

properties related to shock crossing and recrossing, as described

below. In a second step, we use these statistical distributions in

conjunction with the Lorentz transforms from one frame to the other

to reconstruct the accelerated spectrum that escapes downstream.

Once the magnetic field structure is set up as described above,

one Monte Carlo simulation of the propagation of particle consists

of integrating the equation of motion in the magnetic field. The par-

ticle trajectory is saved in time intervals that are a fraction f u �
10−4 (upstream) or f d � 10−2 (downstream) of Larmor time t L =
RL/c (with RL ≡ p/qB) over a time period as long as 
T u � 102

(upstream) or 
T d � 104 (downstream) Larmor time. For each com-

puted trajectory we can build a statistical sample of shock crossing

and recrossing as follows. We draw at random a point along the tra-

jectory, which defines the point at which the particle enters through

the shock. We record the ingress pitch angle cosine of the particle

momentum with respect to the shock normal at that point. We then

search for the point along the trajectory at which the particle exits

through the shock and the corresponding egress pitch angle cosine

is recorded. In the downstream medium, it happens that the parti-

cle never recrosses the shock as the shock itself moves away with

speed β sh|d � 1/3 (� sh � 1). By iterating the above procedure, i.e.

drawing other points of entry in the trajectory, and building other

trajectories, we can measure the probability laws that control in a

direct manner the Fermi process.

In particular, the ratio of the number of shock recrossings to the

total number of shock entries at a given ingress ‘pitch’ angle (de-

fined here as the angle between the momentum and the direction of

the shock normal) cosine μi gives the return probability P ret (μi).

In a similar way, the number of shock recrossings through an egress

pitch angle cosine μe for a given ingress cosine μi gives (after proper

normalization) the conditional return probability P(μi; μe). We can

define and calculate these quantities both downstream, Pd(μi
d; μe

d),

and upstream, Pu(μi
u; μe

u). Note that the ingress and egress pitch

angles are calculated in the rest frame of the fluid under considera-

tion. The normalization of the conditional probability laws is such

that their sum over the egress pitch angle cosine yields the return

probability as a function of ingress pitch angle cosine:

Pret, d

(
μi

d

) =
∫

dμe
d Pd

(
μi

d; μe
d

)
,

Pret, u

(
μi

u

) =
∫

dμe
u Pu

(
μi

u; μe
u

)
. (6)

Obviously the upstream return probability P ret, u must be unity if

we consider an infinite planar shock with an infinite lifetime. This

provides a useful check on the numerical procedure; in the present

calculations, P ret, u does not deviate from unity by more than ∼10−6.

Downstream, it is mandatory to verify that we do not miss possible

late returns by varying the trajectory integration time; we estimate

that the mean of P ret, d over ingress pitch angle cosines is accurate

to better than ∼10−4.

Finally, these simulations give a direct measurement of the return

time-scale to the shock as a function of pitch angles. This measure-

ment is particularly important to estimate the maximal acceleration

energy in a variety of environments, as discussed in Section 3.3.

Once the upstream and downstream laws of return probability

are known, the simulation of the acceleration process itself can be

performed as follows. We denote by F 2n+1
d (μd, εd) the distribution

function of particles that enter the shock towards downstream with

ingress pitch angle cosine μd, that have experienced 2n + 1 shock

crossings and that carry energy εd (downstream frame). Similarly

we define the distribution function F 2n
u (μu, εu) of upstream-going

particles with ingress pitch angle cosine μu, having experienced 2n
shock crossings and carrying energy εu. If we denote byF 0

u the injec-

tion population upstream, then after an even (odd) number of shock

crossings the particles are necessarily upstream (downstream). The

injection (isotropic) distribution function F0
u is normalized to unity,

as follows∫ 1

−1

dμudεuF 0
u (μu, εu) ≡ 1. (7)

The integral over μ and ε of the distribution functions F2n+1
d (μ, ε)

andF 2n
u (μ, ε) with n > 0 is smaller than unity, because of the escape

of particles downstream at each cycle.

Now, particles that enter upstream after 2n shock crossings with

ingress cosine μi
u recross the shock with egress cosine μe

u and with

conditional probability Pu(μi
u; μe

u). The total number of particles

with egress pitch angle μe
u and energy εu at the 2n + 1th shock

crossing is
∫

dμi
uPu(μi

u; μe
u)F2n

u (μi
u, εu). We note that the upstream

egress cosine μe
u is related to the corresponding downstream ingress

cosine μi
d, by a Lorentz transform, just as the energies measured in

the upstream frame (εu) or downstream frame (εd)

μi
d = μe

u − βrel

1 − βrelμe
u

, εd = �rel

(
1 − βrelμ

e
u

)
εu, (8)

with a similar relation between μe
d and μi

u when the particle crosses

the shock from downstream to upstream.

Therefore, the conservation of particle number at shock crossing

u → d implies the following relation between F2n+1
d and F2n

u :

F 2n+1
d

(
μi

d, εd

)
dμi

ddεd =
[∫ 1

βsh

dμi
u Pu

(
μi

u; μe
u

)
F2n

u

(
μi

u, εu

)]
× dμe

udεu. (9)

We obtain a similar system for shock crossing d → u

F 2n
u

(
μi

u, εu

)
dμi

udεu =
[∫ βsh|d

−1

dμ̃i
dPd

(
μ̃i

d; μe
d

)
F 2n−1

d

(
μ̃i

d, ε̃d

)]
× dμe

ddε̃d, (10)

with

μi
u = μe

d + βrel

1 + βrelμ
e
d

, εu = �rel

(
1 + βrelμ

e
d

)
ε̃d (11)

where the ‘ ˜ ’ symbol has been introduced to differentiate the values

of μd and εd from one cycle (2n − 1 shock crossings) to the next

(2n + 1 shock crossings). The integration bounds on μ are imposed

by the shock crossing conditions.

The terms within brackets in equations (9) and (10) correspond

to the distributions upon exit from upstream and downstream, re-

spectively. These equations assume implicitly that the conditional
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probability laws do not depend on energy. This will be shown to be

a good approximation in Section 3.1.

After each cycle u → d → u, a populationF 2n+1
out (εd) = ∫

dμi
d[1−

Pret(μ
i
d)]F2n+1

d (μi
d; εd) of the particle population has escaped down-

stream. The sum over n of these escaping particles forms the out-

going accelerated particle population:

Fout(ε) =
n=+∞∑

n=0

F2n+1
out (ε). (12)

By following each shock crossing, and using equations (8)–(12)

we can follow the evolution of Fd,Fu and Fout, starting from a

mono-energetic and isotropic initial injection distribution upstream.

A similar formal development of the acceleration process by re-

peated shock crossings has also been proposed independently by

Vietri (2002): the flux of particles crossing the shock in the sta-

tionary regime, noted J in in Vietri (2002), is related to the above as

Jin = C
∑n=+∞

n=0
F 2n+1

d where C is a normalization constant (see

also Lemoine & Pelletier 2003).

The present technique has significant advantages when compared

to standard Monte Carlo techniques which follow the particle tra-

jectories on both sides of the shock through the whole acceleration

process; in particular, it offers a significant gain in signal-to-noise,

as will be obvious in Section 3.

It has however one caveat that should be underlined and which

resides in the fact that we compute the accelerated spectrum by merg-

ing separate pieces of information on transport properties upstream

and downstream. In so doing, we neglect the possible correlations

that may exist between the upstream magnetic configuration at the

crossing point and that downstream, i.e. we neglect the possible

correlations between upstream and downstream transport. The only

method that can take this effect into account is the direct Monte

Carlo integration of individual particle trajectories. It is therefore

important to compare the results obtained with these two methods

in order to assess the magnitude of this effect. In the case where

scattering is isotropic downstream, it appears that various methods

converge to the same value of the spectral index, and this includes

various non-Monte Carlo methods which cannot take the above ef-

fect into account (see, for example, Achterberg et al. 2001; Lemoine

& Pelletier 2003; Keshet & Waxman 2005) as well as direct Monte

Carlo methods (e.g. Bednarz & Ostrowski 1998). This suggests that,

at least in the isotropic limit, these correlations do not play a signif-

icant role in the determination of the spectral index.

3 R E S U LT S

The numerical technique described in the previous section allows

us to collect a significant amount of information on the acceleration

process, in particular the conditional probabilities of return from

downstream or upstream, the energy gain per cycle as well as the

acceleration time-scale. In order to better understand the results

obtained for each of these quantities, it is necessary to emphasize the

difference between the effective coherence length along the shock

normal L ‖ and that tangential to the shock front L ⊥ as measured

downstream (see Section 2): L ‖ = L ⊥/R = L max/R, where Lmax

is the coherence length of the upstream magnetic field, and R is

the proper shock compression ratio, R � �sh

√
8 when � sh � 1.

This distinction takes on a particular importance when we compare

the results over various values of the shock Lorentz factor and over

various values of the rigidity ρ ≡ 2πRL/L max, where RL denotes the

Larmor radius in the rest frame of consideration. In principle, the

transport properties of particles in a magnetic field depend solely on

Figure 1. Downstream return probability versus ingress pitch angle cosine

μi
d (downstream rest frame) for various shock Lorentz factors, as indicated,

and for a rigidity 2πRL/L max = 6 × 10−4.

the rigidity. However, when the effective coherence length along the

shock normal depends on � sh through R, while L ⊥ does not, there

is no unambiguous definition of rigidity. In particular, the above

definition of ρ does not correspond to the effective rigidity ρ ‖ ≡
2πRL/L ‖ that controls the scattering of particles with turbulence

modes of a wave vector parallel to the shock normal: a given rigidity

ρ = 2πRL/L max corresponds in fact to larger and larger values of

ρ ‖ as � sh increases. The relevance of this observation to the results

will be addressed shortly.

3.1 Return probability

The average return probability marginalized over egress angle,

P ret,d, defined in equation (6) as the direct average of the condi-

tional probability law Pd(μi
d, μ

e
d) over the egress pitch angle cosine

μe
d, is shown as a function of the ingress pitch angle cosine μi

d in

Fig. 1. The increase of P ret,d as μi
d → 1/3 backs up the notion that

particles crossing the shock from upstream to downstream at near

grazing incidence with the shock front have a substantially higher

probability of returning to the shock than those crossing the shock

head-on (μi
d → − 1).

When viewed as a function of the shock Lorentz factor, the av-

erage return probability appears to reach an asymptotic law, as is

made apparent in Fig. 1. This is not a trivial result in itself, as the

nature of the turbulence downstream depends rather strongly on the

shock Lorentz factor. Section 4.1 provides examples of downstream

trajectories for two different values of � sh, and, indeed, the dis-

placements along the shock normal differ widely. Hence, we might

naturally expect that the return probability would carry some form

of dependence on the shock Lorentz factor � sh. As we now argue,

this is related to the fact that the scattering time-scale in the direction

along the shock normal, i.e. the time required for the particle to turn

back, is a function of Larmor time, as demonstrated in Section 4.1.

There it is argued that the particles that return to the shock have done

one reflection on the compressed turbulence in their first interaction;

indeed, particles become trapped in a layer of the compressed tur-

bulence when � sh � 1 and ρ � 1, and hence they cannot return to

the shock unless they do so in the first interaction. This reflection

is in fact a half-gyration of the particle around a field line which

is mainly oriented along the shock front as a result of shock com-

pression, and this explains why the scattering time is of the order
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Figure 2. Downstream return probability averaged over ingress angle ver-

sus shock Lorentz factors for various rigidities as indicated. The dotted line is

an ad hoc fit 〈P ret〉 = 0.97–0.67β sh, which accounts well for the dependence

of the return probability with shock Lorentz factor at low rigidities.

of the Larmor time. For large values of � sh, the shock velocity with

respect to downstream β sh|d → 1/3 becomes independent of � sh, as

does the scattering time-scale (at a given rigidity, see Section 4.1),

and hence so does the return probability.

We can further average the return probability P ret,d over the

ingress pitch angle in order to define the average return probability

Pret:

〈Pret〉 ≡
∫

dμi
d Pret,d

(
μi

d

)∫
dμi

d

. (13)

This probability is shown as a function of the shock Lorentz fac-

tor for varying values of the rigidity ρ in Fig. 2. The dotted line

represents the empirical fit, 〈P ret〉 � 0.97–0.66β sh, which provides

a good approximation at low rigidities. This figure shows how the

average return probability reaches an asymptote with � sh for suffi-

ciently low rigidities. At high rigidities (upper panels), we recover a

dependence of 〈P ret〉 on � sh. This latter effect is likely related to the

factor R difference between ρ ‖ and ρ: as ρ ‖ = Rρ becomes larger

than ≈ 0.1–1, particles can no longer interact resonantly with the

turbulence wave modes (Casse et al. 2002); they take a longer time

to return to the shock (see Section 3.3) and their return probability

becomes sensitive to the nature of the turbulence, and hence to � sh.

Finally, we can plot the average return probability as a function of

rigidity for various values of the shock Lorentz factor (see Fig. 3).

It is important to note that the average return probability does not

depend on the rigidity, at least for sufficiently low rigidities ρ ‖ � 1

for the same reasons as above. The conditional return probabilities

(from which 〈P ret〉 is obtained) are also found not to depend on

rigidity in that range. In order to measure the spectral index of the

accelerated spectrum for rigidities in the inertial range of resonance,

it is important to use only the data sets of the smallest rigidities

downstream, i.e. ρ = 6 × 10−4 and ρ = 2 × 10−3, where we still have

k max RL > 1, for the same reasons as discussed above. For upstream

probability laws, we can use all data sets because the rigidities are

well in the inertial range in the absence of compression effects. In

what follows, we use different combinations of one downstream with

one upstream of these data sets to simulate the Fermi acceleration

process and measure the spectral index. We use these different data

sets as independent realizations of the conditional probability laws

in order to estimate the numerical uncertainty on the spectral index.

Figure 3. Downstream return probability averaged over ingress angle ver-

sus rigidity for various shock Lorentz factors, as indicated.

3.2 Escaping accelerated particles

The fraction of particles that do not return to the shock adds up to

form the outgoing accelerated particle spectrum. As shown by Bell

(1978) for the case of non-relativistic shocks, the spectral index

of this spectrum is determined by the average return probability

and the mean energy gain at each cycle. For relativistic shocks,

the analytical development of Vietri (2002), whose formulation is

very similar to that presented in Section 2, shows that the spectral

index is determined by the energy gain properly averaged over the

equilibrium distribution functions both upstream and downstream

(see also Lemoine & Pelletier 2003).

The average energy gains per cycle u → d → u and half-cycles

d → u, u → d are shown in Fig. 4, which shows clearly that the gain is

of the order of ��2
sh for the first complete cycle u → d → u, and falls

to �2 in subsequent cycles, as anticipated by Gallant & Achterberg

(1999) and Achterberg et al. (2001). This strong limitation of the

energy gain is a result of the anisotropy of the distribution function

upstream: particles do not have time to be deflected by an angle

greater than ∼1/� sh upstream before being overtaken by the shock

which moves at speed β sh � 1 with respect to upstream; hence,

the particle energy is decreased by a factor 1/� rel in the half-cycle

u → d through the Lorentz transform, in agreement with Fig. 4. In

order to return to the shock downstream, particles must turn back

and the average energy gain in the half-cycle d → u is now � κ� rel,

Figure 4. Average energy gain per cycle u → d → u (diamonds), per half-

cycle u → d (triangles) and per half-cycle d → u (squares) plotted versus

successive cycles.
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Figure 5. Accelerated spectrum of particles escaping downstream times

momentum squared versus momentum (thick solid line); in thin solid lines,

the accelerated populations that escape downstream at each cycle.

with κ � 2 resulting in the total energy gain per cycle � 2. In the

first cycle, the energy gain is large as the particle population injected

upstream toward the shock is isotropic; hence, in the first half-cycle

u → d the energy gain ∼� rel.

The average energy gain per cycle u → d → u is 〈p f/p i〉 � 1.7

to within ± 0.1 for the various values of rigidity and shock Lorentz

factor; this gain tends to diminish with increasing � sh albeit with a

weak slope. A similar behaviour has been observed in the case of

isotropic downstream turbulence (Lemoine & Pelletier 2003), the

gain decreasing from � 2.0 at � sh = 2 to � 1.9 at � sh � 1.

Finally, using the method described in the previous section and

the probability data collected during the Monte Carlo simulations,

we can simulate the acceleration process itself and construct the

accelerated particle population. The result is presented in Fig. 5.

This figure reveals that the subpopulations that escape at each cycle

2n + 1, and whose spectrum is roughly a Gaussian centred on an

energy
√

2�sh p0gn
u→d→u (p0 injection energy) and amplitude ∝ (1 −

〈P ret〉)n , add up to form a featureless power-law spectrum of index

s (at p � p0).

The measured spectral index s is shown as a function of shock

Lorentz factor in Fig. 6. The comparison of these results with those

obtained for isotropic scattering downstream shows that the inclu-

sion of shock compression leads to a steeper accelerated spectrum

Figure 6. Spectral index versus shock Lorentz factor.

at all values of � sh. We can understand this by noting that the com-

pressed turbulence leads to lower average return probabilities and

slightly lower energy gains than those obtained for isotropic turbu-

lence (see Lemoine & Pelletier 2003).

The present results do not settle whether the spectral index reaches

an asymptote at large shock Lorentz factors, but at the very least,

as � sh � 1, it appears to evolve very weakly close to a value s �
2.6–2.7.

3.3 Acceleration time-scale

The present simulations provide a direct measurement of the accel-

eration time-scale t acc (ε) at energy ε, which is defined as the u →
d → u cycle time-scale in the upstream rest frame divided by the

mean energy gain

tacc(ε) ≈ tu|u(ε) + �shtd|d(ε/�sh)

gu→d→u

, (14)

where t u|u and t d|d are the upstream and downstream return time-

scales measured in their respective rest frames.

The upstream return time-scale t u|u ∼ 10t L,u/� sh (t L,u upstream

Larmor time) up to a weak residual dependency on the rigidity, as

shown in Fig. 7. A fit that is accurate to a few per cent over the range

of rigidities and for � sh � 5, is t u|u � 14t L,u ρ0.19/�0.85
sh . These results

agree with and confirm the expectations of Gallant & Achterberg

(1999) and Achterberg et al. (2001) who argued that t u|u ∝ 1/� sh

because the particles are promptly overtaken by the shock when they

have been deflected by an angle of order 1/� sh.

The downstream return time-scale is plotted versus rigidity for

various shock Lorentz factors in Fig. 8. This figure shows that the

return time-scale t d|d ≈ 3 − 4RL/c at low rigidities ρ � 0.1 and

� sh � 1. The uncertainty in the numerical pre-factor contains a

weak residual dependence on the shock Lorentz factor t d|d ∝ �−0.08
sh

(� sh � 1). Note that for the moderately relativistic shock � sh =
2.2, the return time-scale also contains a weak dependence on rigid-

ity, t d|d ∝ ρ−0.13 approximately, which disappears at larger shock

Lorentz factors. Here as well, we can interpret the behaviour of t d|d
as the result of reflections of particles on the compressed turbu-

lence. The first scattering takes place on a Larmor time-scale and

flings the particles back to the shock with probability ≈0.3. If the

particle does not return to the shock after this first scattering, the

Figure 7. Upstream return time-scale in units of Larmor time averaged

over angular distribution versus shock Lorentz factor, for various rigidities

as indicated. The dotted line T ret = 12T L/� sh is shown as a guide for the

eye.
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Figure 8. Downstream return time-scale in units of Larmor time averaged

over angular distribution versus rigidity for various shock Lorentz factors as

indicated.

probability of doing so at subsequent scatterings becomes negligible

for two reasons: the shock moves away at high velocity ≈c/3, and

the enhancement of the tangential components of the magnetic field

prohibits efficient transport along the shock normal.

At high rigidities, the downstream return time-scale increases;

the increase is all the more pronounced as the shock Lorentz factor

is high. This is related to the difference between ρ ‖ and ρ. As

� sh increases, at a fixed value ρ ∼ 0.1, the effective ρ ‖ becomes

larger than 0.1–1 and the particles leave the range where resonant

scattering with turbulence modes along the shock normal is possible.

The scattering time thus increases (see Section 4.1) and so does the

return time-scale.

Finally, the downstream return time-scale can be written as

td|d(ε/�sh) � 4RL,d(ε/�sh)/c � √
3RL,u(ε)/�2

sh, because the mag-

netic field strength is amplified by
√

2/3R. Hence, the downstream

return time-scale measured in the upstream rest frame is slightly

smaller than the upstream return time-scale, and the total acceler-

ation time: t acc ≈ 10RL|u/� sh. Interestingly, the acceleration time-

scale becomes a fraction of a Larmor time at a large shock Lorentz

factor, which may allow acceleration to an energy limited by con-

finement arguments, in particular RL �L max, rather than by energy

losses.

4 D I S C U S S I O N

4.1 Relaxation length and transport in anisotropic turbulence

In this study we have hitherto assumed that the downstream tur-

bulence is successfully described by the direct compression of the

upstream turbulence through the shock jump conditions. However,

we must expect this anisotropic compressed turbulence downstream

to relax on a time-scale τ rel (defined in the downstream rest frame),

and hence on a length-scale l rel = β sh|d cτ rel downstream. Particles

will then experience this compressed turbulence during their jour-

ney downstream provided the average distance travelled from the

shock front l tr ∼t d|d/2 �l rel, or

td|d � 2βsh|dτrel. (15)

Otherwise, the particles reach the point where the turbulence

anisotropy has relaxed and the previous considerations do not hold.

However, as we now argue, the above inequality is generally satis-

fied in relativistic shocks for which the magnetic field is dynamically

unimportant.

As discussed in Section 4.3, the return time-scale t d|d ≈ 3–4 RL/c
for � sh � 1 and 2πRL/L max � 1. There is a residual power-law de-

pendence on both rigidity and shock Lorentz factor but whose power

indices are < 0.1 (see Section 3.3), which we can neglect for now.

A simple but somewhat naive estimate for the (scale-dependent) re-

laxation time-scale is τ rel ∼ (kvA)−1, where k = 2π/l is the eddy

wavenumber (related to the eddy size l), and vA is the Alfvén veloc-

ity. Because particles of Larmor radius RL diffuse through resonant

interactions with turbulent modes of wavenumber k ≈ 1/RL, the ef-

fective relaxation time-scale to be considered is τ rel ∼ RL/vA. The

inequality equation (15) is thus satisfied when vA/c � 0.2 (for � sh �
1), which agrees with the hypothesis made in Section 2 that the mag-

netic field is dynamically unimportant. Interestingly, we can show

that the bound on vA is more stringent for non-relativistic shocks,

because the return time-scale (for isotropic scattering at least) scales

as t d|d ∝ t scatt/β sh|d in that case.

The estimate for τ rel is likely to be conservative because the eddy

turn-over rate, which gives a refined estimate of the relaxation time

on a scale k, reads τ t−o ≈ (kvk)−1, where vk is now the turbu-

lent velocity on the scale k, which decreases with increasing k; for

a Kolmogorov spectrum, vk ∝ k−5/3. With this new estimate τ rel

∼ (kvA)−1(kLmax/2π)5/3, the previous condition on tret reads ρ �
0.02(β sh|d/vA)3. Because RL ∼ L max/2π marks the maximal en-

ergy reached in all likelihood, because of loss of confinement for ρ

> 1, inequality equation (15) is valid at all rigidities if vA � 0.1c.

Particles that are accelerated at the shock wave thus do not travel

far enough downstream to see anything else than the turbulence in

its compressed state.

The transport of particles in strongly compressed turbulence is

peculiar, as illustrated by Fig. 9. It presents examples of particle tra-

jectories downstream for two different values of the shock Lorentz

factor but for the same upstream magnetic configuration; in both

cases, the particle never returns to the shock. The comparison of the

typical displacement along and perpendicular to the shock normal

indicates that the particles appear confined in a layer of turbulence

that lies tangential to the shock plane, and for periods of time extend-

ing well beyond a Larmor time-scale. Note that for � sh = 38 (right

panel), the particle appears to gyrate along a magnetic field line lo-

cated in a plane parallel to the shock front. In this particular case, the

magnetic field configuration is locally transverse. If the trajectory

is followed for a sufficiently long period of time, it will depart from

Figure 9. Typical trajectory for a particle propagating downstream in shock

compressed turbulence with shock Lorentz factor � sh = 3.7 (left) and � sh =
38 (right). The dotted line indicates the trajectory of the shock front, the

solid line shows the displacement along the shock normal, while the dashed

line gives the displacement in the plane parallel to the shock front.
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a simple Larmor gyration law. Moreover, the effective pulsation is

not constant along the trajectory shown in Fig. 9, but varies slightly

in a random way. It is also apparent in these figures that the charac-

teristic pitch angle scattering time-scale along the shock normal is

of the order of a Larmor time, while that measured in the perpendic-

ular direction is much larger. This demonstrates qualitatively how

particles return to the shock in a few Larmor times by reflecting on

the compressed turbulent modes.

In order to better characterize the transport of particles in com-

pressed turbulence, we can seek the diffusion coefficients in the

various directions. For our purposes, it is more relevant to study the

time correlation function of the particle velocities, Cij(τ )

Ci j (τ ) = 〈vi (τ )v j (0)〉, (16)

where the average is to be taken on a large number of trajectories,

and vi(τ ) is the velocity of the particle in the direction i at time τ .

The integration of Cij(τ ) over τ leads to the diffusion coefficient

Dij (Candia & Roulet 2004). In the present case, the correlation

function is however more relevant because particles never actually

diffuse downstream before returning to the relativistically moving

shock. The correlation functions along the shock normal, C ‖ =
Czz, and perpendicular to the shock normal, C ⊥ = (Cxx + Cyy)/2,

are shown for various values of � sh and ρ in Fig. 10. This figure

demonstrates that the early time behaviour of the parallel correlation

function is, to a high degree of accuracy, independent of both � sh

and ρ, provided � sh � 1 and ρ � 1. The time behaviour of C ‖ can

be grossly approximated by C ‖(τ ) ∼ cos (2πτ/t L) exp (−τ/τ ‖),

and τ ‖ gives the scattering time along the shock normal. This fit

is not reproduced in Fig. 10 for the sake of clarity, and because it

diverges from the measured curves for τ/t L � 10. However, we can

see by eye that the estimated τ ‖ ≈ 3t L.

In contrast, the velocities perpendicular to the shock normal do

not decorrelate on time-scales as short as τ ‖; the fall-off of C ⊥(τ )

toward zero is observed (but not shown in Fig. 10) on much longer

time-scales than 10–20t L, and the decorrelation time τ ⊥ is found

to depend on ρ. This is expected in so far as the scattering time

in isotropic Kolmogorov turbulence τ ⊥/t L ∝ ρ−2/3 (Casse et al.

Figure 10. Velocity correlation function C(τ ) versus time (in units of Lar-

mor time tL) for various values of rigidity ρ and shock Lorentz factor � sh.

The lower thick curves correspond to the velocity oriented along the shock

normal; for the thick solid line, ρ = 3 × 10−6 and � sh = 3.65; for the thick

dashed line, ρ = 3 × 10−6 and � sh = 38.2; for the thick dash-dotted line,

ρ = 10−3 and � sh = 3.65. The upper dotted lines show the correlation func-

tion for the velocity components perpendicular to the shock normal; at τ �
15, the upper two are ρ = 3 × 10−6 and � sh = 3.65, 38.2, and the lower

curve is for ρ = 10−3 and � sh = 3.65.

2002). Indeed, in Fig. 10, the lower dashed curve corresponds to

the high rigidity value, and it is seen to fall off more rapidly than

the other two (which correspond to the same rigidity) at τ/t L � 15.

We can also note the slight decorrelation in perpendicular velocities

induced at early times by the decorrelation of velocities along the

shock normal.

This figure thus nicely explains the transport properties that were

indirectly observed in the previous discussion, i.e. that the scattering

time along the shock normal, which is the relevant quantity for shock

acceleration, is of the order of three Larmor times, and independent

of rigidity and shock Lorentz factor to a good approximation.

4.2 Comparison to previous results

To our knowledge, there is no existing study of Fermi acceleration

in ultrarelativistic shock waves which includes the effect of com-

pression of the upstream magnetic field. We can nevertheless find

interesting points of comparison in various limits with studies by

Ballard & Heavens (1992), Ostrowski (1993), Bednarz & Ostrowski

(1998), Kirk et al. (2000) and Niemiec & Ostrowski (2004).

Ballard & Heavens (1992) were the first to attempt modelling

of Fermi acceleration in non-relativistic to moderately relativistic

(� sh � 5) shocks with shock compressed turbulence by the means of

Monte Carlo methods. They found a pronounced steepening of the

spectra index with increasing shock speed and derived the approxi-

mate formula s � 0.75� sh + 1.25. Although our study confirms the

increase of s with increasing values of � sh, the precise value of s
differs significantly from those of Ballard & Heavens (1992), all the

more so at large shock velocities. We can probably attribute this dis-

crepancy to the modest dynamical range (64–100) that was available

at the time of the simulations of Ballard & Heavens (1992). If the

dynamic range is not large enough, the particle rigidity always lies

close to the upper range of resonance and this results in steeper

spectra because of the increased escape probability. The subse-

quent study by Ostrowski (1993) obtained much harder spectra than

Ballard & Heavens (1992) where suitable comparison can be made.

In particular, for large turbulence amplitude δB/B = 3, and shock

Lorentz factors � sh = (2.3, 5.0), Ostrowski (1993) obtained s =
(2.0–2.2, 2.2–2.3), where the range of values bracket different val-

ues of the mean field inclination with respect to the shock normal.

Our results for s indicate slightly larger values for s, but the agree-

ment is generally better than with Ballard & Heavens (1992).

Kirk et al. (2000) have studied relativistic Fermi acceleration us-

ing semi-analytical eigenfunction methods; their results confirm the

canonical value s=2.23 in the case of isotropic scattering. They have

attempted to address the effect of anisotropic scattering downstream

using an analytical description of compressed turbulence and an an-

alytical estimate of the diffusion coefficient. They concluded that

anisotropy does not affect significantly s, a result which is clearly

at odds with the present study. The source of the discrepancy lies

probably in the modelling of downstream diffusion by Kirk et al.

(2000). As should be obvious from Fig. 10, particles propagating

in strongly compressed turbulence downstream do not actually dif-

fuse downstream but rather turn back by reflecting on a compressed

magnetic layer.

The most detailed study to date is that of Niemiec & Ostrowski

(2004), who have studied Fermi acceleration in moderately rela-

tivistic shocks (� sh � 5) by Monte Carlo integration of the particle

trajectory in a magnetic field with a large dynamic range. Among

the results obtained, the authors quote a generic non-power-law be-

haviour of the accelerated spectrum: the spectra generally appear

harder close to the cut-off (ρ ∼ 1) than well below the cut-off.
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Niemiec & Ostrowski (2004) conclude that this effect is probably

related to the finite dynamic range: close to the cut-off, the prop-

agation regime in compressed turbulence differs from that in the

inertial range of resonance, and we indeed find a different return

probability or mean energy gain, both of which control the value

of s. Our Fig. 5 reveals a smooth power-law behaviour at energies

well beyond the injection point; this is expected on the grounds that

the conditional return probability histograms used to model Fermi

acceleration is itself rigidity independent. We have demonstrated in

the previous sections that, deep in the inertial range ρ � 0.1, this

is a good approximation. However, we have also observed that as

ρ tends to larger values, the return probability reveals a slight de-

pendence on ρ, and this would make s evolve with ρ, albeit for ρ �
10−2–10−1, had we included this dependence in our calculations.

Our results disagree markedly from those of Niemiec & Ostrowski

(2004) with regards to the rigidity dependence of the return probabil-

ity in the inertial range. These authors claim to observe a pronounced

non-monotonic rigidity dependence, which is definitely absent from

our simulations down to the per cent level. We note that the noise

level in the results of Niemiec & Ostrowski (2004) is not indicated

in the figures, and might account for part of this apparent variability.

On theoretical grounds, there is neither expectation nor justification

for a rigidity dependence of 〈P ret〉 on ρ, as long as resonant in-

teractions with the turbulence can occur and the shock lifetime is

infinite. There is no clear explanation or interpretation of this ob-

served rigidity dependence of the return probability in Niemiec &

Ostrowski (2004). Furthermore, their measured value of 〈P ret〉 does

not agree with ours: for � sh � 5 and δB/B = 3, they find 〈P ret〉 �
0.20, significantly lower than ours. This results in a steeper spec-

trum with s � 2.9 ± 0.1, to be compared with our value s � 2.6; it

should be noted that Niemiec & Ostrowski (2004) warrant caution

with respect to their analysis of � sh = 5, as it lies close to the limits

of their simulation capabilities.

We also note that the results of Niemiec & Ostrowski (2004) differ

significantly from those of Ostrowski (1993), although the method

used is similar. For β sh = 0.5, δB/B = 3 and mean field inclination

� = 45◦, Niemiec & Ostrowski (2004) find s = 2.7 while Ostrowski

(1993) obtains s = 2.0 ± 0.1 for the same values (but � = 50◦).

This difference persists at larger inclinations, s = 2.8 in the former

versus s = 2. ± 0.1 in the latter for � = 75◦, with other values

unchanged; it also persists at larger shock velocities, in particular

for β sh = 0.9 (� sh = 2.3) and � = 45–50◦, s = 2.5 in the former

versus s = 2. ± 0.1 in the latter. Here as well, the source of the

discrepancy remains unknown. Overall, and where comparison can

be made, our results lie halfway between those of Ostrowski (1993)

and those of Niemiec & Ostrowski (2004).

As stressed at the end of Section 2, the present method offers

a significant gain in signal when compared to direct Monte Carlo

methods but it cannot take into account the possible correlations be-

tween upstream and downstream trajectories because of the correla-

tions between upstream and downstream magnetic fields at the point

of shock crossing. This remark, when taken together with the above

comparison to previous work, shows the need for more exhaustive

studies of relativistic Fermi acceleration with shock compressed

turbulence, including mean magnetic fields of various strength and

obliquity, and using both the present method and direct Monte Carlo

methods.

4.3 Applications to astrophysical shock waves

γ -ray bursts, with their shock Lorentz factor in excess of 100 are

ideal candidates to test theories on particle acceleration in ultrarel-

ativistic flows. In the standard fireball model (see Meszaros 2002;

Piran 2004, for reviews), the prompt γ emission is interpreted as

the product of synchrotron emission of electrons accelerated in the

internal shocks with Lorentz factors � sh ∼ 2–5 in the comoving

wind frame. The afterglow emission is interpreted as the synchrotron

light of electrons accelerated in the ultrarelativistic shock wave with

� sh ∼ 300, which itself results from the interaction of the γ -ray

ejecta with its environment.

The spectral indices of the shock accelerated electrons derived

in both cases are s � 2.3. This has been interpreted as a dramatic

confirmation of our understanding of relativistic Fermi acceleration

because it agrees with the canonical value s = 2.2 obtained for

isotropic downstream scattering. However, as should be clear by

now, this ‘agreement’ rather reflects our poor understanding of the

acceleration process. The inclusion of shock compressed turbulence,

which should be seen as a refinement of the theory, leads to steeper

spectra (see Section 4) with s � 2.4–2.6 for � sh = 2–5, and s �
2.6–2.7 for � sh � 1.

The difference is not as significant in the case of internal shocks

than for afterglow observations. As a matter of fact, isotropic scatter-

ing downstream predicts a value s � 2.1–2.2 for � sh = 2–5 (Lemoine

& Pelletier 2003), and hence it could not account reasonably well for

the dispersion observed in the spectral slopes of γ -ray prompt emis-

sion. However, it is possible that the inclusion of a mean magnetic

field component with varying inclinations, and possibly varying tur-

bulence level, could reproduce this dispersion. Moreover, it is not yet

established whether the γ radiation results from synchrotron emis-

sion of shock accelerated electrons; other radiating processes (e.g.

Piran 2004, and references therein) or magnetic reconnection events

in the flow (e.g. Lyutikov & Blandford 2003) are likely possibilities.

Concerning the discrepancy of the present spectral index with

that inferred from afterglow observations, we must note that the

present study is limited to the case of pure Kolmogorov turbulence

upstream, which idealizes the limit δB/B � 1. However, judging

by the comparison with Niemiec & Ostrowski (2004), we do not

expect the inclusion of a coherent component to help resolve this

discrepancy, as these authors have observed a steepening of the

accelerated spectrum with decreasing turbulence level δB/B. In the

ultrarelativistic regime, this trend should be exacerbated, because as

δB/B decreases, we approach the perpendicular shock acceleration

limit where Fermi acceleration becomes inefficient (Begelman &

Kirk 1990). Our simulations should thus provide a conservative

lower bound to s for the case that includes a mean magnetic field.

The discrepancy might be attributed to the nature of the turbu-

lence, in particular to the assumption of Kolmogorov turbulence.

Again, the work of Niemiec & Ostrowski (2004) suggests that the

turbulence spectral index has an effect on s, although there is not

enough simulation data to pinpoint what the exact correlation is.

These remarks indicate the need for more exhaustive studies that

investigate various turbulence spectra. Interestingly, this suggests

that prompt and afterglow observations of γ -ray bursts might be

giving us information on the properties of the turbulence behind the

shock front; the upstream turbulence does not play any role in the

ultrarelativistic limit as a result of the limited amount of time that a

particle spends upstream before being overtaken by the shock front.

The interpretation of γ -ray burst afterglows as synchrotron emis-

sion by shock accelerated electrons requires that the magnetic field

intensity at the shock front be significantly higher than the aver-

age interstellar value (e.g. Piran 2004, and references therein). The

nature of downstream turbulence would then be directly related to

the amplification process, which might manifest itself indirectly in

the spectral slope. The proposal of magnetic field amplification by
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the two-stream Weibel instability (Medvedev & Loeb 1999) has re-

cently triggered much interest. This instability seems able to explain

the high value of B required, although debate on the subject is not

closed (see Wiersma & Achterberg 2004). In any case, the Weibel

instability amplifies the magnetic field in the transverse plane to the

shock normal and on very small spatial scales (Medvedev & Loeb

1999) . If the magnetic field on scales larger than or equal to the Lar-

mor radius of a typical accelerated particle is thus not amplified by

the instability, we should expect acceleration to proceed as presented

here, and the discrepancy should remain. These considerations may

suggest that the amplified magnetic field structure differs from that

proposed by Medvedev & Loeb (1999) or that the amplification

mechanism itself is different. In this regard, we note that recent

numerical studies on the Weibel instability suggest that power-law

acceleration may occur independently of the Fermi mechanism as

a result of the presence of electromagnetic currents downstream

(Hededal et al. 2004). It should also be noted that stochastic accel-

eration in the downstream turbulence, which has not been accounted

for in the present study, could play a significant role in reshaping

the accelerated spectra, as suggested by Virtanen & Vainio (2005).

On a different line of thought, we should point out that the value of

the spectral index derived here turns out to be in very good agreement

with that required to fit the ultrahigh-energy part of the cosmic

ray spectrum at energies E � 1018 eV, i.e. s � 2.6–2.7, when we

assume that the sources are distributed at cosmological distances

and do not evolve too strongly with redshift relatively to the cosmic

star formation rate (Barrow, Magueijo & Sandvik 2002; Berezinsky,

Gazizov & Grigorieva 2005; Lemoine 2005).

5 S U M M A RY

We have conducted a study of Fermi acceleration at relativistic and

ultrarelativistic shock waves, considering the effect of the shock

compression on the downstream magnetic turbulence. The numeri-

cal simulations are based on Monte Carlo methods of particle prop-

agation in realistic magnetic fields described by sums of plane wave

modes. The numerical technique differs from the standard Monte

Carlo modelling of Fermi acceleration in that it measures the rele-

vant statistical laws of particle transport on either side of the shock,

and uses these probability laws together with the Lorentz transform

from one frame to the other to reconstruct the acceleration process.

The turbulence was assumed to be described by pure Kolmogorov

turbulence upstream, a situation which idealizes the limit δB/B �
1. The main effect of the compression with respect to the case of

isotropic scattering is to steepen the accelerated spectrum to a slope

s � 2.6–2.7 in the limit � sh � 1, as a result of a decreased return

probability. This latter effect is induced by the compression, which

amplifies the magnetic field in the transverse direction to the shock

normal: particles that enter downstream are trapped on a Larmor

time-scale in a compressed turbulence layer and cannot recross the

shock unless they turn back within a few Larmor times. Conse-

quently, the acceleration time-scale is dominated by the upstream

residence time, and can be as short as t acc � 10t L/� sh (upstream

frame). We have also argued that the accelerated particles do not

travel far enough downstream before returning to the shock to ex-

perience a turbulence that has relaxed to near isotropicity.

The derived slope does not agree with that inferred from observa-

tions of γ -ray burst afterglows, which indicate s � 2.3. This inferred

value is generally accepted as a success of Fermi acceleration in the

relativistic regime whose predicted canonical value is s � 2.2–2.3.

However, this result only holds for isotropic scattering downstream,

whereas the inclusion of realistic shock jump conditions, as done

here, makes downstream turbulence strongly anisotropic and the

spectra markedly steeper. The resolution of this discrepancy may be

tied to the necessary but unknown amplification mechanism of the

upstream magnetic field.
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