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Chapter 1 Overview

1.1 Introduction

The LHCb experiment has been conceived to study
CP violation and other rare phenomena in B me-
son decays with very high precision. This should
provide a profound understanding of quark flavour
physics in the framework of the Standard Model,
and may reveal a sign of the physics beyond. In
order to achieve these goals, the LHCb detector
must have a high track reconstruction efficiency, π–
K separation capability from a few to ∼100 GeV/c,
very good proper-time resolution of ∼ 40 fs and
high trigger efficiencies, not only for final states
including leptons but also for those with hadrons
alone. The detector described in the Technical Pro-
posal (TP) [1], approved in September 1998, was
designed to fulfil those requirements. This doc-
ument describes a reoptimization of the detector,
that has been made to reduce the material budget
and to improve the trigger performance.

At the time of the TP the material budget up
to the second Ring Imaging Cherenkov detector
(RICH 2) was 40% of X0 (10% of λI), where X0

(λI) is the radiation (nuclear interaction) length.
This increased to 60% (20%) by the time the Outer
Tracker Technical Design Report (TDR) [2] was
submitted in September 2001, due to various tech-
nological constraints. Additional material deterio-
rates the detection capability of electrons and pho-
tons, increases the multiple scattering of charged
particles, and increases occupancies of the tracking
stations. With a larger fraction of nuclear interac-
tion length, more kaons and pions interact before
traversing the complete tracking system. The num-
ber of reconstructed B mesons therefore decreases,
even if the efficiency of the tracking algorithm is
maintained high for those tracks that do traverse
the full spectrometer. This leads to a noticeable
loss in the number of reconstructed B mesons from
many-body final states. For example, one of the
most promising CP violation measurements, from
Bs → DsK decays, requires five charged tracks (in-
cluding one for tagging) to be reconstructed. For
these reasons, an effort has been made to reduce
the material budget back to the level at the time
of the TP.

The trigger is one of the biggest challenges of
the LHCb experiment1. It is designed to distin-
guish minimum-bias events from events containing
B mesons through the presence of particles with a
large transverse momentum (pT) and the existence
of secondary vertices. Events are first triggered by
requiring at least one lepton or hadron with a pT

exceeding 1 to 3 GeV/c (Level-0) reducing the event
rate to 1MHz. It was realised that the robustness
and efficiency of the second trigger level (Level-1)
could be significantly improved by not only using
information from the Vertex Locator (VELO), as
done in the TP, but also adding pT information to
tracks with a large impact parameter. This can
be achieved by associating the high-pT calorime-
ter clusters and muons obtained at Level-0 to the
tracks found in the VELO [3]. A complementary
approach that is more efficient for hadrons is to
get a rough pT estimate from the tracking. This
requires the introduction of a small amount of mag-
netic field in the region of RICH1. The design of
RICH1 then has to be modified in order to protect
its photon detectors from the field.

1.2 Reoptimized detector

Figure 1.1 shows the layout of the reoptimized LHCb
detector. The basic layout of the spectrometer re-
mains unchanged from that of the TP. It consists of
the beam pipe, VELO, dipole magnet, tracking sys-
tem, two Ring Imaging Cherenkov detectors with
three radiators (RICH 1 and RICH 2), calorimeter
system and muon system.

The first (25mrad cone) section of the beam
pipe will be made from pure beryllium. The middle
section (10mrad cone) is foreseen to be made from
beryllium-aluminium alloy, however it may also be
changed to beryllium, depending on the price. The
last section, passing through the calorimeter and
muon systems, remains unchanged, made of stain-
less steel.

No major change in the VELO design has been

1Details of the trigger implementation and performance
are discussed in the trigger TDR [3] submitted at the same
time as this document.

1
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Figure 1.1: Reoptimized LHCb detector layout, showing the Vertex Locator (VELO), the dipole magnet,
the two RICH detectors, the four tracking stations TT and T1–T3, the Scintillating Pad Detector (SPD),
Preshower (PS), Electromagnetic (ECAL) and Hadronic (HCAL) calorimeters, and the five muon stations
M1–M5. It also shows the direction of the y and z coordinate axes; the x axis completes the right-handed
framework.

introduced compared to the TDR [4]. The ma-
terial budget has been reduced by optimizing the
thickness of the silicon sensors and the number of
stations. The thickness of the sensors has been re-
duced from 300 to 220µm, and the number of sta-
tions from 25 to 21 without significantly affecting
its performance, as shown in this document.

The dipole magnet has not been modified from
the TDR design [5] and its construction is advanc-
ing. Compared to the TP spectrometer layout, no
shielding plate is placed upstream of the magnet.
This change has been made in order to introduce
magnetic field between the VELO and the magnet,
i.e. in the region of RICH1, for the Level-1 trigger
improvement.

Compared to the TP, the number of tracking
stations is reduced to four in order to reduce the
material budget, without introducing performance
losses, as demonstrated in this document2. The
first station after the VELO, referred to as the
Trigger Tracker (TT), is in front of the magnet
and just behind RICH 1. It consists of four planes
of silicon strip detectors. They are split into two
pairs of planes separated by 30 cm. Together with

2In the track reconstruction the VELO is now used as an
integral part of the the tracking system.

the VELO, the TT is used in the Level-1 trigger.
Large impact parameter tracks found in the VELO
are extrapolated to the TT and the magnetic field
in the RICH1 region allows their momenta to be
measured. The three remaining stations are placed
behind the magnet with equal spacing. Each sta-
tion consists of an Inner Tracker (IT) close to the
beam pipe and an Outer Tracker (OT) surrounding
the IT. The OT is made of straw tubes and the IT
of silicon strip detectors. Their designs remain un-
changed from those described in the corresponding
TDR’s [6, 2].

The RICH1 material has been reduced, largely
by changing the mirror material and redesigning
the mirror support. The mirror will be made from
either carbon-composite or beryllium. The mirror
support has been moved outside of the acceptance.
Further reduction of the material has been achieved
by removing the entrance window, by connecting
the front face of RICH1 to the flange of the VELO
exit window. Iron shielding boxes for the photon
detectors have been introduced for two reasons.
Firstly, they protect the photon detectors from the
magnetic field. Secondly, they help to focus the
magnetic field in the region where it is needed for
the momentum measurement of the Level-1 trigger.
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In order to accommodate the shielding boxes, the
optics has been changed introducing an additional
flat mirror to the TDR design [7].

No design changes have been introduced for
RICH 2 and the calorimeter system compared to
the designs given in the TDR’s [7, 8], and their
construction is advancing.

The muon system consists of five stations, M1
in front of the calorimeter system and M2–M5 be-
hind the calorimeter, interleaved with iron shield-
ing plates. In order to reduce the material budget
seen by the calorimeter, M1 consists of two layers
of Multi Wire Proportional Chambers, while the
other four stations are made from four layers, as
described in the TDR [9] and Addendum [10].

Figure 1.2 summarizes the material budget of
the detector. The amount of material, as a frac-
tion of radiation length, seen by a neutral particle
from the nominal position of the primary vertex
is plotted as a function of the pseudo-rapidity, η.
The material is averaged over the azimuthal angle
φ at three different z positions: 1) in front of the
magnet, 2) in front of RICH2 and 3) in front of
the Calorimeter system. It shows that most of the
particles see 20–30% ofX0 before entering the mag-
net. After the magnet, the three tracking stations
lead to an additional ∼10% of X0. Before reaching
the calorimeter system, RICH2 and the first muon
station add another ∼ 30%. The fraction of inter-
action length in front of RICH2 is now ∼ 12% of
λI.

10
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Figure 1.2: Material seen by a neutral particle from
the nominal position of the primary vertex as a
function of the pseudo-rapidity at three different z
positions, averaged over the azimuthal angle.

1.3 Summary

Simulation studies have shown that the reoptimized
LHCb detector fulfils the requirements given by the
physics goals. Charged tracks are reconstructed
with a high efficiency of ∼ 95% with a low ghost
rate, which does not introduce significant additional
combinatorial background in the reconstructed B
meson signals. With the excellent momentum and
vertex resolutions, the proper time of B0

s meson de-
cays can be measured with a resolution of ∼ 40 fs.
The RICH system separates kaons from pions in
the required momentum range. In addition, the
decreased detector material helps in the reconstruc-
tion of photons, and the removal of material in
the magnet allows a simpler reconstruction of elec-
trons. Together with the improved trigger system,
the LHCb detector maintains the high reconstruc-
tion yields for many interesting B meson decays
described in the TP. As shown in this document,
the quark flavour changing process in the Standard
Model can be tested in a unique way using those
reconstructed B mesons, beyond the capabilities of
current experiments at the e+e− B factories and
the Tevatron. After the reoptimization, the cost of
the detector is slightly lower than the original es-
timate. The updated construction schedule shows
that the full physics programme can start when the
LHC will become operational in 2007.

This document is organised in the following way:
Firstly, the designs of the beam pipe, VELO, RICH1
and TT, which have been modified as a result of the
reoptimization process, are described. This is fol-
lowed by a description of the LHCb simulation pro-
gramme that was used for the performance stud-
ies. After presenting the track reconstruction and
particle identification performance, the physics per-
formance of the reoptimized detector is discussed.
Finally the overall project plan and cost of the re-
optimized LHCb experiment are given.
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Chapter 2 Beam Pipe

2.1 Introduction

The beam pipe design is particularly delicate since
the vacuum chamber is located in the high rapid-
ity region of the LHCb detector where the particle
density is high, and the number of secondary parti-
cles in the event depends on the amount of material
seen by incident primary particles. The mass of the
beam pipe and the presence of flanges or bellows
has direct influence on the occupancy, in particular
for the tracking chambers and the RICH detectors.

2.2 Evolution since the Tech-
nical Proposal

At the time of the TP [1], although a first detailed
design of the beam pipe was under discussion, only
a simplified description was used for the perfor-
mance studies: the beam pipe consisted of a thin
window sealed to the VELO vacuum tank followed
by two conical sections; the first ∼ 1.5m long with
25mrad opening angle and the second ∼ 16m long
with 10mrad opening angle. The whole chamber
was of aluminium and no regions with flanges and
bellows were included.

In the first realistic design two stainless-steel
transitions1 located upstream (z = 2400 to
2800mm) and downstream (z = 7040 to 7500mm)
of the magnet were added to the basic layout
described above. A third transition inside the
calorimeter was also added.

Although satisfactory for vacuum and mechan-
ical requirements, it became a major source of sec-
ondaries produced from z ≈ 850mm (VELO exit
window) to z ≈ 12m (Muon station M1) [11]. The
shape of the first realistic beam pipe is clearly visi-
ble in Fig. 2.1 (a), showing the origin of secondaries
in the r-z plane. The detector layout in Fig. 2.1 (a)
is that of the TP, with tracking stations present
in the magnet. For comparison, Fig. 2.1 (b) shows
the same for the current beam pipe design. The
relative weight of the beam pipe as a source of sec-
ondaries has been considerably reduced.

1A transition is a set of two bellows protected by flanges.

Figure 2.1: Origin of secondaries (a) for the first
realistic beam pipe (aluminium with stainless-steel
flanges and bellows), (b) for the current beam pipe
(Be and Al-Be, with aluminium flanges and bel-
lows).

In the last section of the detector where the
calorimeters and Muon filter are located the mate-
rial of the beam pipe is no longer a dominant effect.

Since the TP different designs have been studied
taking into account particle background, vacuum
and mechanical requirements. The material and
thickness of the beam pipe as well as the number,
material and location of bellows and flanges [11]
have been optimized to keep the background levels
as low as technically possible.

In order to reduce the material traversed by the
particles, aluminium, an aluminium-beryllium al-
loy and beryllium have been considered. The me-

5
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Figure 2.2: Effect of beam pipe materials on par-
ticle fluxes on the inner part of the tracking cham-
bers. A simplified simulation of the chambers is
used covering areas up to ±20 cm from the beam
line. The detector layout is that of the TP with
chambers present in the magnet.

chanical strength of both Be and Al-Be alloy be-
ing higher than that of Al, an additional gain in
transparency can be achieved due to the reduced
thickness. Figure 2.2 shows the particle flux in the
tracking chambers (TP layout) for the different ma-
terial options. The layout of the beam pipe is the
same as that of the first realistic beam pipe design,
with wall thicknesses adjusted according to the ma-
terial used. The number of transitions has been re-
duced, replacing the transition at z ≈ 7040mm by
a flange. As explained later in detail, all beam pipe
sections will be coated, and this process limits the
maximum length of a section to 7m; consequently
the 10mrad cone has to be split into two pieces
connected by a flange.

2.3 General layout

The current layout of the beam pipe (UX85) is
shown in Fig. 2.3 [12]. The main features of the
design are similar to that of the TP. The beam
pipe consists of a thin exit window sealed to the
VELO vacuum tank followed by two conical parts
with apertures of 25mrad and 10mrad respectively.

The first section (UX85/1), of 1840mm length,
is made of 1mm-thick beryllium and consists of
a 25mrad cone followed by a 10mrad cone. The
two cones are connected by a thin window followed
by a short cylindrical section (250mm in length)
that constitutes the narrowest aperture of the beam
pipe, with an inner diameter of 50mm. This sec-

tion is welded to the VELO exit window and ends
with an optimized flange located at 2800mm from
the IP.

A transition connects UX85/1 with the second
section of the vacuum chamber (UX85/2). This
transition consists of a 10mrad aluminium cone
joining two aluminium bellows, terminated by alu-
minium flanges. Its position has been optimized
to keep as low as possible the background induced
by the beam pipe in the TT station, while keeping
the length of UX85/1 manageable for mechanical
reasons and for installation.

Sections UX85/2 and UX85/3 are long con-
ical sections of 10mrad aperture with a length
of 3876mm and 6000mm respectively. They are
formed from several pieces of increasing thickness
(1.0 to 2.4mm) welded together. The two conical
sections are connected by optimized flanges located
at 7100mm from the IP.

Within the constraints imposed by the coating
process, the length of UX85/3 has been chosen such
as to locate the optimized flanges as far as possible
upstream, thereby reducing the number of low en-
ergy secondaries produced in the flange that would
reach the tracking stations.

A second transition connects UX85/3 with
the last section of the beam pipe (UX85/4). It
consists of a 10mrad cone connecting two stan-
dard stainless-steel bellows, and has stainless-steel
flanges.

Section UX85/4, surrounded by the calorime-
ters and the Muon system, will be made of stain-
less steel AISI 316L with thickness between 3 and
4mm. It is connected by a thin window to a uni-
versal joint of shielded bellows at 20,088mm from
the IP. Ports for pumping are foreseen at the down-
stream end of this cone.

2.4 Vacuum

The vacuum system is designed for an average total
pressure of 10−8 to 10−9 mbar inside the beam pipe
during operation. With beam on, the vacuum is
determined by dynamic pressure instabilities rather
than by the static pressure.

The vacuum chamber will be pumped by
a combination of lumped sputter ion pumps
and distributed Non-Evaporable-Getter (NEG)
pumps [13]. The NEG system consists of a few-
µm-thick sputtered coating along the whole inter-
nal surface of the vacuum chambers. This coating
has to be periodically reactivated by heating (bake-
out) to 200◦C for 24 hours. This temperature needs
to be increased after several activations, however
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Figure 2.3: Layout of beam pipe.

mechanical considerations limit the bake-out tem-
perature to 250◦C.

Removable heating jackets are foreseen for the
sections UX85/1, UX85/2 and UX85/3, whereas a
permanent heating and insulation system will be
installed in UX85/4. The heating system is still
under design and a common approach with other
experiments will be followed.

Final calculations for the vacuum will be avail-
able by the end of 2003.

2.5 VELO window

The VELO window consists of a 2 mm-thick foil
covering 390mrad. It is clamped to the VELO
vacuum tank and leaves at the centre a circular
aperture for the beam of 54mm in diameter.

The vertex window will be machined from an
aluminium alloy forging (Al6061 T652) [14]. This
material has been chosen due to its higher trans-
parency over the high temperature weldable alu-
minium alloy (Al2219), that contains about 8% Cu.
Furthermore, the mechanical properties of Al6061
T652 will improve with the heating performed for
the NEG activation.

The shape of the window has been optimized for
minimal stresses using finite element (FE) analysis.
The chosen shape of the window will withstand a

Figure 2.4: VELO window prototype.
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Figure 2.5: Cumulative histogram of origin of sec-
ondaries from the beam pipe for (a) the first real-
istic beam pipe design, and (b) the current design.

stress of 150MPa at 150◦C [15]. The creep perfor-
mance of Al6061 T652 has been tested at 150MPa
and 150◦C for a duration of 100 hours [16] and
the results obtained confirm the data available in
the literature. Stresses of 150MPa are higher than
those expected on the window even during bake-
out, hence creep breaking is not a concern.

The window will be vacuum-sealed to the
VELO tank by means of a Helicoflex joint HN200.
The window includes four-convolution bellows,
0.4mm-thick, that are machined together with the
window from the same forging. The bellows will
absorb the forces exerted by the beam pipe.

Five forgings have been purchased following de-
tailed specifications drawn up with the collabora-
tion of CERN metallurgists. No inclusion that
could break the leak tightness or induce cracks were
allowed in the forgings. This was measured and
confirmed by ultrasonic testing of all forgings [17].
Only one had an inclusion of about 1mm in a non-
critical zone, and this forging has been used to ma-
chine the window prototype shown in Fig. 2.4, cur-
rently under test.

2.6 Aluminium bellows

A set of two bellows protected by rotatable flanges
is needed between UX85/1 and UX85/2 to absorb
the thermal expansion of the vacuum chambers
during bake-out and minimize bending stresses on
the VELO window due to misalignment.

Simulation studies showed that the stainless-
steel transitions were the major source of secon-
daries produced by the beam pipe, as can be seen
in Fig. 2.5, and consequently they were considered

Figure 2.6: Prototype bellows machined at CERN.

unacceptable.
It was therefore decided to develop and qualify

aluminium bellows. Only one industrial partner
showed interest in developing a prototype. How-
ever, the quality achieved was not sufficient for
Ultra High Vacuum applications [18], cracks were
present and the convolution shape was not uni-
form. In parallel, a process was developed at the
CERN workshops to machine the bellows from an
aluminium forging (Al2219). FE analysis showed
that bellows with 16 convolutions of 0.4mm thick-
ness can absorb the expected thermal displacement
of about 10mm without exceeding the elastic limit.
Figure 2.6 shows the prototype, that resulted in
satisfactory leak tightness and mechanical perfor-
mance close to the FE predictions.

2.7 Conical sections

High transparency to secondary particles is re-
quired up to the section UX85/3 [11]. The first
section with the 25mrad cone has the most im-
pact on RICH1 and TT occupancies. Since it is
rather short, Be has been chosen. For the sections
UX85/2 and UX85/3 both Be and Al-Be are being
considered, the final choice will be made based on
the price. For the physics simulation presented in
this TDR the Al-Be option has been used. The al-
loy under consideration is AlBeMet162 HIP (Hot
Isostatic Pressure) which has been qualified at the
bake-out temperatures for the first time for LHCb.
Table 2.1 gives some of the measured properties.

The creeping behaviour at two different bake-
out temperatures, 200◦C and 250◦C, was measured
with an applied stress of 100MPa. Under these
conditions, the creeping did not reach behaviour
in the tertiary region after 1000h at 200◦C and
100MPa. However, at 250◦C it broke after ∼ 70 h
as seen in Fig. 2.7. FE analysis shows that the
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Table 2.1: Mechanical properties of AlBeMet 162
at bake-out temperatures.

Temperature (◦C) 200 250
Young’s Modulus (GPa) 200 192
Ultimate Strength (MPa) 321 262

Yield Strength (MPa) 239 195
Elongation (%) 2 2

stresses expected for the beam pipe due to atmo-
spheric pressure are not higher than 30MPa, indi-
cating that no creep problem is to be expected.

The welding of beryllium and AlBeMet162 by
two different processes, e-beam welding and TIG
welding, is being studied for the first time for
LHCb. A qualification at 250◦C for the e-beam
welding of AlBeMet62 HIP and with aluminium
Al2219 has been performed [19], and the results
are summarized in Table 2.2.

The ultimate tensile strength (UTS) of alu-
minium Al2219 at 250◦C ranges between 185
and 200MPa, i.e. the AlBeMet162–Al2219 e-beam
welding is mechanically stronger. The welding of
AlBeMet162–AlBeMet162 could not be qualified as
quality-B following ISO 13919–2, due to a misalign-
ment of the samples, but the quality of the welding
was satisfactory. The TIG welding of Be to Be and
Be to Al2219 is presently under qualification; the
Yield Strength measured at room temperature for
Be–Be is 150MPa, and for Be–Al2219 is 256MPa.

The determination of the mechanical properties
of the AlBeMet162 allowed FE analysis to be made
of the local buckling behaviour for different thick-
nesses of the beam pipe [20]. The minimal required
wall thicknesses obtained are reported in Table 2.3,
together with those of the initial design.

As indicated in the table, the thickness of sev-
eral parts could be slightly reduced (by tenths of
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Figure 2.7: Creeping percentage as a function of
time at 250◦C.

Table 2.2: Ultimate Tensile Strength (UTS) of
AlBeMet welding measured at 250◦C.

Welding material UTS (MPa)
AlBeMet162 vs AlBeMet162 252

AlBeMet162 vs Al2219 290

mm) with respect to the initially considered values
that were used in the physics simulation presented
in this TDR.

Section UX85/4 consists of two stainless-steel
cones AISI 316L of 3 and 4mm thickness respec-
tively, with an aperture of 10mrad, that are welded
together. The fabrication process will be the same
as for the ALICE beam pipe that is presently in
manufacture. Radiation activation studies of the
complete beam pipe are planned to begin later this
year.

The atmospheric pressure exerted on the coni-
cal beam pipe under vacuum leads to axial forces
of about 0.58N/mm [20]. Two fixed supports that
prevent axial displacement will prevent the collapse
of the bellows system. During bake-out additional
axial forces will arise. The set of two stainless-
steel bellows located at z = 13 100mm that con-
nect UX85/3 and UX85/4 will be subject to a force
of 1193N. The column buckling calculations per-
formed give a safety factor against buckling of 3.8,
which is considered to be sufficiently high.

The beam pipe supports are currently under de-
sign and will take into account the transparency
requirements. For the sections UX85/1, US85/2
and UX85/3 they will consist of stainless-steel wires
attached to optimized rings made out of a ma-
terial with high transparency (such as beryllium,
aluminium or fibre-glass). A fixed support will
be placed at z = 4024mm in order to minimize
the thermal expansion to be absorbed by the alu-
minium bellows and to protect the VELO window.

A spare beam pipe of identical design will be
fabricated from aluminium Al2219, which will al-
low replacement of the beam pipe within 2 weeks
if any accident occurs [21]. In case of necessity this
beam pipe could also be used on a permanent basis.

2.8 Optimized flanges

The conical sections and transitions are connected
with flanges, and the vacuum sealing will be
achieved with Helicoflex joints. In the region be-
tween z = 0.9 and 12m where high transparency is
required, optimized flanges will be used. The alu-



10 CHAPTER 2. BEAM PIPE

Table 2.3: AlBe162 beam pipe minimum required segment thicknesses as obtained from buckling analysis.
The thicknesses of the initial design, used in the simulation for this TDR, are also reported for comparison.

Seg. zmin Initial design Optimal design
No. (mm) Thickness (mm) Mass (kg) Thickness (mm) Mass (kg)
1 3224 1.0 0.1915 1.0 0.1915
2 3624 1.1 0.2352 1.0 0.2136
3 4024 1.2 0.5928 1.0 0.4929
4 4824 1.3 0.7575 1.1 0.6398
5 5624 1.4 1.4558 1.3 1.3508
6 6824 1.7 1.1466 1.4 0.9423
7 7500 1.8 1.5844 1.6 1.4066
8 8300 1.9 0.9002 1.7 0.8045
9 8700 2.0 2.0271 1.9 1.9247
10 9500 2.1 2.3147 2.0 2.2033
11 10 300 2.2 1.2867 2.1 1.2276
12 10 700 2.3 2.8417 2.3 2.8417
13 11 500 2.4 3.1781 2.4 3.1781
14 12 300 (zmax=13100) 2.6 3.6749 2.4 3.3896

Total mass (kg) 22.1872 20.8070

minium bellows will have aluminium DN58 flanges
at their ends. Similar flanges have already been
qualified for the ATLAS experiment [22]. The mass
of such a flange is reduced by a factor of three com-
pared to the standard CF flange of similar dimen-
sions. An optimized design of the flange joining
UX85/2 and UX85/3 is under study, as well as the
development of beryllium flanges.

2.9 Safety

The design, installation and operation of the beam
pipe will follow CERN safety rules and safety codes.
In particular, beryllium is the most toxic of all in-
dustrial metals, and its use at CERN is regulated
by the safety document IS No. 25 [23].

Hazards include inhalation of dust, fume or
vapour as well as ingestion. Furthermore, when in-
volved in a fire, beryllium will rapidly oxidize and
the oxide will spread in form of powder. Hence, all
safety rules regarding the use of beryllium specified
in the safety note IS No. 25 will be strictly applied.

2.10 Installation

The installation process has been studied in de-
tail and no insurmountable problems have been
found [24]. Dedicated tooling will be required and
its design will be carried out in 2004.
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The Vertex Locator (VELO) has to provide pre-
cise measurements of track coordinates close to the
interaction region. For this, the VELO features
a series of silicon stations placed along the beam
direction (Fig. 3.1). They are placed at a radial
distance from the beam which is smaller than the
aperture required by the LHC during injection and
must therefore be retractable. This is achieved by
mounting the detectors in a setup similar to Ro-
man pots (Fig. 3.2). For minimizing the material
between the interaction region and the detectors,
the silicon sensors are inside a thin aluminium box
with a pressure of less than 10−4 mbar (Fig. 3.3).
The side of the box facing the beam also shields
the sensors against RF pickup.

3.1 Evolution since the VELO

TDR

In the VELO TDR [4], the material traversed in
the VELO by particles in the LHCb acceptance
added up to 17.1% of a radiation length on av-
erage, excluding the exit window. The dominant
contributions came from the RF foil and from the
silicon sensors. For the TDR, the VELO design
was optimized to provide the best possible extrap-
olation to the interaction region. This is reflected
in the corrugated shape of the RF foil, which min-
imizes the amount of material before the first mea-
sured point, and in the number of stations (25),
which minimizes the extrapolation distance with-
out adding too much dead material. The average
material before the first measured point was 3.2%
of an X0. Since then, various studies have been
made of how to reduce further the material:

• by re-designing the RF foil [25],

• by reducing the thickness of the silicon sen-
sors,

• by reducing the number of detector planes.

In addition, we investigated beryllium instead of
aluminium as the material for the RF foil [26].

On the other hand, we were forced to increase
the material seen by the particles in some areas due
to technological constraints. Prototype work on
thin aluminium foils has shown limits of producing
the double-corrugated shape. It was required to re-
duce the depth of the corrugations compared to the
TDR design, which increases the average amount
of material seen by particles. Full size prototypes
have since been produced and new estimates of the
material are now available (Sect. 3.2). The module
design is now close to being finalised and its con-
tribution to the material budget has been updated
(Sect. 3.5).

A prototype of the 2 mm thin exit window [14]
of the VELO is in production and is discussed in
Chapter 2.

During the studies for the overall LHCb opti-
mization, the VELO became an important part of

1m

RF-foil

VELO silicon
sensors

Figure 3.1: Arrangements of detectors along the
beam axis. Only the silicon sensors on one side of
the RF-foil, which separates the LHC vacuum from
the detector vacuum, can be seen. The first two
detectors (unshaded) belong to the Pile-Up sys-
tem [3].

11
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Figure 3.2: The VELO vacuum vessel with the silicon sensors (TDR layout with 25 stations), RF box,
wakefield guides and exit window.

the overall tracking system. In addition to its orig-
inal task of providing precise measurements of pri-
mary and secondary vertices, it is now the main
tracking system before the magnet. As a result
of this, the sensor design was slightly modified
(Sect. 3.7) to give a better performance for the
tracking and for the L1 trigger with only a small
loss in vertex and impact parameter resolution.

The modifications to the VELO design com-
pared to the TDR are summarized in the following
sections. More details can be found in correspond-
ing LHCb notes.

3.2 Mechanical aspects

The detector vacuum box equipped with corru-
gated foils, as proposed in the TDR, is shown in
Fig. 3.3. The corrugated structure of the top foil
was determined by the demand to limit the amount
of material seen by the detected particles, and by
the physical layout of the partially-overlapping sil-
icon sensors. Background and multiple scatter-
ing considerations strongly favour low-Z materials.
Properties like vacuum tightness, strength and elec-
trical conductivity made aluminium or beryllium
the obvious choices. In a separate LHCb note [26]

we have investigated the comparison between the
two materials.

Pure aluminium is quite soft, but the addition
of a small amount of magnesium considerably in-
creases its strength, while maintaining good weld-
ing properties. Aluminium can be deformed quite
easily. Beryllium on the other hand cannot be
pressed into the proposed shape, and machining

Figure 3.3: The detector vacuum box with corru-
gated foils.
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Figure 3.4: Top foil of the detector vacuum box, made from 0.3 mm thick AlMg3. The structure is 120 cm
long, the width is 25 cm.

can easily damage the low-ductility material. As
an alternative the use of a flat beryllium foil was
also investigated. A flat foil results in a larger con-
tribution to the material budget. Furthermore, the
corrugations give the detector vacuum box signif-
icantly more stiffness; with flat foils a thicker foil
has to be used, resulting in an even larger contri-
bution to the material budget. In addition, a flat
foil would no longer allow overlapping sensors. Sen-
sor designs were studied which could minimize the
loss in acceptance to about 1.5% per b-decay track.
Their shape would be considerably different to the
180◦ disks proposed in the VELO TDR and would
require additional R&D.

All these considerations have resulted in the
choice of a corrugated aluminium foil. The mate-
rial chosen is AlMg3, an aluminium alloy with 3%
magnesium. The material properties used in these
calculations are given in Table 3.1.

For the corrugated foil, several production
methods were tried. The temperature and defor-
mation speed are critical parameters since they
have a large impact on the recrystallization of the
material. Too high a temperature results in sig-
nificant crystal growth, resulting in small vacuum
leaks. The best results were obtained with hot gas
forming, in which the material is heated to 350◦C,
and pressed into the desired shape. The minimal
thickness for which a vacuum-tight foil could be
produced was 300µm. Foils with a thickness of
250µm were not yet available from industry. Fig-
ure 3.4 shows a corrugated foil. Since the mate-

Table 3.1: Material properties of AlMg3.

Property Value
Young’s Modulus 70 GPa
Poisson ratio 0.33
Shear Modulus 27.3 GPa
Yield Strength 80 MPa (annealed)
Electrical conductivity 1.9 × 107 Ω−1m−1

rial is stretched considerably, the local thickness
varies between 0.30 mm for the undeformed regions
to 0.15 mm for the most-deformed ones, with an av-
erage value around 0.25 mm. The integrity of the
dimensional structure has been verified on a 3D-
measuring machine. The observed deviations from
the design positions are less than 0.2 mm. R&D
continues to work with thinner foils, 250µm and
200µm.

On the inside of the box a poly-amide-imide
coating will be applied. This material is highly
radiation resistant: it keeps its strength after a dose
of 30 MGy. It will electrically isolate the sensors
from the aluminium, and will also help to radiate
away the heat that will be deposited in the detector
vacuum foil by beam-induced effects. Desorption
measurements have shown that the load from the
outgassing of the material to the detector vacuum is
small (< 10−4 mbar �/s at room temperature after
24 hours).

For the cables inside the vacuum a choice has
been made for a design consisting of seven consec-
utive layers of Kapton and copper. A prototype is
shown in Fig. 3.5. Desorption measurements have
also been performed on these. They show that the
outgassing can easily be handled by the detector
vacuum system.

Figure 3.5: Prototype of the seven-layer Kapton-
copper cables, that will be used inside the vacuum
chamber.
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Interaction region 5.3cmσ =

390 mrad

15 mrad

1 m

60 mrad
cross section at y=0:

not required for LHCb
acceptance coverage

x

z

Figure 3.6: Station set-up. The stations which are not required for covering the LHCb acceptance are
marked. The stations which have been removed in the new set-up are indicated with lighter shading.

3.3 Number of detector
planes

For the TDR, the VELO was optimized for the
best impact parameter resolution. For a track
with a given momentum, the impact parameter
error is smaller the shorter the extrapolation to
the primary vertex. This requires detector sta-
tions as close as possible. However, the more de-
tector stations, the more material and therefore
increased multiple scattering. For the TDR, 25
stations turned out to be an optimum. For the
LHCb reoptimization study, additional importance
was given to the material after the first measured
point. Given the dimensions of the sensors, their
inner and outer radius, and the requirement to re-
construct tracks with angles of up to 390 mrad, it is
not possible to reduce the number of stations close
to the interaction region. The same is true for the
most downstream stations which are required to re-
construct low angle tracks down to 15 mrad. How-
ever, there are about 6 stations in-between, which
are not strictly required for covering the LHCb ac-
ceptance. They were inserted for minimizing the
extrapolation distance of tracks towards their ver-
tex and for redundancy reasons (Fig. 3.6). In the
reoptimization study, it was found out that the
VELO with four stations less has a very similar
performance concerning robustness (Fig. 3.7) and
resolution (Fig. 3.8) compared to the TDR design.
The corrugations in the RF foil which accommo-
dated those four stations will not be removed, since
they are useful for minimizing on average the ma-
terial traversed by particles in the acceptance, and
also they add to the stiffness of the foil.

3.4 Thickness of sensors

For the VELO TDR, a silicon thickness of 300µm
was chosen as the baseline design for two reasons:

• wider range of manufacturers for the compli-
cated double-metal n-on-n design;

• uncertainty about the noise performance of
the final front-end chip.

Since then, the R&D with one of the manufacturers
who is able to produce 220µm thin sensors was suc-

21 stations
25 stations

Number of VELO stations hits per track
5 15100

1000

2000

0
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r 
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Figure 3.7: The number of VELO stations tra-
versed by tracks in the LHCb acceptance for 25
stations (dashed line) and 21 stations (solid line).
The number of tracks crossing less than four sta-
tions in the new setup is less than 0.1%; if a further
station were to be removed, this fraction would in-
crease to 0.5%. An average track crosses 7 stations.
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Figure 3.8: Impact parameter resolution as a func-
tion of log(1/pT) for the TDR design with 25 sta-
tions and for a setup with 5 stations removed.

cessful. In addition, the current version of the Bee-
tle chip (Beetle 1.2), which was recently selected as
the front-end chip for the VELO, has a noise per-
formance of about N = 500 e− + 50 e−/pF (see also
TT testbeam results in Sect. 5.4). This, together
with the choice of an overall 45◦ sector design for
the R-sensors (Sect. 3.7), which reduces consider-
ably the capacitance for the strips at larger radii,
enables the use of 220µm thin sensors while still
maintaining a signal-to-noise ratio S/N > 14 [30].

3.5 Module and hybrid mate-

rial

The design of the VELO module has been substan-
tially modified [28] to allow low cost fabrication, to
minimize the material and to provide high thermal
conductivity. The two major differences compared
to the TDR are:

• Removal of the module alignment system.
The necessary accuracy will be achieved dur-
ing fabrication.

• Reduction of material by adopting a “double
sided” design, i.e. two hybrids on one sub-
strate. This will however complicate the con-
struction.

A schematic of an LHCb module is shown in
Fig. 3.9. The key components are:

Figure 3.9: Schematic of the VELO module show-
ing the key components. See the text for details.

1. The silicon sensors.

2. The front-end electronics mounted on a thin
Kapton sheet.

3. The substrate which performs the dual role of
a mechanical support and a thermal pathway;
it is a complex carbon-fibre thermo-pyrolytic
graphite composite.

4. The cooling block manufactured from
carbon-carbon to match the coefficient of
thermal expansion of the substrate, which
provides the thermal linkage with the cooling
system. Prototypes of aluminium have been
made.

5. The low mass carbon-fibre paddle which is
designed to rigidly hold the substrates and
allow the sensors to be placed close to the
interaction point.

6. The paddle base made of carbon-fibre. The
base is connected via location inserts to the
platform. The location inserts possess pre-
cisely machined surfaces which allow the pre-
cise placement of the base onto the (move-
able) platform that supports the two halves
of the VELO telescope. This design allows
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Table 3.2: Average radiation and interaction length seen by tracks passing through the VELO detector.
The numbers in brackets correspond to the material seen before the first measured hit.

in ECAL acceptance
2.0 < η < 5.0 2.0 < η < 4.2

X0 [%] λI [%] X0 [%] λI [%]
Silicon 3.71 (0.30) 0.76 (0.06) 4.11 (0.29) 0.85 (0.06)
RF foil 9.28 (3.66) 2.10 (0.83) 8.00 (2.37) 1.81 (0.54)
RF box 0.88 0.19 1.00 0.22
Hybrids 1.50 0.51 2.05 0.69
Paddles 0.42 0.14 0.57 0.19
WF cone 0.70 0.08 0.02 0.01

Total 16.49 (3.96) 3.77 (0.89) 15.74 (2.70) 3.76 (0.60)

for the quick and repeatable insertion of the
modules onto the platform with an accuracy
of about 10µm at 21◦C.

The current design excluding the silicon sensors
contributes about 1.9% of a radiation length to the
average material traversed by particles in the LHCb
acceptance.

Minor changes to the zero insertion force mech-
anism for the cooling block will be made before the
2004 pre-production, that will use the new assem-
bly robot to be commissioned between June and
August 2003.

3.6 Updated material budget

The numbers presented in Table 3.2 have been cal-
culated using a detailed geometrical description of
the VELO inside GEANT3 [27] with the final mate-
rials and thicknesses. A particle distribution which
is flat in pseudorapidity η and azimuth angle φ is
assumed for estimating an average radiation length
X0 and interaction length λI.

Summary of modifications which effectively re-
duced the material compared to the VELO TDR:

• Number of stations reduced from 25 to 21.

• Thickness of silicon reduced from 300µm to
220µm.

• Downstream corrugations of the RF foil re-
moved.

• Reduced thickness in the stretched regions of
the RF foil taken into account.

Summary of modifications which effectively in-
creased the material compared to the TDR:

• Corrugations of RF foil reduced from 2 cm to
1.2 cm.

• More realistic estimate of module composi-
tion.

In the end, the total material is slightly less
than that estimated in the TDR.

3.7 Sensor design

The strip layout in the VELO-TDR for the r-
measuring sensor consisted of subdividing the
strips at radii below 24.1 mm into four sectors of
approximately 45◦ while for larger radii the strips
were only subdivided in two sectors covering 91◦

degrees each. The aim was to save channels at
larger radii, where the occupancy is low, and use
these channels to decrease as much as possible the
pitch at small radii to improve the impact param-
eter resolution.

A design that subdivides the strips in four sec-
tors at all radii has advantages for the uniformity of
the capacitance per channel, the execution time of
the track reconstruction, and the number of clone
and ghost tracks. Since the number of channels
per sensor cannot be increased beyond 2048 for
practical reasons, the strip pitch needs to be in-
creased to cover the same area with four sectors
at all radii. Four different designs for the layout of
the R-sensors of the VELO were compared for their
performance concerning the signal-to-noise ratio,
the Pile-Up detector, the L1-tracking, the off-line
tracking and the impact parameter resolution [29].
It was found that the loss in impact parameter
resolution is in general small. The choice for the
new design also takes into account fabrication risks.
The strip pitch in the new design is given by the
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Figure 3.10: The strip pitch, length and occupancy
as a function of the radius for two R-sensor strip
designs.

following function of radius r (in µm):

40 + (101.6 − 40) × r − 8190
41949− 8190

.

The resulting strip pitch, length and occupancy
as a function of radius are compared to those of the
TDR design in Fig. 3.10. The outer dimensions of
the sensors are currently being finalized [30]. The
measurements on the first full-size RF foil and mea-
surements on the silicon cutting tolerances suggest
an increase of the total tolerance between the RF
foil and the silicon sensors from 1 mm to 1.2mm.
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Figure 3.11: Sensor layout. Some strips are indi-
cated with dotted lines for illustration.

To compensate for this, the RF foil has been
moved a bit closer to the beam and the start of the
sensitive area has been changed from r = 8 mm to
r = 8.17 mm. In addition, the sharp inner corners
of the TDR design needed to be smoothed in or-
der that the sensors would fit within the RF-foil.
A diagram of the present sensor layout is shown in
Fig. 3.11. Increasing the inner radius of the sen-
sitive area has only a small effect on the resolu-
tion [31].
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Chapter 4 RICH1 Reoptimization

4.1 Introduction

Hadron identification in LHCb is provided by two
Ring Imaging Cherenkov detectors (RICH). High
momentum particles (up to ∼ 100GeV/c) are iden-
tified by the RICH 2 detector, situated downstream
of the spectrometer magnet and tracking stations.
The RICH2 design has undergone no significant
change in the context of the LHCb detector opti-
mization and is described in detail in the engineer-
ing design review [32]. Lower momentum particles,
up to about 60GeV/c, are identified by the RICH 1
detector, located upstream of the magnet. RICH 1
has undergone a major redesign and differs signifi-
cantly from that described in the RICH Technical
Design Report (TDR) [7]. These changes are mo-
tivated by the need to reduce material within the
spectrometer acceptance and to accommodate the
magnetic bending power required for charged par-
ticle momentum determination at Level-1 in the
LHCb trigger.

4.1.1 RICH1 requirements

RICH 1 is designed to provide particle identifica-
tion over the momentum range from 1 to 60GeV/c.
It combines silica aerogel and fluorocarbon gas ra-
diators with a polar angle acceptance from 25 to
300mrad. The aerogel covers the low momentum
tracks and plays an important role in tagging the
flavour of the b-hadrons through the b → c → s
quark decay chain.

An important requirement of the overall LHCb
detector reoptimization is to minimize material
within the spectrometer acceptance. The total ma-
terial contributed by RICH1 amounted to about
14% of a radiation length in the RICH TDR de-
sign. The design presented here reduces this signif-
icantly, mainly by reducing the contributions from
the spherical mirrors and their supports.

In the LHCb reoptimization the Level-1 trig-
ger [3] has been improved to yield better perfor-
mance. An enhanced fringe field of the spectrom-
eter magnet between the VELO and the Trigger
Tracker (TT) station is required to determine the
momenta of particles with a resolution of 20–40%.

This has imposed strong constraints on the new
RICH1 design. In the TDR [5] design of the spec-
trometer magnet a large iron shielding plate was
located upstream of the magnet. This reduced the
magnetic field in the region of the RICH1 pho-
ton detectors to a level that permitted their op-
eration using simple magnetic shields made from
high-permeability alloys1. The iron shield plate is
incompatible with the Level-1 trigger requirement.
Its removal results in a B-field of about 60mT in
the region of RICH1. The consequence is that
an iron shielding house is needed to attenuate the
B-field by a factor ∼ 25 to allow operation of the
photon detectors, while at the same time providing
adequate magnetic bending power for the Level-1
trigger. A bending power of 0.15Tm between the
interaction point and TT is required [3].

4.1.2 Evolution since RICH TDR

Material budget

Reduction of material is achieved by introducing
the following features in the current RICH1 design:

• Removal of RICH1 entrance window and
beam-pipe seal, by sealing directly to the
VELO tank.

• Lightweight spherical mirrors. Prototype
mirrors made from carbon-fibre composite,
glass-coated beryllium and acrylic sheet2

have been tested.

• Elimination of the contribution from the mir-
ror supports, achieved by locating the sup-
port and adjustment mechanism outside the
acceptance.

Level-1 magnetic-field requirements

The consequences of the magnetic field result in
major design changes:

1Permalloy C or Mumetal.
2PERSPEX (a trademark of the Lucite International

Group, Southampton, UK) with carbon-fibre honeycomb
core.
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Figure 4.1: Layout of the vertical RICH1 detector.

• Additional plane mirrors (as in RICH2) are
required so that the photon detectors can be
located in a region where soft iron magnetic
shielding can be used.

• Horizontally-located iron shields would steal
the B-field away from where it is required
by the trigger, so the photon detectors are
located above and below the beam. Hence
the new RICH1 design has a vertical optical
layout as shown schematically in Fig 4.1.

Gas system

The preferred RICH1 gas Cherenkov radiator is
C4F10. Concern over the future availability and
cost of this gas has prompted the provision of ad-
ditional features to the RICH1 gas system that
would allow mixing of C3F8 and C5F12 to achieve
the same refractive index as C4F10.

4.1.3 RICH photon detectors

Until June 2003 the baseline RICH photon detec-
tor was the Hybrid Photon Detector (HPD). The
HPD is a 40MHz high-resolution photon detector

developed by LHCb together with several industrial
partners3. Delay in the development of the solder-
bump bonds that connect the silicon pixel sensor to
its readout chip have resulted in a switch of base-
line to the Hamamatsu M64 multianode photomul-
tiplier tube (MaPMT). Nevertheless, HPD develop-
ment within LHCb is on-going and the final tech-
nology choice for the RICH photon detector will be
made by October 2003.

The MaPMT, equipped with a quartz lens to in-
crease its active area coverage, has been tested [33]
in charged particle beams as a Cherenkov photon
detector, and shown to satisfy the LHCb RICH
requirements. All physics performance studies re-
ported in this document result from a simulation of
the HPD. However, comparitive performance stud-
ies (including photon yield, Cherenkov angle preci-
sion, π–K separation and tagging efficiencies) car-
ried out earlier [34] indicate that there is no change
in the physics performance resulting from the use
of either HPD or MaPMT. The baseline choice
was made on the grounds of the lower cost (albeit
higher risk) of the HPD. The design criterion for
the overall magnetic shielding of the HPD’s was
set to < 1 mT. The MaPMT has a reduced sensi-
tivity to magnetic field and the requirement is now
set to < 2.5 mT. This has relaxed the constraints
in the shielding and allowed a design that satisfies
the opposing requirements for the photon detector
shielding and the Level-1 trigger.

4.1.4 Contents of this chapter

We provide in the following section a description
of the main components and the parameters of the
new RICH1 design. Section 4.3 summarizes results
from prototyping carried out since the RICH TDR
that is relevant to the new RICH1 design. Mea-
surements on prototype mirrors and the stability of
their supports, together with laboratory and beam
tests of aerogel radiators, are reported. Section 4.4
presents the basic performance parameters, pho-
ton yields and angular precision, that have been
estimated from the simulation. Their influence on
the particle identification and physics performance
is reported in Chapter 8 of this document. The
technical design is presented in Sect. 4.5. Institute
responsibilities for RICH1 are given in Sect. 4.6,
and the rest of the project planning, including esti-
mated costs, schedules and milestones, is discussed
in Chapter 10.

In view of the recent switch of baseline pho-

3Delft Electronic Products, Netherlands; Kyocera,
Japan; VTT, Tietotekniikka, Finland.
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Figure 4.2: Cut-away 3D model of the vertical
RICH 1 detector, shown attached by its gas-tight
seal to the VELO tank.

ton detector technology, few details of the MaPMT
integration into the RICH1 design are presented
in this document and all simulations relate to the
HPD. As stated above, we expect only small differ-
ences in physics performance and the consequences
following from the photon detector choice will be
written in an addendum to the RICH TDR, to be
submitted to the LHCC.

4.2 Detector description and
specifications

In this section the principal features of the detector
are described and their main parameters specified.
Their optimization has been constrained by lim-
its on the space available, on material within the
spectrometer acceptance, on magnetic field require-
ments for the RICH photon detectors and for the
Level-1 trigger and on the overall cost, to which the
photon detectors contribute about 50%. Prototype
tests and finite element modelling have been un-
dertaken which demonstrate that the parameters
listed can be achieved. The parameters have been
used in the simulation studies reported in Sect. 4.4
and in Chapters 8 and 9.

4.2.1 Overall dimensions

RICH1 is required to cover the full LHCb angular
acceptance, so to reduce its physical size it is lo-
cated upstream of the spectrometer magnet. The
longitudinal space available, between the VELO
and the TT station, limits the length of RICH1 to
about 1m. The focusing of Cherenkov light is ac-
complished using spherical mirrors, tilted to bring
the image out of the spectrometer acceptance. The
light rays are again reflected using secondary plane
mirrors to focus the ring images on the photon de-
tectors, located above and below the beam, in a
region where thay can be shielded from the B-field
of the spectrometer magnet. The angular accep-
tance of 300mrad (horizontal) × 250mrad (verti-
cal), and the optical system, result in a RICH1 gas
vessel with dimensions approximately 2× 3× 1m3.
The RICH 1 layout is illustrated in Fig. 4.1 and as
a cut-away 3D model in Fig. 4.2. It has a 5 cm-
thick aerogel radiator and a 85 cm-long fluorocar-
bon (C4F10 or equivalent) gas radiator.

4.2.2 Cherenkov angle precision

The resolution on the reconstructed Cherenkov an-
gle has the following contributions:

• Emission point: the tilt of the spherical mir-
ror leads to a dependence of the image of a
Cherenkov photon on its emission point on
the track. In the reconstruction, all photons
are treated as if emitted at the mid-point
of the track through the radiator, leading to
some smearing of the reconstructed angle.

• Chromatic: the chromatic dispersion of
the radiators leads to a dependence of the
Cherenkov angle on the photon energy.

• Pixel: due to the finite granularity of the pho-
ton detector.

• Tracking: due to errors in the reconstructed
track parameters.

The effects of these contributions are discussed
in Sect. 4.4.2. The effective granularity of the
MaPMT photon detector is 3mm×3mm. This is
a 20% increase compared with the HPD, but when
combined with the other contributions results in a
small effect on the overall Cherenkov angle preci-
sion.

4.2.3 Radiators

RICH1 includes two radiators. A 5 cm-thick wall
of aerogel with refractive index n = 1.03 provides
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positive kaon identification above 2GeV/c and π–K
separation up to about 10GeV/c. The useful wave-
length range of the Cherenkov light from aerogel is
limited by Rayleigh scattering. The transmission
T through a length L is given by

T = Ae−CL/λ4
(4.1)

for wavelength λ, where C is the clarity coeffi-
cient. The value used in the simulations is C =
0.008µm4/cm, however R&D is currently under-
way to reduce this (see Sect. 4.3.2) which would
result in a higher fraction of unscattered photons.
Alternatively, the material budget might be re-
duced for the same photon yield. Equation 4.1
indicates that the UV Cherenkov light is strongly
scattered. To reduce the background due to this
Rayleigh scattered light a 100µm-thick glass fil-
ter is placed immediately downstream of the aero-
gel. The preferred gas radiator is C4F10 at room
temperature and atmospheric pressure, which oc-
cupies an L = 85 cm path length between the aero-
gel and the spherical mirror. The refractive index
is n = 1.0014 for λ = 260 nm, and provides 3σ π–K
separation up to about 50GeV/c. An alternative
radiator having similar refractive index and chro-
matic dispersion can be obtained by mixing C3F8

and C5F12 with a 50:50 molar concentration and
will be considered in the event of C4F10 procure-
ment problems. The number of focused and de-
tected photon hits from β � 1 tracks is given in
Sect. 4.4.2.

4.2.4 Photon detectors

The baseline photon detectors are Hamamatsu M64
multianode photomultiplier tubes (MaPMT). The
anodes are arranged in an 8 × 8 array of pixels,
each 2mm×2mm, separated by 0.3mm gaps. The
vacuum tube envelope measures 25.7mm×25.7mm
resulting in a sensitive area of 48%. This is in-
creased by placing a plano-spherical quartz lens on
the photocathode window of each MaPMT, result-
ing in close to full geometrical coverage with a de-
magnification of ×1.5 and an effective pixel size of
3mm×3mm.

The bialkali photocathode has a typical quan-
tum efficiency of 24% at maximum (380 nm), with
sensitivity extending from 600nm down to 200nm.
Two versions of the M64 are considered: 7600-03-
M64 with 12 dynodes and 7600-03-M64MOD with
8 dynodes. The latter has a gain ∼ 5×104, compat-
ible with readout using the LHCb Beetle chip [35].
The 12-dynode tube has a gain ∼ 3 × 105 and re-
quires a modified Beetle with reduced gain.

Using one 128-channel Beetle chip to read out
two MaPMT’s the subsequent readout chain can be
very similar to that used by the silicon trackers [6].
Four multiplexed analogue signals from each Bee-
tle, validated by the Level-0 trigger, are digitised
using 8-bit FADC’s then further multiplexed (×32)
and transmitted on gigabit optical links to the
Level-1 electronics in the counting room.

Each of the two RICH1 photodetector planes
covers an area of 120 cm×52 cm. With MaPMT’s
packed at 28mm pitch in modules of 16, then 110
modules or 1760 MaPMT’s are required. The use
of MaPMT’s in the RICH has been described in
the Appendix to the RICH TDR [7]. More details
will be presented in an addendum to the TDR.

4.2.5 Mirrors

Cherenkov light is focused onto the photon detec-
tor planes using tilted spherical mirrors and sec-
ondary plane mirrors, as shown in Fig. 4.1. The
RICH1 spherical mirrors have a radius of curvature
of 2400mm. The mirror surface is segmented into
four rectangular quadrants each 820mm×600mm.
Two technologies are considered for the spheri-
cal mirrors: 2 mm-thick carbon-fibre epoxy, coated
with aluminium and a protective layer (SiO2 and
HfO2) designed to optimize the reflectivity for the
wavelength of the Cherenkov light, or 3mm-thick
beryllium, with a 0.3mm glass skin on which alu-
minium is deposited, again with an appropriate
protective layer. Each of the four mirrors can be
individually adjusted in angle so that upper and
lower pairs share a common centre of curvature.
The secondary, plane mirrors are arranged in two
halves above and below the beam. Each half has
dimension 1500mm×775mm and is composed of
eight rectangular units of 6mm-thick polished glass
with aluminium coating. The technology for the
plane mirrors and their supports is the same as
that described in the engineering design review for
RICH2 [32]. Their mounts have adjustment that
allows the ring images to be centred on the detector
plane.

The mean reflectivity of the mirrors over the
wavelength range of interest (200 < λ < 600nm) is
expected to be above 85%.

4.2.6 Magnetic shielding

In the absence of shielding the magnetic field at
the RICH1 photon detectors is about 60mT. The
photoelectron detection efficiency of the MaPMT’s
is reduced by about 10% in an axial B-field of
2.5mT [36]. The sensitivity to transverse fields is
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Figure 4.3: Dependence of the Level-1 trigger per-
formance on the upstream magnetic bending. The
vertical line corresponds to the integral of the field
used in the performance studies.

much less. Magnetic shielding is needed to main-
tain a high photoelectron detection efficiency while
at the same time boosting the magnetic bending
in the region between the VELO and the Trigger
Tracker. The dependence of the Level-1 trigger per-
formance as a function of this bending is shown in
Fig. 4.3, with further details in [37].

Specifications for the design of the shielding
have been defined as follows:

• Maximum field at photon detector plane:
Bmax < 2.5mT.

• Field integral over 0 < z < 250 cm:
Btrig > 0.15Tm.

ARMCO4 iron plates are assembled into boxes,
above and below the beam, that shield the pho-
ton detectors as shown in Fig. 4.1. Finite element
modeling has resulted in a design satisfying the cri-
teria. The total weight of each box is about eight
tonnes and the detail of their design is central to
the overall mechanical design of RICH1. In partic-
ular, access must be provided for photon detector
maintenance, installation of the beam pipe and the
optical components.

4.2.7 Gas vessel, seals and windows

Magnetic forces acting on the shielding iron result
in displacements that are significant compared with
the precision required for the RICH1 optics. Hence
the photon detectors and mirrors are mounted to
a separate gas vessel, resulting in reduced me-
chanical distortion from the magnetic forces. At

4Iron with purity > 99.8%, high magnetic saturation and
low coercivity.

its upstream end the welded-aluminium gas ves-
sel is sealed to the VELO tank. The downstream
end is sealed by the RICH1 exit window, made
from 16mm-thick rigid polymethylacrylimide foam
sandwiched between 0.5mm carbon skins.

To ensure the polar angle acceptance extends
down to 25mrad there is no inner wall surrounding
the beam pipe and the exit window seals directly to
the beam pipe using pre-formed corrugated kapton
foils.

Quartz windows, 130 cm×60 cm×0.5 cm, seal
the top and bottom of the vessel and transmit
Cherenkov light to the photon detectors. These
windows have the same design [32] as used in
RICH2. Finally each side of the gas vessel is fitted
with removable plates for access to the optics and
the beam pipe.

4.2.8 Alignment

The angular resolution of the RICH detector de-
pends on the alignment of its optical components.
To ensure that the precison in reconstruction of
the Cherenkov angle, about 1.2mrad in RICH1,
is not degraded by uncertainties in alignment the
aim is to maintain alignment errors below 0.1mrad.
The alignment of the optical components will be
achieved in stages. First an in situ survey of all
mirrors and photon detectors will be performed to
a level of 1 mrad. Final alignment parameters will
be extracted from data. By reconstructing a large
number of rings from β � 1 tracks in which the
ring image is formed via reflection from an unam-
bigous combination of mirror segments, a precision
∼ 0.1mrad can be attained [38]. A laser system will
be used to monitor the alignment parameters over
time.

4.2.9 Beam pipe access

A common requirement for all LHCb sub-detectors
is that provision has to be made for access to the
LHC beam pipe [12] for maintenance procedures,
and in particular, for bake-out. Most LHCb de-
tectors are assembled in two halves, so that one
side can be withdrawn, allowing access to the beam
pipe. This solution is unacceptable for the RICH
detectors as it would result in significant material
to seal the vessel close to the beam and result in a
loss of the light emitted into one side of the detec-
tor from tracks traversing the radiator on the other
side. The solution adopted for RICH2, a secondary
beam pipe, would result in an unacceptable loss of
low-angle acceptance. The seal of the RICH1 ves-
sel is therefore made directly to the beam pipe and
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Table 4.1: Contributions (expressed as fractions of
a radiation length and nuclear interaction length)
to the material in RICH1, that fall within the
LHCb acceptance.

Item X0 λI

Aerogel 0.033 0.007
Gas radiator 0.026 0.016
Spherical mirror (CF) 0.011 0.005
Spherical mirror (Be) 0.008 0.007
Exit window 0.006 0.003
Total (with CF mirror) 0.076 0.031
Total (with Be mirror) 0.073 0.033

access for bake-out will be via the RICH1 gas ves-
sel, from which the gas, mirrors and possibly the
seal would be removed. Providing the bonding of
the flexible seal to the beam pipe can be qualified
at 250◦C it will remain in place, otherwise it would
need to be replaced. The RICH1 design ensures
that all necessary access procedures can be carried
within an acceptable time frame of less than one
week.

4.2.10 Material budget

The contributions to the RICH1 material budget
that fall within the acceptance are listed in Ta-
ble 4.1. The total amounts to less than 8% of a
radiation length.

4.3 Prototype studies

4.3.1 Lightweight mirrors

Prototype mirrors and their mounts have been
characterised and qualified. A quarter-size carbon-
fibre/epoxy composite mirror prototype, shown in
Fig. 4.4, has been purchased from CMA5 who have
supplied mirrors to NASA and the HERMES [39]
experiment at DESY. Mirror specifications are be-
ing verified by measurement. The most critical
specifications are the average values of radius of
curvature, angular resolution and reflectivity. A
mirror mount prototype is also being characterised
in adjustment precision and stability. It is impor-
tant to keep the variations in long term stability
well below the requirements of the offline alignment
procedure. This sets a stability requirement in the

5Composite Mirror Applications Inc, Tucson, USA.

Figure 4.4: Prototype carbon-fibre/epoxy compos-
ite mirror (above), glass-coated beryllium mirror
(below). The dimensions of these prototypes are
approximately 40 cm× 30 cm.

range of σ < 0.1mrad. The effect of the radiator
gas on the components is also being checked.

If the carbon-fibre technology does not meet re-
quirements, a solution using a 3mm-thick beryl-
lium substrate with 0.3mm glass surface layer,
coated with aluminium, SiO2 and HfO2, will be
adopted. This technology has been proven to meet
the optical specifications [40] and uses the same
supports. It contributes less to the radiation length
but more to the interaction length; however, the
differences are very small as shown in Table 4.1.
An R&D programme [41] on composite mirrors us-
ing acrylic sheet, backed with a carbon-fibre hon-
eycomb structure, resulted in samples with satis-
factory optical qualities but that were unstable in
fluorocarbon gas.

Mirror quality

The prototype carbon-fibre mirror has been tested
for radius of curvature and average angular preci-
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Figure 4.5: Light fraction inside circles of differ-
ent diameter (a), and reflectivity as a function of
wavelength (b), for the prototype mirror.

sion. The measurement assesses the variation from
an ideal spherical surface by imaging a point source
reflected from the prototype and analyzing the size
and shape of the resulting spot [40]. For a per-
fect spherical mirror of the size used in RICH 1 the
diameter, D0, containing 95% of reflected light is
diffraction limited to 27µm. For our purpose the
parameter D0 is required to be less than 2.5mm in
order not to dominate the Cherenkov angle resolu-
tion. In Fig. 4.5 (a) the fraction of light reflected
from the prototype falling in circles of different di-
ameter is shown. This indicates that carbon-fibre
mirrors with a substrate thickness of 2 mm could
satisfy the requirement of focusing 95% of reflected
light into a circle with diameterD0 < 2.5mm at the
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Figure 4.6: Long term stability (a), and linearity of
adjustment (b), of the prototype mirror support.

plane defined by the mirror radius of curvature.
The reflectivity of the prototype mirror was

found to be below the requirements of RICH1 and
a microscopic inspection identified the cause as sur-
face crazing in the epoxy. Replacement samples
of mirror substrate manufactured with a vacuum-
deposited high purity aluminium reflective layer
and SiO2 protective overlayer have been measured
at CERN with a calibrated light source and demon-
strate that the problem is under control. The re-
sults shown in Fig. 4.5 (b) closely follow calculated
predictions which indicate that a maximum reflec-
tivity of 93% is obtainable without overcoating.
These calculations also showed that attenuation of
reflected light at lower wavelengths is dependent on
the type and thickness of overcoating but that this
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can be minimised by careful selection of material
and reflectivities approaching 90% can be main-
tained for the required angles of incidence and the
wavelength range of interest (200 < λ < 600 nm).

It is encouraging that the HERMES experiment
successfully uses a CMA carbon-fibre/epoxy com-
posite mirror in a C4F10 environment with no re-
ported problems. However, the lower resolution of
the HERMES RICH detector leaves the possibility
that there might be effects not seen by that ex-
periment but which may degrade the performance
of LHCb. To exclude this possibility a sample is
presently undergoing long term tests in a C4F10

environment.

Mirror supports

Test facilities for the evaluation of the adjustment
characteristics and the long term stability of mir-
ror mounts have been developed [42]. A prototype
mount has been produced that supports the mirror
whilst keeping all material outside the spectrome-
ter acceptance. The design also isolates the mir-
ror from thermal expansion that could otherwise
lead to deformation of the mirror profile. The de-
tails of the mount design are given in Sect. 4.5.3.
In Fig. 4.6 (a) its long term stability is shown by
means of monitoring its tilt over 1000 hours. After
initial relaxation the fluctuations of vertical and
horizontal tilts stay well within the 0.1mrad re-
quired.

The precision of the tilt adjustment needs to
be about 1 mrad, in order to allow the alignment
parameters to be evaluated using Cherenkov ring
data with a precision of 0.1mrad. The mount ad-
justment precision is shown in Fig. 4.6 (b), where
two datasets for positive and negative adjustment
coincide to within 0.5µrad after an integrated ad-
justment approaching 30mrad. A tilt change of
0.56mrad corresponds to a screw turn of 36◦, which
enables a sufficiently precise adjustment. The rela-
tionship between tilt and screw-turn is essentially
linear.

4.3.2 Aerogel

Since the Technical Design Report [7], the R&D
programme on aerogel produced a quality of aerogel
with very high clarity and a thickness of 4 cm [43].
These aerogel tiles have been tested at the CERN-
PS beam T7, and the results [44] are summarized
here.

Possible ageing of the aerogel due to irradiation
from different sources, or from absorption of hu-
midity, has also been studied. Aerogel tiles were ir-

radiated with intense γ, proton and neutron beams,
or exposed to humid air flow, and their optical pa-
rameters were measured to monitor ageing, includ-
ing the transmittance, clarity and index of refrac-
tion. Inside the RICH1 detector, aerogel tiles will
be positioned at a radial distance from the beam of
about 5 cm and at about one metre downstream of
the interaction point. As a consequence, they will
be exposed to a significant particle flux [45].

Testbeam

The experimental setup consists of a light-tight
black painted aluminium vessel, an aerogel radi-
ator and a spherical mirror of 60 cm focal length.
Nitrogen is flushed to preserve the quality of the
hygroscopic aerogel tiles.

The results presented here concern two tiles
of 7 × 8 × 4 cm3 and 10 × 10 × 4 cm3, pro-
duced by the Boreskov Institute of Catalysis in
collaboration with the Budker Institute of Nuclear
Physics in Novosibirsk [46]. They were tested sep-
arately and together to form a total thickness of
8 cm. The optical properties of these aerogel sam-
ples were measured in the laboratory. The tiles
are hygroscopic with refractive index 1.0306 and
1.0298 respectively (at λ = 400nm). From the
curves of transmittance as a function of wavelength
in the range 200–900nm, the clarity coefficients
C = (72.2± 0.1)× 10−4µm4/cm and (64.4± 0.1)×
10−4 µm4/cm were determined for each tile, fit-
ting Eq. (4.1). The clarity determined for the 8 cm
stack was C = (69.5± 0.1)× 10−4µm4/cm. The A
coefficients were (92.0±0.1)% and (95.9±0.1)% for
the individual tiles and (88.2 ± 0.1)% for the 8 cm
thickness.

Data were taken under different conditions,
changing the thickness of the aerogel (4 or 8 cm),
the beam momentum (6, 8, 9, 10 GeV/c) and the
particle charge. Highly relativistic charged parti-
cles (β � 1) produce Cherenkov photons in aero-
gel with refractive index n = 1.030 at an angle of
242mrad with respect to the particle direction. A
0.3mm-thick glass filter6, was added in some runs,
at the exit wall of the aerogel radiatior, to absorb
UV photons above ∼ 4 eV, which are most affected
by Rayleigh scattering.

The detection of the Cherenkov photons pro-
duced inside the aerogel was performed using four
Pad HPD’s positioned in the focal plane of the mir-
ror, providing a geometrical coverage of about 30%
of the total ring. The design, fabrication and per-
formance of the Pad HPD is described in [47].

6Schott D263 T borosilicate glass.
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Table 4.2: Photoelectron yield, in the “on-ring”
region, scaled to full ring coverage.

No Filter Filter D263
4 cm Data 9.7±1.0 6.3±0.7

MC 11.5±1.2 7.4±0.8
8 cm Data 12.2±1.3 9.4±1.0

MC 14.7±1.6 10.1±1.1
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Figure 4.7: Distribution of the reconstructed
Cherenkov angle for 4 cm-thick aerogel.

The number of detected photoelectrons has
been evaluated separately in each HPD, summing
over all the pads in the geometrical region de-
fined as within three times the resolution around
the fitted radius (“on-ring” region). The num-
ber of photoelectrons in each pad has been deter-
mined by analysing the corresponding ADC spec-
tra. The same procedure has been applied to a
Monte Carlo simulation. The comparison between
data and Monte Carlo, for different thicknesses of
aerogel and with or without the filter, is shown in
Table 4.2. The measured yields are typically within
15% of the expectation.

The Cherenkov emission angle θC is extracted
from the photoelectron hit coordinates and the
knowledge of the geometry of the system using the
re-tracking algorithm described in [48]. The mea-
sured θC distribution of detected photoelectrons is
shown in Fig. 4.7, for a run of about 30k events
taken using 4 cm of aerogel without filter.

The measured mean Cherenkov angles for the
different samples, with or without filter, are in
good agreement with the expectations. However

the resolution on the Cherenkov angle was about
20% poorer than the value expected for this exper-
imental setup. The source of this discrepancy is
not believed to be the aerogel; it will be further
investigated using a different photodetector setup
in a test beam run later this year.

Radiation hardness

To investigate the effect of charged particle irradi-
ation, one tile (50×50×23 mm3) has been exposed
to a proton source [49] using the CERN-PS T7
beam. The primary proton beam had momentum
of 24GeV/c, the beam spot was 2×2 cm2 wide and
fluxes were in the range 1–3 × 1013 p/cm2/hour.
Because of the small size of the beam, irradiation
was concentrated only at the centre of the tile. The
exposure was made in six steps, with a total fluence
of 52×1012 p/cm2. The first three steps correspond
each to about one year of operation of LHCb, the
last ones to larger doses that will not probably be
reached in the lifetime of the detector.

Another tile of aerogel was exposed to neutrons,
this time irradiating uniformly the whole tile [50].
Secondary particles in the irradiation cavity were
neutrons (50–1000keV), p, π+, π− (0.3–4GeV)
and γ (0.1–100MeV). An energy cut at 100keV
was made to calculate the dose of neutrons. In or-
der to separate effects due to the handling of the
tiles, measurements were also made systematically
on a reference tile which was not irradiated, with
optical parameters A and C close to those of the
irradiated ones at the start.

Figure 4.8 shows the results concerning the clar-
ity. For proton irradiation, no evidence of degrada-
tion is visible: a linear fit has been superimposed
on the data from both the irradiated and reference
tiles, with slope consistent with 0. The data col-
lected under the neutron exposure show an increas-
ing trend for the clarity coefficient, but this is also
seen in the reference tile, and may be due to hu-
midity effects.

Tiles of hygroscopic and hydrophobic aerogel
were also irradiated with γ from a radioactive 60Co
source used in a Gammacell7 220 unit [51] located
at the Istituto Superiore di Sanita’ in Rome. The
source provides a uniform irradiation by gamma
rays with an energy of 1.3 and 1.7MeV. Seven ir-
radiation steps provided a total dose of ∼ 230kGy,
corresponding to the dose absorbed by the inner-
most region of the aerogel radiator in ∼ 30 years of

7Gammacell 220 is a registered name of the Atomic En-
ergy of Canada Limited (AECL) and MDS Nordion Inter-
national.
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Figure 4.8: Clarity as a function of the absorbed
dose with (a) protons and (b) neutrons, for both
the irradiated and reference tiles. A linear fit is
superimposed.

operation of LHCb. No detectable change of the
clarity was observed.

Humidity absorption

An aerogel tile was exposed to humid air flow whilst
placed on a balance. The absorption was then mon-
itored by the change in weight of the tile, and the
clarity C was measured as the water absorption
increased. An increase of C as a function of the
absorbed water is observed, as shown in Fig. 4.9.
The initial conditions could, however, be restored,
by baking the tile at a temperature of ∼ 500◦C for
four hours.
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Figure 4.9: Clarity coefficient as a function of the
relative change in mass due to water absorption;
the round point shows the value obtained after bak-
ing the tile.

4.4 RICH 1 performance

4.4.1 RICH1 simulation

Following the procedure established in the RICH
TDR, the response of the RICH system has been
modelled within the LHCb GEANT 3-based sim-
ulation program. The geometries and material of
both RICH counters were updated to reflect the
designs presented in this document.

The Cherenkov process itself and response of
the photodetectors was described with “in house”
code which had been verified against test-beam
data. The transmissions, reflectivities and pho-
todetector quantum efficiency were set to the nom-
inal expectations. All known background sources
were included, namely rings from secondary parti-
cles, photons from Rayleigh scattering in the aero-
gel, and the effects of charged particles striking the
photodetector windows.

An improvement to the realism of the simula-
tion with respect to that performed for the TDR
was the inclusion of “spillover”. Late arriving pho-
toelectrons from previous beam crossings falling
within the time window of the event of interest were
included in the digitisation. This was found to have
little impact on the RICH performance.

In the Cherenkov angle calculations and event
pattern recognition, only tracks found and recon-
structed by the algorithms detailed in Chapter 7
were considered. This is in contrast to the TDR,
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Table 4.3: The mean number of detected photo-
electrons,Npe, and the angular resolution, ∆ θC , on
the reconstruction of the Cherenkov angle for single
photoelectrons for β � 1 well measured tracks in
physics events. The numbers in brackets are those
values at the time of the RICH TDR.

Radiator
Aerogel C4F10

Npe 6.8 (6.6) 30.3 (32.7)
∆ θC [mrad] 1.89 (2.00) 1.27 (1.45)

where Monte Carlo truth information was used in
the track finding. The pattern recognition and
particle-identification performance is discussed in
Chapter 8.

4.4.2 Photoelectron yield and angu-
lar precision

The intrinsic RICH performance can be quanti-
fied by Npe, the number of photoelectrons detected
per β � 1 track, and the corresponding resolu-
tion for single photoelectrons on the Cherenkov an-
gle, ∆ θC . These are shown in Table 4.3 along
with the equivalent numbers at the time of the
TDR. Table 4.4 shows the component terms in the
Cherenkov angle resolution: the emission point er-
ror, the chromatic error, the finite pixel size error
and all these terms combined (“all RICH”). The
resolution on the track direction (“tracking” ) con-
tributes a further uncertainty.

Not included in the standard simulation of the
Cherenkov emission, and therefore absent from the
table of resolution numbers, is the angular smear-
ing introduced for the C4F10 radiator by the cur-
vature of the tracks in the magnetic field present
in RICH1. Dedicated studies have shown this ef-
fect to contribute a further 0.3mrad, averaged over
the track sample. For individual tracks it is given
approximately by 4 mrad/p (for p in GeV/c), and
is only significant at low momenta. In this regime
it is the aerogel which dominates the particle iden-
tification, for which the bending in the radiator is
negligible.

It can be seen that the re-design of RICH1 has
not impaired the detector performance. The new
optics has resulted in a marginally improved res-
olution. The photoelectron yield from the C4F10

radiator has fallen by 10%, mainly because of intro-
duction of the additional plane mirror. No change
is seen for the aerogel, because the geometrical ac-

Table 4.4: The RMS widths (in mrad) of the con-
tributions to the Cherenkov angle resolution, ∆ θC ,
for single photoelectrons and β � 1 well measured
tracks in physics events. The pixel contribution
of 0.62mrad refers to the HPD; it increases to
0.75mrad for the MaPMT.

Contribution Aerogel C4F10

Emission 0.29 0.69
Chromatic 1.61 0.81
Pixel 0.62 0.62
All RICH 1.77 1.22
Tracking 0.52 0.40
Total 1.89 1.27
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Figure 4.10: Hit pixel multiplicity in the RICH de-
tectors, with the present simulation and at the time
of the RICH TDR.

ceptance of the photodetector plane has increased
for these larger rings.

The resolution of RICH2 has not changed sig-
nificantly with respect to that at the time of the
TDR. The photoelectron yield has increased as a
result of the 20% increase in radiator length since
the TDR [32].

4.4.3 Pixel multiplicities

Since the time of the RICH TDR the beampipe de-
sign has been optimised and the material changed
from aluminium to beryllium in the first section,
and Be-Al alloy for the second section. This, to-
gether with the new low-mass RICH1, has led to a
significant reduction in the number of photodetec-
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tor hits from secondary particles. This is evident
in Fig. 4.10 which shows the hit pixel multiplic-
ity per event for the present simulation, compared
with that at the time of the TDR. The reduction
is less dramatic for RICH2 because of the increase
in its radiator length since the TDR.

This cleaner environment makes the task of the
RICH pattern recognition simpler and reduces pro-
cessing time.

4.5 RICH 1 design

The current status of the new RICH1 design is
presented in this section. Central to the mechani-
cal design is the magnetic shielding of the photon
detectors, so this comes first. Details of the me-
chanical design follow. The design of some com-
ponents (e.g. the exit window) has reached an ad-
vanced stage, while others (e.g. the gas vessel) are
likely to evolve before the final engineering design is
completed. This will be reported in an engineering
design review in 2004.

4.5.1 Magnetic Shielding

The bending of charged-particle tracks in the fringe
field between the VELO (where the magnetic field
must be small) and the TT station is an important
requirement in the Level-1 trigger. The RICH1
photon detector arrays sit in the fringe field of the
magnet, from which they must be shielded to a level
consistent with efficient operation of the MaPMT’s.

The design goal for the shielding is to reduce
the magnetic field everywhere in the plane of the
photon detectors (Bmax) to < 2.5 mT while main-
taining a field integral along the z-axis from 0 to
250 cm (Btrig) of > 0.15 Tm. Further shielding will
be provided using thin Mumetal sheet around each
MaPMT, but this has not yet been included in the
models described below.

The problem has been modeled extensively us-
ing the TOSCA/OPERA8 finite element software
and the effect of varying the parameters of the de-
sign are now rather well understood, although the
absolute predictions of the models have yet to be
confirmed experimentally. One global conclusion
from the modeling is that the changes required to
increase the field integral also increase the field in-
side the shielding. The resolution of these conflict-
ing goals is only achieved by adding iron extension
blocks between the shielding boxes and the magnet.

Each shield (top and bottom) basically con-
sists of a 5-sided soft iron box that is open toward

8Vector Fields plc, Oxford, UK.

Figure 4.11: Exploded view of the components of
the RICH1 magnetic shielding. Coordinates are in
mm.

the beam line to allow the Cherenkov light to en-
ter. The addition of blocks of iron mounted on
the downstream vertical face channels the fringe
field from close to the magnet poles to maximize
Btrig. The elements of these boxes can be seen in
Fig. 4.11.

The magnetic design is constrained by several
other factors including the obvious need for an un-
obstructed light path to the photon detector. The
available spatial envelope must be respected and
the gravitational and magnetic forces must be ac-
commodated in the final mechanical design. In par-
ticular the assembly of the beam pipe to the VELO
and the subsequent sealing of the RICH 1 gas vol-
ume to the VELO window requires that the up-
stream vertical walls cannot approach closer than
55 cm to the beam pipe at x = 0, although some
shaping around the aperture for the circular win-
dow is possible. The availability of raw ARMCO
material may also restrict the thicknesses of the
shielding wall to multiples of 5 cm.

In the absence of any shielding boxes in the
magnetic model, the value of Btrig is about 10% be-
low the target value whereas the field at the photon
detectors is about 25 times too high. The required
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Figure 4.12: Results from the TOSCA model. The
upper plot shows the B-field through the vertical
cross section of the shield at x = 0. The magnet
coils are seen at the right, from where flux is chan-
nelled via the extension block through the top of
the shielding box and down the upstream pole. The
arrows indicate the direction of the field, its mag-
nitude (where it exceeds 2 kG) is indicated by the
grey coding. Inside the box the MaPMT’s experi-
ence a field whose main component is axial. The
lower plot shows the magnitude (in gauss) of the
B-field at the photodetector plane.

increase in Btrig is obtained by routing the flux
from close to the LHCb magnet down through the
upstream vertical face of the shield, the upstream
pole. The effect is demonstrated in Fig. 4.12, which
shows the B-field (grey-coded) in a vertical section
through one shield. The iron is not saturated.

The values of Btrig and Bmax strongly depend
on how close (ymin) the upstream pole approaches
the beam line. Figure 4.13 shows how the B-field
along the z-axis varies for values of ymin of 37 cm
and 65 cm. The sensitivities of both Btrig andBmax

to this parameter are shown in Fig. 4.14 where it
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Figure 4.13: B-field along the beam line with
upstream pole at y = 37 cm (upper curve) and
y = 65cm (lower curve).
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Figure 4.14: Sensitivity of Bmax and Btrig to the
vertical distance of the upstream pole from the
beam line. Open (full) triangles refer to the field
integral as a fraction of the target value with (with-
out) the extension blocks. Open (full) squares re-
fer to the field at the photon detector plane as a
fraction of the target value with (without) the ex-
tension blocks.

becomes clear that the mechanical assembly con-
straints limit what can be achieved. However an
acceptable solution is achieved for ymin = 55 cm.

The other major factor is the design of the
downstream blocks. The blocks are essential to
reach the design goal for Btrig, but if their size is
too large the limit of acceptability for the MaPMT
shielding is exceeded. Figure 4.15 shows the sen-
sitivities to the size of these blocks, including the
result obtained with the blocks removed. The effect
of the weight, shape and position of the blocks has
been investigated taking into account that space
must be left between upper and lower blocks to
mount the TT station. Figure 4.15 (a) shows the
sensitivity of Btrig to the weight of the blocks for
three different values of the their z-dimension. It is
clear that as the blocks approach closer to the mag-
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Figure 4.15: Sensitivity of (a) Btrig and (b) Bmax

to the weight of the extension blocks, for three dif-
ferent block lengths: 70 cm (triangles), 50 cm (dia-
monds), 30 cm (circles). (Note that the final values
of other shielding parameters have not been im-
posed here.)

net more flux can be concentrated to increase the
field integral (the magnetic forces also increase).
The Bmax sensitivity to the same parameters shows
(Fig. 4.15 (b)) an increase correlated with Btrig,
although with almost no sensitivity to the shape
of the block. An optimal y-position has also been
searched for and appears to be reached when the
block is roughly in line with the horizontal surface
of the boxes, although small improvements can be
achieved by tilting the blocks in the y-z plane.

In a similar way the sensitivities to many other
parameters have been investigated, including the x-
dimension of the shields, the wall thicknesses, types
of iron, extent of the side plates and the shape of
the upstream pole.

A baseline design has been defined which satis-
fies the magnetic requirements and the constraints
imposed by the mechanics. The shielding boxes
will be constructed from ARMCO iron, all walls
being 10 cm-thick apart from the upstream pole
which will be limited to 5 cm, to provide space
for the plane mirrors. The upstream wall begins
at z = 99 cm and the downstream wall ends at
z = 216.5 cm. The shape in the y-z plane is as
shown in Fig. 4.12, although the addition of extra
iron to the upstream pole is already foreseen to im-

prove the shielding inside the box. The overall di-
mensions per box, excluding the extension blocks,
are x = 210 cm, y = 115 cm and z = 117.5 cm and
each box will weigh approximately 6 tonnes. The
blocks will be 210 cm×20 cm×50 cm giving each
block a weight of 1.7 tonnes. The total weight of the
structure is 15 tonnes. The magnetic forces have
been calculated by integrating the Maxwell stress
tensor over the surface. The horizontal magnetic
force on each box (towards the magnet) is about
70kN and the vertical component, acting between
the shielding boxes, is approximately 8 kN.

The mechanical design of the boxes allows for
dismantling into smaller pieces. This may be nec-
essary in any case depending on the load limit of
the crane in the VELO/RICH1 zone, but is also re-
quired by the beam pipe and RICH1 optics instal-
lation and access constraints. The extension blocks
are removable in order to allow the whole RICH1
detector to move downstream in z during the beam
pipe installation. Depending how the upper box is
supported (it may be tied to the cavern wall), its
downstream wall may have to be removed at that
time. The sides are removable to allow access to
the mirrors and photon detectors and a cabling slot
must also be incorporated.

4.5.2 Mechanics

Support structure

To help describe how the RICH1 shielding is po-
sitioned and supported, four separate components
are defined:

1. The lower magnetic shield.

2. The gas enclosure with integral framework to
support the optical components.

3. The upper shield.

4. The upper shield support system.

The lower shield is secured to the floor using a sim-
ilar method to the superstructure of RICH2 [32].
Adjustment mechanisms at the interface between
the lower shield and the floor will allow it to be
positioned, surveyed and fixed with respect to the
VELO and the nominal beam line. Final adjust-
ments follow the installation of the beam pipe, as
described in Sect. 4.5.5.

The lower shield forms a support platform for
the gas enclosure with its integral optics framework
and also for the gravitational load of the upper
shield. The gas enclosure and upper shield are es-
sentially decoupled.
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The upper shield is supported via four non-
magnetic support pillars sitting outside, and inde-
pendent of, the gas enclosure. When the magnet
is not powered this structure is mechanically sta-
ble, and the attachment of the shielding side plates
provides additional rigidity. However, further brac-
ing to the walls and floor is necessary to balance
the horizontal magnetic forces when the magnet is
energized. A finite element analysis [52] of a simi-
lar structure has shown that deflections can be re-
stricted to the required level.

During installation of the beam pipe, RICH 1
(with the optics and the photon detector arrays
removed) is required to move 600mm downstream
on rails. Both the upper and lower shield will move
together with the gas enclosure, which is positioned
and fixed onto the lower shielding during the beam
pipe installation.

Gas enclosure

The gas vessel shown in Fig. 4.17 is essentially an
aluminium frame fitted with a skin of aluminium.
The skin will add to the rigidity of the module. The
frame provides the support for all RICH1 optical
sub-assemblies (aerogel, spherical mirrors, flat mir-
rors and photon detectors). The shape of the vessel
is roughly cubic and all six faces have openings:

• The upstream face accommodates the seal to
the VELO.

• The downstream face accommodates the
RICH1 exit window and its integral seal to
the beam pipe flange and is described in de-
tail below.

• Apertures in the top and bottom faces are
sealed by quartz windows behind which sit
the photon detector arrays.

• Access panels in both the vertical side-walls
are required for installation, alignment and
servicing of the mirrors. These access hatches
are covered by parts of the side shielding
walls, which will have to be removed to per-
mit any operations inside the gas enclosure.

Some features of the above design are noted
here:

• The apertures in the upstream and down-
stream vertical faces must be larger than the
acceptance and sufficiently large to allow the
VELO window to pass through during the
beam pipe installation.

Figure 4.17: The RICH1 gas vessel, with exit-
window and side-access panels removed. The top
and bottom panels are sealed with quartz windows
that transmit Cherenkov light to the photon detec-
tor array.

• It is the diameter of the bellows (the seal to
VELO) that sets the limit to which the up-
stream shielding pole can approach the beam-
line.

• All the gas seals will be implemented using
O-rings made of Ethylene Propylene Diemo
Monomer (EPDM), which has been shown
to be unaffected by the fluorocarbon radia-
tor gas.

• The inside of the enclosure and the bellows
will be painted matt black to avoid unwanted
reflections of scattered light.

• The framework that forms the skeleton of the
gas enclosure will include adjustable fixing
points for all the optical components (aero-
gel, spherical mirrors, flat mirrors and photon
detectors).

Seal to VELO

A bellows assembly is used to seal RICH1 to the
VELO. It is attached in two stages, firstly by seal-
ing the downstream flange of the bellows to the
inside surface of the gas enclosure and secondly, by
sealing the upstream flange of the bellows directly
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Figure 4.16: The RICH1 exit window. Dimensions are in mm.

to the VELO tank. Although the bellows is a sepa-
rate unit, the installation sequence dictates that it
must be mounted within the gas enclosure so that
the beam pipe can pass through it during its in-
stallation. All access to these seals is from within
the RICH1 gas volume.

Exit window and seal to beam pipe

The exit window is shown in Fig. 4.16. It has di-
mensions 1556mm (horizontal) × 1322mm (verti-
cal) and is fabricated as a sandwich using a 16mm-
thick core of rigid polymethylacrilimide foam9 with
0.5mm-thick carbon-fibre skins. The downstream
surface is at z = 2155mm. Close to the beam
pipe the window is bonded to a circular pre-formed
polyimide foil, 225mm diameter and 150µm thick.
This foil is used to seal to the beam pipe with an
epoxy bond10 to an annular fin, already machined
into the beam pipe at z = 2146mm. The foil is cor-
rugated to reduce longitudinal forces on the beam
pipe. Figure 4.18 illustrates the details. Finite ele-
ment calculations on the composite structure show
that a differential pressure of 500Pa across the win-
dow exerts an acceptable force of about 6N on the
beam pipe.

9ROHACELL IG51.
10The epoxy needs to be qualified at 250◦C if it is to

remain in place throughout the beam pipe bake-out.

Quartz windows

Two 5mm-thick quartz windows, approximately
130 cm×65 cm, separate the radiator gas volume

Figure 4.18: The RICH1 exit window, showing de-
tail of its seal to the beam pipe.
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from the photodetector assemblies. Each window
is made from two separate pieces of quartz, bonded
together via a narrow stainless steel I-section strip,
and sealed into a frame. The joint between the
two pieces is positioned to coincide with a bound-
ary between MaPMT modules to minimise the re-
duction in active area. The windows are fastened
and sealed to flanges incorporated into the gas ves-
sel. The quartz will be coated with a multi-layer
dielectric anti-reflection coating. A single layer of
MgF2 on a fused silica substrate reduces surface re-
flectance to less than 1.5% per surface over a broad
spectral band. The design of these windows is very
similar to those of RICH2 and is described in the
Engineering Design Review [32].

Photon detector mounting

The two photon detector assemblies, shown
schematically in Fig. 4.1, each contain 880
MaPMT’s. The MaPMT’s are fitted with individ-
ual silica lenses and 1mm-thick Mumetal shields
and plug into a module carrying the dynode voltage
divider and the Beetle chip. Each module carries
16 MaPMT’s and eight Beetle chips. The power
dissipation is expected to be about 800W in each
assembly and water cooling will be necessary. The
photon detectors are accessed by removing the side
walls of the magnetic shield and withdrawing the
assembly laterally on rails.

A design study [53] for the mounting and cool-
ing of MaPMT’s in RICH2 was carried out at the
time of the RICH TDR. Features from this study
are incorporated into the design of the RICH1 sys-
tem.

4.5.3 Optics

Mirror arrays and mirror supports

The focusing of Cherenkov light will be achieved
using four spherical mirrors, one in each quadrant,
each tilted to bring the image out of the spectrom-
eter acceptance. Sixteen flat mirrors, arranged in
arrays of four per quadrant, will reflect the image
from the spherical mirror onto the photodetector
plane outside the spectrometer acceptance. The
spherical mirror support shown in Fig. 4.19 is de-
signed to allow adjustment of the horizontal and
vertical alignment of each mirror. It fixes to L-
shaped frames mounted from the gas enclosure (see
Fig. 4.20) such that the entire mounting system is
situated outside the spectrometer acceptance.

The spherical mirrors are required to be as
lightweight as possible and there is a possibility of

deformation of the mirror during the processes of
support and alignment. To minimise this risk each
mirror is fixed to an L-shaped interface plate run-
ning along the two sides furthest from the beam
pipe. This entire unit is located outside the spec-
trometer acceptance and is supported at the three
corner points by threaded spindles received on the
optical frame by threaded inserts. The spindles are
terminated on the interface plate by ball joints so
that rotating the threaded spindles adjusts the in-
clination about the horizontal, vertical and one di-
agonal axis. Only one of the three support points
is fixed with the other two allowed motion in the
plane of the mirror. This removes the effects
of thermal expansion that could otherwise induce
stress and deform the mirror.

In each quadrant the flat mirror array con-
sists of 2×2 mirrors mounted to a 40mm-thick alu-
minium honeycomb panel to form a continuous sur-
face. The mounts have the same design as used
for the RICH2 mirrors. These are reported in the
RICH2 EDR [32] and consist of a polycarbonate
ring glued to the back of each flat mirror with epoxy
resin, and a corresponding polycarbonate tube in-
sert fixed to the flat panel. This system has been
demonstrated to be stable in the vertical and hor-
izontal projections to within 0.04mrad over 1500
hours. Once aligned the complete panel of mir-
rors is supported as a unit on the pivoting mount
shown in Fig. 4.21, which itself is fixed to the op-
tical frame. This allows adjustment of vertical and
horizontal tilt to bring the image onto the photode-
tectors as well as an uncoupled motion along the

Figure 4.19: Details of the adjustment mechanism
for the spherical mirrors. Dimensions are in mm.
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Figure 4.20: Spherical mirrors mounted in RICH1
showing their L-shaped support frames and mount-
ing structure located outside the LHCb acceptance.

normal to the mirror surface to adjust the optical
path length.

Mirror specifications

The spherical mirror surfaces have a radius
of curvature of 2400mm projected onto a
820mm×600mm rectangle. The mirrors are po-
sitioned so that the virtual point where the spher-
ical surfaces intercept the z-axis is located at z =
1930mm. The centres of curvature of the upper
and lower mirror assemblies are then positioned at
[x, y, z] = [0,±777.7,−340.5mm] with respect to
this point. The lightweight spherical mirrors will
be manufactured either from a 2mm-thick carbon-
fibre/epoxy composite substrate coated by vacuum
deposition with a high-purity aluminium reflective
layer and a protective overcoating, or from 3mm-
thick beryllium, coated with a 0.3mm glass skin on
which the reflective coating is deposited. The ther-
mal expansion coefficients of the glass and beryl-
lium are well matched. Using these technologies
the RICH1 optical specifications can be achieved
whilst maintaining a mirror material budget at the
level of about 1%X0.

The flat mirrors have dimensions

Mirror surface

Aluminium honeycomb

Figure 4.21: Support mechanics for one quadrant
of flat mirrors. View along the beam line (above)
and side view (below).

370mm×387mm, arranged in two 4×2 planar ar-
rays above and below the beam. They are inclined
in the y-z projection and the planes lie between
[y, z]=[±350, 1310mm] and [±1100, 1118.5mm].
These arrays are outside the spectrometer accep-
tance so have no impact on material budget. The
baseline design adopts the RICH2 technology, re-
ported in [32], of 6mm-thick rectangular polished
glass panels with an aluminium reflective layer.

4.5.4 Gas system

The RICH1 gas radiator has a total volume
of about 6m3 and C4F10 will be used as the
Cherenkov medium. C4F10 has a vapour pressure
of 1013mbar at −1.9◦C and the refractive index at
room temperature and pressure is well described by
a Sellmeier approximation:

(n− 1) × 106 =
0.2375

1/73.632 − 1/λ2
, (4.2)

with the wavelength λ in nm. The basic philosophy
of the gas system has not changed significantly from
what was presented in the LHCb RICH TDR [7].
Although all possible precautions will be taken in
the construction and in the operation of the RICH1
detector, operational experience from the DELPHI
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Figure 4.22: Sketch of the main components in a
gas system with a mixture of C5F12 and C3F8.

and the COMPASS experiments has indicated that
it is prudent to anticipate a mean loss of 2 to 3 kg
of fluid for each day of operation for these thin
walled detectors with long O-ring connections. The
main supplier 11 of C4F10 has discontinued the pro-
duction of this fluid and the price of the product
has thereby increased by a factor of about 3, to
more than 200CHF/kg. We have therefore chosen
to incorporate into the gas circulation system the
possibility to work with a mixture of two perfluo-
rocarbons, C5F12 and C3F8. A 50/50 mixture of
C5F12 and C3F8 would have a refractive index at
NTP given by

(n− 1) × 106 =
0.1999

1/79.862 − 1/λ2
, (4.3)

with the wavelength λ in nm. The chromatic
aberration for this mixture is only slightly larger
than for pure C4F10. Its dew point would be at
∼ 11.5◦C, well below the lowest temperature in the
experimental cavern. The refractive index, light
absorption and scintillation spectrum for the pure
fluids are known; the proposed mixture will be
tested in a beam in 2004. A sketch of the main
components of the gas system is shown in Fig. 4.22.
Thin-film membranes are used to remove molecules
with small kinetic diameter like N2 which is used
as a pressure-stabilising gas. The efficiency of these
membranes is shown in Fig. 4.23. The gas system
can clearly also work with pure C4F10.

11Performance Chemicals and Fluids, 3M Speciality
Chemicals Division, 3M Center, Building 223-6S-04, St.
Paul, MN 55144-1000, USA.
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Figure 4.23: Flow rate through a thin-film mem-
brane as function of the kinetic diameter of the
molecule.

4.5.5 Installation

Installation of the RICH1 detector is strongly cou-
pled with the VELO, the beam pipe and the TT
chamber, and the procedure is sequential. First the
VELO vacuum tank has to be located at its final
position, then RICH 1 is brought into the zone. The
mirrors are removed and the beam pipe is installed
and fixed to the VELO. Then RICH1 is moved
to its final location and the exit window fitted.
Seals are made to the VELO tank and the beam
pipe. Following the insertion of the optical compo-
nents, aerogel and photon detectors, the gas vessel
is sealed and the TT chamber is installed. The
detailed sequence, listed below, has been prepared
together with the technical coordination team and
discussed with the LHCC installation review com-
mittee:

1. RICH1 is lowered into the cavern and trans-
ported using temporary lifting gear to its po-
sition downstream of the VELO.

2. The structure is surveyed into position, then
moved downstream by 600mm on rails.

3. The beam pipe, fitted with a protective
sheath and attached to the VELO exit win-
dow, is guided and surveyed into position us-
ing temporary supports located within the
RICH gas enclosure. The VELO exit win-
dow is fitted to the vacuum tank.

4. RICH1 is moved upstream on the rails to its
final position and sealed using the bellows to
the VELO tank.
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5. The exit window is fitted and sealed to the
beam pipe.

6. Quartz windows are fitted and mirror assem-
blies installed and aligned to fixed locations.

7. The side panels of the gas vessel are fitted
and the gas vessel tested.

8. The gas vessel is opened and mirrors re-
moved.

9. The beam pipe is baked out.

10. Mirrors are re-installed and gas vessel closed.

11. Photon detectors are installed and aligned.

4.5.6 Safety aspects

The LHCb RICH detectors will follow the CERN
safety rules and codes, CERN safety document
SAPOCO 42 and European and/or international
construction codes for structural engineering as de-
scribed in EUROCODE 3. Specific risks and ac-
tions, as discussed in the Initial Safety Discussion
(ISD) with the CERN Technical Inspection and
Safety (TIS) Commission, were listed in the RICH
TDR. With one exception, that concerning the high
voltage and power specification of the photon de-
tectors, all items remain valid. Instead of the 20kV
operating voltage of the HPD, the MaPMT will use
1 kV maximum, but the total power dissipation will
be closer to 2 kW in each RICH detector. If beryl-
lium mirrors are used safety precautions as spec-
ified in CERN safety document IS25 [23] will be
applied. The requirement is not unique to RICH1
as appropriate safety measures are already foreseen
for the beryllium beam pipe, as discussed in Chap-
ter 2.

Table 4.5: RICH1 project: sharing of responsibili-
ties for the mechanics and optical components.

Task Institutes
Mechanics and optics
Project management Imperial
Gas vessel & superstructure Imperial
Magnetic shielding CERN, Imperial
Mirror supports, engineering Bristol

and manufacture
Mirror procurement, Bristol, CERN

characterization & testing
Exit windows and sealing Rutherford

of gas vessel
Photodetector mounting Imperial
Radiators
Gas system CERN
Aerogel Milano

4.6 Institute responsibilities

Institutes currently working on the LHCb RICH
project are unchanged since the RICH TDR. The
sharing of responsibilities for the main tasks asso-
ciated with the reoptimized RICH1 mechanics and
optics is listed in Table 4.5.



Chapter 5 Trigger Tracker

5.1 Introduction

The Trigger Tracker (TT) is located downstream of
RICH 1 and in front of the entrance of the LHCb
magnet. It fulfills a two-fold purpose. Firstly,
it will be used in the Level-1 trigger to assign
transverse-momentum information to large-impact
parameter tracks. Secondly, it will be used in the
offline analysis to reconstruct the trajectories of
long-lived neutral particles that decay outside of
the fiducial volume of the Vertex Locator and of
low-momentum particles that are bent out of the
acceptance of the experiment before reaching track-
ing stations T1–T3.

The active area of the station will be covered
entirely by silicon microstrip detectors with a strip
pitch of 198µm and strip lengths of up to 33 cm.
Four detection layers amount to a total surface
of approximately 8.3m2 of silicon and to approxi-
mately 180k readout channels.

The Trigger Tracker is part of the LHCb Silicon
Tracker project, together with the Inner Tracker
that covers the innermost part of tracking sta-
tions T1–T3. Readout electronics and infrastruc-
ture such as High Voltage and Low Voltage dis-
tribution and cooling system are a common devel-
opment for Inner Tracker and Trigger Tracker and
have been described in the Inner Tracker Technical
Design Report [6]. In the present document, the
discussion of these items will be limited to a de-
scription of relevant updates since the submission
of the Inner Tracker TDR.

The remainder of this chapter is organized as
follows. A concise description of the layout of
the Trigger Tracker is given in Sect. 5.2 and the
simulation of the detector response is described in
Sect. 5.3. An overview of the R&D program that
has been carried out in order to validate the layout
is given in Sect. 5.4 and the detector design is de-
scribed in Sect. 5.5. The project organization will
be explained in Chapter 10.

5.2 Detector layout

The Trigger Tracker consists of four detection lay-
ers. The first and the fourth layer have vertical
readout strips (x-layers), the second and the third
layer have readout strips rotated by a stereo an-
gle of +5◦ and −5◦, respectively (u/v-layers). The
four layers are arranged in two pairs, with a gap of
approximately 30 cm between the second and the
third detection layers: the first two layers (TTa)
are centered around z = 232 cm, the last two (TTb)
around z = 262 cm.

The active area of the Trigger Tracker covers
the nominal acceptance of the LHCb spectrometer,
which is 300mrad in the horizontal bending plane
of the LHCb magnet and 250mrad in the vertical
plane. At the location of TTa, this corresponds
to a width of 143.5 cm and a height of 118.5 cm,
whereas at the location of TTb it corresponds to a
width of 162.1 cm and a height of 133.8 cm.

In the forward direction, the active area is lim-
ited by the LHC beam pipe that passes through
the detector and has an outer radius of 2.6 cm at
z = 232 cm and of 2.72 cm at z = 262 cm. For
safety reasons, a minimum clearance of 0.5 cm has
to be maintained between beam pipe and any me-
chanical element of the detector. Taking into ac-
count in addition the wall thickness of the detector
box, clearance between the detector box and the sil-
icon ladders, dead space due to ladder mechanics,
and the 0.1 cm-wide insensitive region due to HV
protection features along the edge of the sensors,
the width and height of the square-shaped central
acceptance hole is 7.7 cm at the location of TTa
and 8.0 cm at the location of TTb.

5.2.1 Layout of detection layers

A layout for the detection layers has first been de-
scribed in [54]. It is based upon using 11 cm-long
and 7.8 cm-wide silicon sensors with a readout strip
pitch of 198µm. These are the same sensor dimen-
sions that are used in the Inner Tracker. The layout
for the x-layers in TTa and in TTb are shown in
Fig. 5.1. In TTa, the sensors are arranged in nine
staggered 11-sensor-long ladders that cover the ac-
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tive area to the left and the right of the LHC beam
pipe and in five-sensor-long ladders that cover the
area above and below the beam pipe. In TTb, ten
staggered 12-sensor-long ladders are employed to
cover the active area to the left and the right of the
LHC beam pipe and six-sensor-long ladders cover
the area above and below the beam pipe. Elec-
tronically, each ladder is split into several read-
out sectors, as indicated by different shadings in
Figs. 5.1 and 5.2. In Fig. 5.2, a sketch of the side
view of the station is shown, illustrating the read-
out scheme for the different readout sectors. In
order to minimize the dead material inside the ac-
ceptance of the LHCb detector, front-end hybrids
for all readout sectors are located at the two ends
of the ladder, outside the acceptance of the exper-
iment. The inner sectors are connected to their
front-end hybrids via 33 cm- and 55 cm-long inter-
connect cables. The layout of the u/v layers is sim-
ilar to that of the x layers, except for the fact that
all ladders are individually rotated clockwise, re-
spectively anti-clockwise, by an angle of 5◦ as illus-
trated in Fig. 5.3.

Long readout strips and interconnect cables re-
sult in expected load capacitances of up to 50 pF
at the input of the front-end readout amplifier. In
order to maintain sufficiently high signal-to-noise
ratios for full particle detection efficiency at a tol-
erable noise rate, thicker sensors have to be used for
the Trigger Tracker than for the shorter ladders of
the Inner Tracker. In [54], an estimate was given
that used the measured noise performance of the
Beetle 1.2 readout chip and the expected specific
strip capacitances for silicon sensors and intercon-
nect cables. It showed that 500µm-thick silicon
sensors should give sufficiently high signal-to-noise
values if ballistic deficits can be neglected at the
fast signal shaping times required for operation at
the LHC. As described in Sect. 5.4, measurements
on prototype ladders have demonstrated that suffi-
ciently high signal-to-noise values can even be ob-
tained using 410µm-thick sensors.

In the layout described in [54], the areas above
and below the beam pipe were each covered by a
single ladder. However, in order to ensure full ac-
ceptance coverage, the ladders above and below the
beam pipe have to overlap the adjacent ladders to
the left and to the right of the pipe. This require-
ment defines an upper limit on the possible width of
the beam pipe hole and it was found that the min-
imum required clearance to the beam pipe cannot
be maintained using single ladders of the given sen-
sor dimensions. Thus, two staggered ladders have
to be employed to cover the areas above and below

the beam pipe, as shown in Fig. 5.1.

5.2.2 Detector box

The expected radiation dose in the innermost re-
gion of the Trigger Tracker, close to the beam
pipe, is similar to that expected for the Inner
Tracker [45]. As for the Inner Tracker, the silicon
sensors have to be kept at a temperature below 5◦C
in order to keep leakage currents at an acceptable
level during several years of operation. The shot
noise induced by these leakage currents should not
cause a significant increase in the overall noise and
thus deteriorate the signal-to-noise performance of
the detector. All detector ladders will be housed in
a common thermally-insulating housing that also
provides electrical and optical insulation.

The design of the detector box is described in
Sect. 5.5.3.

5.2.3 Silicon ladders

The silicon ladders employed to cover the areas to
the left and to the right of the beam pipe consist
of eleven or twelve silicon sensors and two or three
readout hybrids that are attached to each end of the
ladder. Mechanical stability is provided by carbon
fibre rails that span the full length of the ladder and
are mounted along the side edges of the sensors.

The short ladders above and below the beam
pipe will be similar but consist of only five or six
sensors and have hybrids attached only at one end
of the ladder.

The design of the silicon ladders is described in
Sect. 5.5.2.

5.2.4 Readout electronics

A sketch of the readout chain is shown in Fig. 5.4.
It is identical for the Trigger Tracker and the In-
ner Tracker. The analogue output signals from the
Beetle front-end readout chips will be transmitted
via approximately 5m-long copper cables to a ser-
vice box that is located in regions of low radiation
load, above and below the station.

In the service box, the signals from each Bee-
tle will be digitised using four parallel 8-bit FADC
channels and serialised by a CERN Gigabit Opti-
cal Link (GOL) chip [55]. The GOL chip is also
used to drive a VCSEL diode and data from twelve
VCSEL diodes, corresponding to four readout sec-
tors, will be transmitted via a 100m-long 12-fibre
optical cable to the Level-1 electronics located in
the LHCb counting room. Instead of the 12-fold
parallel VCSEL transmitter that was described as
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baseline option in the Inner Tracker TDR, twelve
single VCSEL diodes will be employed as these have
been shown to be radiation tolerant [56].

The Level-1 electronics board (TELL1 board)
is a common development for several LHCb sub-
detectors. In the Silicon Tracker, each board
will receive the data from two 12-fibre optical ca-
bles, corresponding to eight readout sectors. It
will perform synchronisation checks, run pedestal-
and baseline-subtraction algorithms, perform zero-
suppression and clustering, and provide an inter-
face to the Level-1 Trigger and the data acquisition
system.

5.3 Simulation of detector re-

sponse

LHCb performance studies using the Trigger
Tracker are described elsewhere in this document.
For these performance studies, a detailed detector
geometry according to the layout described in [54]
has been implemented in the GEANT [57] simula-
tion package of the LHCb detector. The amount
of material implemented in the simulation corre-
sponds to 500µm-thick silicon sensors.

The simulation of the detector response in the
reconstruction package is similar to that for the
Inner Tracker, as described in the Inner Tracker
TDR [6]. Three parameters have been adjusted in
order to account for the thicker silicon sensors, and
for the expected performance of the Beetle front-
end readout chip for the larger load capacitances of
the TT readout sectors:

• A Landau distributed signal corresponding
to a most probable charge of 34,000 e− for
perpendicular tracks was generated along the
particle trajectory. This value was obtained
assuming a ballistic deficit of 10% for a most
probable charge of 37,500 e− generated by a

minimum-ionizing particle in 500µm of sili-
con.

• A Gaussian noise with a sigma of 2700 e− was
generated for each hit readout strip. This
value corresponds to an earlier measurement
of the noise performance of the Beetle 1.2
readout chip for a discrete load capacitance
of 50 pF.

• The pulse shape of the Beetle has been ad-
justed to give a 50% signal remainder 25ns
after the maximum of the pulse.

The signal and noise parameters used in the simu-
lation correspond to a signal-to-noise ratio of 12.6
for the most probable energy loss. It should be
noted that the testbeam measurements described
below have shown that a most probable signal-to-
noise ratio greater than this can be achieved for
signal remainders well below 50%, using 410µm-
thick silicon sensors.

5.4 Summary of R&D and
prototyping

The R&D program for the Trigger Tracker has con-
centrated mainly on the particle detection perfor-
mance of the 33 cm-long readout sectors and on the
design of the interconnect cables that connect the
inner readout sectors of the station to their readout
hybrids at the two ends of the ladder. In addition,
new measurements on a full prototype of the digital
optical readout link is presented below.

With readout strips of up to 33 cm in length,
load capacitances of up to 50pF at the input of
the front-end readout amplifier are expected in the
Trigger Tracker. These large load capacitances will
give rise to significant Johnson noise in the front-
end readout amplifier, since fast electronics with
shaping times of the order of 25ns have to be em-
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Table 5.1: Geometry parameters of prototype ladders.

LHCb3 GLAST CMS
Sensor thickness 320µm 410µm 500µm
Overall strip length 330mm 268.5mm 283.2mm
Strip pitch 198µm, 237.5µm 228µm 183µm
implant width (w/p) 0.25–0.35 0.25 0.25

ployed in order to avoid overlapping events from
consecutive LHC bunch crossings.

This front-end amplifier noise determines the
thickness of the silicon sensors that is required in
order to obtain a sufficiently high signal-to-noise
ratio for full particle detection efficiency at accept-
ably low noise hit rates. R&D for the Inner Tracker
has demonstrated that a most probable signal-to-
noise ratio in excess of ten is required in order to
ensure full particle detection efficiency. On the
other hand, the silicon sensors should be as thin
as possible in order to minimise multiple scattering
of particles traversing the detector. For the sen-
sor thicknesses under consideration, the amount of
charge generated in the silicon scales linearly with
the thickness of the sensor. Ballistic deficits could,
however, become significant with increasing sensor
thickness since the charge collection time in the sil-
icon bulk is of the same order of magnitude as the
shaping time of the front-end amplifier.

Earlier measurements on Inner Tracker proto-
type ladders [58] had shown that a significant loss
of charge collection efficiency occurs for particles
that pass through the central region in between
two readout strips. A careful optimisation of the
readout strip geometry is thus required in order to
optimise the detector performance.

Finally, the shaping time of the Beetle front-end
readout chip can be adjusted within certain lim-
its, by programming an internal register (param-
eter Vfs). Increasing the shaping time, the noise
performance of the chip can be improved, albeit at
the expense of longer pulse shapes. The relevant
pulse-shape parameter for operation at the LHC is
the signal remainder 25 ns after the signal maxi-
mum, i.e. at the time of the next bunch crossing.
If this signal remainder is large enough to pass the
clustering algorithm cuts, signals created by par-
ticles from the previous bunch crossing can cause
“fake” hits, increasing detector occupancy and cre-
ating ghost tracks. One aim of the R&D for the
Trigger Tracker was to measure the signal-to-noise
performance and particle detection efficiency as a
function of the signal remainder.

Several long prototype ladders using silicon sen-

sors of different thickness have been constructed
and tested in a laser setup, using a 1064nm laser to
generate charge in the silicon bulk, and in a beam
test using 120GeV charged pions in the CERN X7
test beam. All ladders were equipped with the Bee-
tle 1.2 readout chip.

5.4.1 Prototype ladders

Prototype ladders have been constructed from the
320µm-thick multi-geometry prototype sensors de-
veloped for the LHCb Inner Tracker, from 410µm-
thick GLAST2000 sensors [59] and from 500µm-
thick CMS-OB2 sensors [60]. Each prototype lad-
der consisted of three sensors bonded in series. The
relevant geometry parameters of the ladders are
summarized in Table 5.1. In the following, they
will be referred to as the LHCb3, GLAST and CMS
ladders, respectively. The LHCb prototype sensors
contained five regions of different strip geometries.
In the following, results will be shown only for a
strip pitch of p = 198µm and an implant width w
corresponding to w/p = 0.35. In addition to the
ladders described here, two additional ladders con-
sisting of two LHCb sensors and of a single LHCb
sensor, respectively, were included in all tests. Re-
sults from all prototype ladders and all strip ge-
ometry regions of the LHCb ladders are described
in [61] and [62].

All sensors were characterised in detail before
being assembled into ladders. The results of these
measurements are summarised in [63]. Measured
CV curves for all sensors are shown in Fig. 5.5.
They demonstrate that all LHCb and GLAST sen-
sors reach full depletion at a bias voltage of 60–
70V, whereas the full depletion voltage of the CMS
sensors varied significantly from sensor to sensor
and lay between 100V and 200V.

Total specific strip capacitances (inter-strip ca-
pacitance plus backplane capacitance) for all sen-
sors are shown in Fig. 5.6. Although the measure-
ment errors for the GLAST sensors are compara-
tively large, the measured capacitances agree well
with calculated values from a finite-element model
of the sensors and show the expected dependence
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Figure 5.7: Photograph of a readout hybrid carry-
ing three Beetle 1.2 chips.

on the ratio w/p.

5.4.2 Readout chip and hybrid

All prototype ladders were equipped with the Bee-
tle 1.2 readout chip, which contains an improved
front-end amplifier compared to the Beetle 1.1 chip
that was used in the R&D program described in
the Inner Tracker TDR [6]. The readout hybrid

Figure 5.8: Photograph of the laser test setup.

was similar to that used in the earlier measure-
ments. Minor modifications of the layout of the
hybrid were necessary since the pad layout of the
Beetle 1.2 chip was not compatible with that of the
Beetle 1.1. A photograph of a readout hybrid car-
rying three Beetle 1.2 chips and bonded to one of
the prototype ladders is shown in Fig. 5.7.

5.4.3 Laser tests

Initial measurements on the prototype ladders were
performed in a laboratory setup using a pulsed
1064nm laser to generate a well-defined amount of
charge inside the silicon bulk. At this wavelength,
the laser beam penetrates the full thickness of the
silicon sensor. The laser beam was focussed to bet-
ter than 20µm and could be moved across the sil-
icon sensor in steps of 5µm. A photograph of the
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Figure 5.9: Beetle 1.2 pulse shapes on central strips, their neighbours and their next-but-one neighbours,
measured in the laser setup for Vfs = 400mV.
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test setup is shown in Fig. 5.8. A detailed descrip-
tion of the setup and the results obtained in the
laser tests is given in [61].

In Fig. 5.9, pulse shapes for each of the three
prototype ladders are shown for a setting of Vfs =
400mV and for a laser position close to a read-
out strip. These measurements were performed by
varying the time delay between the laser pulse and
the sampling time of the Beetle chip. Also shown
in the figure are the induced signals on the direct
neighbours and the next-but-one neighbours of the
strip closest to the laser beam. These induced sig-
nals are due to capacitive coupling between the
strips and can be accurately reproduced in a simu-
lation that takes into account the charge collection
in the silicon sensor, the capacitive network formed
by the readout strips and a SPICE simulation of the
Beetle front-end response [64].

In Fig. 5.10, the measured signal remainder af-

Figure 5.11: Photograph of the beam test setup.

ter 25 ns is shown for the different prototype lad-
ders and for different values of the parameter Vfs.
For Vfs = 400mV, the signal remainder for all
prototype ladders is comfortably lower than 50%,
which is the value used in the simulation of the de-
tector response for all LHCb performance studies
(see Sect. 5.3).

5.4.4 Beam test

A photograph of the setup at the CERN-X7 test-
beam is shown in Fig. 5.11. All prototype ladders
were installed in a common detector box, together
with a beam telescope consisting of four double-
sided silicon detectors that was provided by the
HERA-B vertex detector group. The beam tele-
scope allowed the reconstruction of track coordi-
nates at the position of the prototype ladders with
a spatial resolution of better than 14µm and thus
allowed the study of the detector performance as
a function of the particle impact point relative to
the readout strips. A detailed description of the
setup and of the results obtained in the beam test
is given in [62].

In Fig. 5.12, pulse shapes for the three pro-
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measured in the testbeam for Vfs = 400mV.
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Figure 5.13: Relative amplitudes on central strip, neighbours and next-but-one neighbours for particles
passing through a readout strip.

totype ladders are shown for a setting of Vfs =
400mV and for reconstructed track coordinates at
the position of a readout strip. These measure-
ments were performed by varying the time delay
between the trigger signal and the sampling time
of the Beetle chip. Pulse shapes on the central
strip, the neighbouring strips and the next-but-one
neighbours reproduce those measured in the laser
setup. For all following measurements, the sam-
pling time of the Beetle was adjusted to the time
of the signal maximum.

The induced signals on the neighbouring strips
reach their maximum earlier than the signal on the
central strip, but still have a non-zero pulse height
at the time of the maximum on the central strip.
This gives rise to the cluster shapes illustrated in
Fig. 5.13. As expected from the increasing ratio
of interstrip capacitance to backplane capacitance,
the relative amplitude on the neighbouring strips
increases with the thickness of the sensors. This
cross-talk can give rise to larger cluster sizes, if the
signal amplitudes on the neighbouring strips are

large enough to pass clustering algorithm cuts.
The collected charges on the two closest strips

to a track are shown in Fig. 5.14 as a function of
the relative track position in between the strips.
For the small w/p value of the GLAST ladder,
significant charge sharing occurs over almost the
full interstrip gap, improving the spatial resolu-
tion of the detector. A typical residual distribu-
tion of reconstructed cluster positions and extrap-
olated track positions from the beam telescope is
shown in Fig. 5.15. The RMS of the distribution
of 0.23 strip pitches includes the contribution from
the beam telescope resolution and corresponds to
a spatial resolution of approximately 50µm for the
strip pitch of 228µm of the GLAST ladder.

Signal-to-noise distributions for the three pro-
totype ladders are shown in Fig. 5.16. In all three
plots, full histograms are for clusters associated to a
track (“signal clusters”) and dashed histograms are
for clusters not associated to a track (“noise clus-
ters”). The curves show a fit of a Landau distribu-
tion folded with a Gaussian to the distribution for
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Figure 5.16: Signal-to-noise distributions measured for Vfs = 400mV.
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signal clusters. The fit yields most probable signal-
to-noise ratios of approximately 9.6 for the LHCb
ladder, 15.8 for the GLAST ladder and 21.6 for the
CMS ladder. As expected, the signal-to-noise per-
formance of the LHCb3 ladder is not satisfactory,
whereas for both the GLAST ladder and the CMS
ladder signal clusters can be clearly separated from
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Figure 5.17: Most probable signal-to-noise ratios
as a function of the beam position along the three
prototype ladders, measured for Vfs = 400mV.

noise clusters.
As was shown in Table 5.1, the readout strips

on the GLAST and CMS ladders are approximately
20% shorter than the 33 cm-long readout strips
foreseen for the Trigger Tracker. This fact has to
be taken into account when interpreting the signal-
to-noise performance measured on these ladders.
However, from earlier measurements of the noise
performance of the Beetle readout chip as function
of the load capacitance, the expected reduction of
the signal-to-noise ratio is less than 15%.

A cluster finding algorithm was applied to the
data in order to evaluate the particle detection ef-
ficiency of the prototype ladders. The algorithm is
described in [62]. Clustering cuts were adjusted to
give less than 0.1% noise clusters per readout strip
and event. With these cuts, an average cluster find-
ing efficiency of 96.2% was found for the LHCb3
ladder, whereas efficiencies in excess of 99.8% were
found for the GLAST and CMS ladders.

The signal-to-noise distributions shown in
Fig. 5.16 were measured for a beam position in the
centre of the sensor closest to the readout chip.
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Figure 5.18: Most probable signal-to-noise ratios as a function of the relative interstrip position of the
extrapolated track, measured for Vfs = 400mV.
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Figure 5.19: Cluster finding efficiencies as a function of the relative interstrip position of the extrapolated
track, measured for Vfs = 400mV.

Vfs[mV]

S
/N

LHCb3 ladder Glast ladder CMS ladder
6

8

10

12

14

16

18

20

22

24

0 200 400 600 800 1000
Vfs[mV]

E
ffi

ci
en

cy
 o

n 
st

rip
s

LHCb3 ladder Glast ladder CMS ladder0.90

0.92

0.94

0.96

0.98

1.00

0 200 400 600 800 1000
Vfs[mV]

E
ffi

ci
en

cy
 b

et
w

ee
n 

st
rip

s

LHCb3 ladder Glast ladder CMS ladder0.90

0.92

0.94

0.96

0.98

1.00

0 200 400 600 800 1000

Figure 5.20: Most probable signal-to-noise ratios (left), average cluster finding efficiencies (middle) and
cluster finding efficiencies in the central region between two strips (right) as a function of Vfs.
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Figure 5.21: Photograph of prototype Kapton interconnect cables.

Measurements were also performed for beam posi-
tions on the middle sensor and the sensor furthest
from the readout chip. The most probable signal-
to-noise ratios obtained for the three different beam
positions are shown in Fig. 5.17. For all prototype
ladders the detector performance is constant over
the full length of the ladder.

In Fig. 5.18, most probable signal-to-noise ra-
tios are shown as a function of the relative interstrip
position of the extrapolated track. For all three
prototype ladders a significant drop of the signal-
to-noise ratio is observed in the central region in
between two readout strips. The same effect had
already been observed in the laser tests on these
ladders [61] and in earlier measurements on Inner
Tracker prototype ladders [6]. It can also be repro-
duced in the detector simulation [64] and is mainly
attributed to a loss of charge carriers at the bound-
ary between the silicon bulk and the silicon oxide
layer between the two strips.

Cluster finding efficiencies as a function of the
relative interstrip position of the extrapolated track
are shown in Fig. 5.19. For the LHCb3 ladder, the
efficiency drops below 93% in the central region in
between two strips, whereas for the GLAST and
CMS ladders full efficiency is maintained over the
full interstrip gap.

All results shown so far were measured for a
Beetle shaping time corresponding to a setting of
Vfs = 400mV. Most probable signal-to-noise ra-
tios, average cluster efficiencies and cluster efficien-
cies in the central region in between strips for dif-
ferent settings of the parameter Vfs are shown in
Fig. 5.20. As expected from the noise performance
of the Beetle chip, signal-to-noise ratios for all lad-
ders increase with increasing shaping time (increas-
ing value of Vfs). For the LHCb3 ladder, this leads
to an improved cluster finding efficiency, whereas
for the GLAST and CMS ladders signal-to-noise
ratios are so high that full cluster finding efficiency

is found for all settings of the shaping time.
In conclusion, measurements have demon-

strated that the signal generated in 320µm-thick
silicon sensors is not sufficiently large to ensure full
particle detection efficiency for the 33 cm-long read-
out sectors employed in the Trigger Tracker. For
both the GLAST ladder using 410µm-thick sensors
and the CMS ladder using 500µm-thick sensors,
full particle detection efficiency was obtained over
the full active area of the silicon sensor and for an
LHCb compatible shaping time of the Beetle front-
end readout chip. Measured signal-to-noise ratios
on both ladders are sufficiently high that the less
than 15% reduction expected due to the slightly
longer readout strips of the Trigger Tracker com-
pared to the prototype ladders will not effect this
conclusion. Due to material budget considerations,
410µm-thick sensors are the preferred option for
the Trigger Tracker.

5.4.5 Interconnect cable

As explained in Sect. 5.2, low-mass interconnect
cables of 33 cm and 55 cm in length will be em-
ployed in order to connect the inner readout sec-
tors on a ladder to their front-end readout hybrid.
R&D on these interconnect cables is ongoing. Up
to 54.5 cm-long prototype cables using 15µm-wide
copper traces with a pitch of 91µm on a 50µm-
thick Kapton substrate were produced and tested
in the laboratory. A photograph of two of these
prototype cables is shown in Fig. 5.21. They are
similar to those under development for the Run IIb
upgrades of the CDF and D0 silicon trackers [65].

One relevant parameter for operation in LHCb
is the specific strip capacitance of the cable. It
should be as small as possible as it adds to the load
capacitance at the input of the front-end readout
chip and thus deteriorates the noise performance
of the chip. A specific interstrip-capacitance of
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Figure 5.22: SPICE model of Kapton interconnect cable (left) and calculated total specific strip capaci-
tance as a function of trace width (middle) and substrate thickness (right).

0.17pF/cm has been measured on the prototype
cable [63]. This result compares well to the value
of 0.154pF/cm that is obtained in an electrostatic
calculation using the Maxwell [66] code.

The prototype cables tested so far have no back-
plane and use single strip lines to provide bias volt-
age and ground connection to the sensor. Mea-
surements on these cables have demonstrated that
pick-up noise can be kept small in the laboratory.
Nevertheless, a more solid ground connection be-
tween front-end hybrids and sensors may be desir-
able in order to reduce the risk of pick-up noise in
the LHC environment. Additional prototypes that
are equipped with a backplane consisting of a thin
copper mesh have been received recently and will
be tested soon. As illustrated in Fig. 5.22, electro-
static calculations demonstrate that total strip ca-
pacitances smaller than 0.5 pF/cm can be obtained
using a 100µm-thick substrate with backplane.

Measurements of signal integrity on a prototype
ladder equipped with a 55 cm-long interconnect ca-
ble are currently under way, using the laser setup
described in Sect. 5.4.3.

In addition, a SPICE [67] model of the readout
cable has been programmed. The model is shown
in Fig. 5.22 and will be used in order to obtain
additional input for the optimisation of the strip
geometry.

5.4.6 Readout link

The optical part of the readout link was already
shown to work satisfactorily in tests for the In-
ner Tracker TDR [6]. Those tests did not, how-
ever, yet include the 5m copper link that connects
the Beetle chip to the service box, as described
in Sect. 5.2.4. Measurements on a full prototype
readout link, including up to 15m-long copper ca-
bles to transmit the fully differential analogue out-
put signals of the Beetle 1.2 chip, are described
in [68]. These tests have demonstrated that sig-
nal integrity can be fully preserved using off-the-

shelf unshielded twisted-pair cable (AWG30UTP).
This is illustrated in Fig. 5.23, in which a Beetle
output signal is shown at the input of the FADC.
For this measurement, a differential line receiver
was employed to convert the differential Beetle sig-
nal. Although some increase of the signal risetime
is seen, due to the capacitance of the 15m-long
twisted pair cable, the full information is transmit-
ted. The observed noise on the signal is dominated
by a coherent 80MHz clock noise generated by the
Beetle 1.2 chip1 and was shown to be independent
of the length of the cable used for transmission.
In LHCb, all twisted pair cables will be housed in
a common shielding in order to suppress pick-up
from external noise sources.

Figure 5.23: Beetle output signal measured at the
input of the FADC, using a 5m-long CAT6 cable
plus a 10m-long AWG30UTP cable to connect the
Beetle 1.2 output to the digitiser board.

Furthermore, neutron irradiation of critical
components that will be located in the service box

1The source of this clock noise is expected to have been
eliminated in the next iteration of the chip, the Beetle 1.3.
Furthermore, any noise contribution that has a stable phase
with respect to the LHC clock would be corrected for by
pedestal subtraction algorithms.
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Figure 5.24: Optical power of the VCSEL diode as
a function of the applied bias current, for a non
irradiated diode and for a diode irradiated by 7 ×
1013 1-MeV-equivalent neutrons/cm2.

close to the detector was performed at the Pros-
pero Reactor at CEA Valduc, France. A detailed
description of the irradiation study and the results
obtained is given in [69]. In particular, a VCSEL
diode and optical fibres were irradiated by neu-
tron fluences corresponding to 50, respectively 350,
years of operation at the location of the service box.
As shown in Fig. 5.24, the optical power of the VC-
SEL diode was reduced by 0.6 dB after irradiation,
which is negligible compared to the power margin of
the optical link of 11.5 dB. Similarly, the radiation-
induced additional attenuation of the optical fibre
was shown to be negligible.

5.5 Detector design

The technical design of silicon sensors, ladders and
station mechanics shown in this section is based
upon the station layout illustrated in Figs. 5.1
and 5.2 and relies on the R&D program described
in Sect. 5.4.

5.5.1 Silicon Sensors

The layout of the Trigger Tracker suggests the use
of 11 cm-long and 7.8 cm-wide silicon sensors. The
measurements on prototype ladders described in
Sect. 5.4.4 have demonstrated that 410µm-thick
sensors provide for full particle detection efficiency.
The geometry parameters and technology specifi-
cations for the silicon sensors are summarised in
Table 5.2.

Table 5.2: Silicon sensor geometry and technology
specifications.

Wafer size 6”
Wafer thickness (410±15)µm

Bulk material n type
Bulk resistivity (3–8) kΩ·cm
Crystal orientation <100>

Implant p+ type
Bias resistors (1.5±0.5)MΩ

polysilicon

Readout coupling AC
SiO2 / Si3N4 multilayer

Coupling capacitance > 125 pF/mm2

Overall dimensions 110mm × 78mm
Active area 108mm × 76mm

Strip pitch 198µm
Implant width ∼ 58µm (w/p = 0.35)
Readout metal width ∼ 66µm

5.5.2 Silicon ladders

The design of the silicon ladders follows the lay-
out described in Sect. 5.2.3. The long ladders
that cover the area to the left and to the right of
the beam pipe will be constructed from two half-
ladders, each of which consists of either six silicon
sensors with three readout hybrids attached to one
of its ends, or of five silicon sensors with two read-
out hybrids attached to one of its ends. Each hy-
brid carries three Beetle chips to read out the 384
strips of one readout sector on the ladder. Silicon
sensors are mounted edge-to-edge without overlaps,
in order to simplify the design of the ladder and
to avoid hot spots of material budget. Mechan-
ical stability of the half-ladders will be provided
by 2mm-wide and 6.5mm-high carbon fibre rails
that run along the side edges of the sensors. The
two half-ladders will be joined together by an ad-
ditional 1mm-wide carbon fibre strip that is glued
onto these rails. A sketch of the construction is
shown in Fig. 5.25.

On each half-ladder, the three sensors closest
to the readout hybrids are wire-bonded together
and to a pitch adapter that connects to one the
hybrids. The fourth and fifth sensors on the half-
ladder will be wire-bonded together and to an ap-
proximately 33 cm-long Kapton interconnect cable
that connects to the second hybrid. At the sensor
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Figure 5.25: Cross section of silicon ladder showing
carbon fibre support rails. Dimensions are in mm.

end, the Kapton interconnect cable will be glued
onto a thin AlN support plate that in turn will be
glued onto the sensor as illustrated in Fig. 5.26.
At the hybrid end, the cable will be glued onto
a pitch adaptor that connects to the hybrid. The
last sensor on the six-sensor-long half-ladder will be
connected to the third readout hybrid in a similar
way, using an approximately 55 cm-long intercon-
nect cable.

The interconnect cables will consist of approx-
imately 100µm-thick Kapton, carrying 384 copper
strips on one side and a copper ground mesh on
the other side. The exact geometry of strips and
ground mesh is still subject to optimisation studies.

In order to remove the heat generated by the
front-end readout chips, the readout hybrids will
be mounted onto a copper cooling balcony that
also fixes the ladder mechanically. The balcony
will in turn be mounted onto a cooling plate that
is integrated into the station frame described in
Sect. 5.5.3 below.

The short laddders above and below the beam
pipe will be similar to the half-ladders described
above.

5.5.3 Station mechanics

An isometric drawing of the TT station is shown
in Fig. 5.27. All ladders are housed in a com-
mon thermally, electrically and optically insulat-
ing housing. They are mounted at both ends onto
one of two C-shaped stainless-steel support frames.
Since these support frames are located outside the
acceptance of the experiment, no special care has
to be taken with respect to the radiation length of
the selected materials. Ladders within a detection
layer are pairwise staggered in order to allow for a
small overlap of the sensitive surfaces of adjacent
ladders and avoid acceptance gaps in between the
ladders.

The two support frames are mounted onto pre-
cision rails that are fixed to the extension blocks of
the RICH1 magnetic shielding, above and below

Figure 5.26: Illustration of interface between silicon
sensor and Kapton interconnect cable.

the station. They can thus be retracted from the
beam pipe for detector maintenance and for bake-
out of the beam pipe. The frames include a cooling
plate through which liquid C6F14 at −20◦C is cir-
culated as cooling agent. Additional cooling ribs
are integrated into the side walls of the support
frame in order to keep the ambient temperature
inside the box at the desired value of 5◦C. The de-
tector box will be continuously flushed with cold,
dry nitrogen in order to avoid condensation on the
cold surfaces.

Thermal insulation to the environment is pro-
vided by 2 cm-thick sheets of non-inflammable
polyurethane foam, similar to those used for the
Inner Tracker boxes. In order to provide electri-
cal insulation, the polyurethane sheets are clad on
both sides with 25µm thin aluminium foils. A de-
tail of the region around the beam pipe is shown in
Fig. 5.28. Here, insulation is provided by two con-
ical pieces of polyurethane foam that are mounted
onto the front walls of the half boxes and slide into
each other as the two detector halves are moved
together. At the position of the detection layers,
the thickness of the thermally insulating layer is
reduced to 3 mm in order to allow for the silicon
ladders to approach the beam pipe as close as pos-
sible.

The overall height of the detector box is 218 cm
and the total mass of each half station is estimated
to be approximately 350kg.

Inside the acceptance of the experiment, the
Trigger Tracker is estimated to correspond to 3.5%
of a radiation length and 1.14% of a nuclear inter-
action length. A breakdown of the material budget
is given in Table 5.3.
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Figure 5.27: Isometric view of the TT station. One detector half is shown retracted from the beam pipe
and the downstream wall of the enclosure is not shown in order to display the interior of the detector
box.
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Figure 5.28: Detail of insulation around the beam
pipe.

X/X0 λ/λI

Silicon sensors 1.71% 0.35%
Support rails 0.66% 0.31%
Interconnect cables 0.30% 0.08%
Box enclosure 0.83% 0.40%
Sum 3.50% 1.14%

Table 5.3: Breakdown of material budget.

5.5.4 Readout electronics

The readout electronics will be identical for Trig-
ger Tracker and Inner Tracker. They have been
described in detail in the Inner Tracker TDR [6]
and its supporting notes. The service boxes for the
Trigger Tracker will be located above and below the
extension blocks of the RICH1 magnetic shielding
shown in Fig. 4.11. From a FLUKA simulation of
the LHCb radiation environment, a radiation dose
of less than 10 krad after ten years of operation is
expected at this location. This value is similar to
the radiation dose expected at the location of the
service boxes for the Inner Tracker.

5.5.5 Infrastructure

High-voltage and low-voltage distribution and cool-
ing systems will be identical for the Trigger Tracker
and the Inner Tracker. They have been described
in the Inner Tracker TDR [6] and its supporting
notes.

5.6 Safety aspects

In accordance with CERN’s safety policy as de-
scribed in the document SAPOC042, the Silicon
Tracker project will follow the CERN safety codes

Task Institutes
Silicon sensors Zürich
L0 electronics MPI Heidelberg

Beetle chip and hybrid
Readout link Zürich

digitization and optical link
L1 electronics Lausanne

common Level-1 board
DAQ and L1 interface

Mechanics Zürich
ladder & station mechanics

Infrastructure Santiago
HV, LV and ECS

Station assembly Zürich
Installation & commissioning all
Software all

Table 5.4: Trigger Tracker project: sharing of re-
sponsibilities.

which also allow the use of international construc-
tion codes for structural engineering as described
in EUROCODE 3.

In the Initial Safety Discussion (ISD) with the
CERN Technical Inspection and Safety Commis-
sion (TIS) the following risks and actions have been
discussed:

1. The electrical circuits of the Silicon Tracker
will be subject to an electrical reception prior
to operation (Code C1).

2. Electrical protection will be assured by the
ECS/DSS that will be able to cut the power
source when necessary.

3. Interventions on the circuits will require the
primary power source to be switched off by
means of the DSS.

4. Detector boxes will be cooled with C6F14 and
interlocks to the electronic equipment will be
activated by over-temperature.

No risks other than electrical and material safety
were identified during the Initial Safety Discussion.

5.7 Institute responsibilities

The institutes currently working on the LHCb Sil-
icon Tracker project are as listed in the Inner
Tracker TDR. The sharing of responsibilities for
the main tasks associated with the Trigger Tracker
is described in Table 5.4. The project schedule and
the project costs are given in Chapter 10.



Chapter 6 Simulation

The software programs used for the perfor-
mance studies execute the following tasks:

• generation of the event;

• tracking of particles through the detector;

• simulation of the detector response;

• simulation of the trigger decision (described
in [3]);

• reconstruction of the event, including track
finding and particle identification (described
in Chapters 7 and 8 respectively);

• offline selection of specific B-meson final
states (described in Sect. 9.3).

For the last three steps, the simulated events are
processed as if they were from real data, i.e. with-
out using any information from the Monte Carlo
truth. This information is only used, at the end
of a given step, to assess the performance of the
different reconstruction and selection algorithms.

We discuss in this chapter some relevant fea-
tures concerning the first three steps of the soft-
ware chain. We then give the main characteristics
of the Monte Carlo samples used to derive the per-
formance shown in the following chapters.

6.1 Event generation

Minimum bias proton-proton interactions at
√
s =

14 TeV are generated using the PYTHIA 6.2 pro-
gram [70] with the predefined option MSEL=2: this
includes hard QCD processes, single diffraction,
double diffraction, and elastic scattering1. Other
samples of events are obtained by filtering a large
minimum bias data-set. For example, bb events are
obtained by selecting events with at least one b- or
b̄-hadron. The total inelastic and bb production
cross sections obtained in this way are 79.2 mb and
633µb respectively2.

1Elastic scattering practically never produces tracks re-
constructible in the detector.

2A bb production cross section of 500 µb has been as-
sumed for the yield calculations given in Sect. 9.4.

The decay of all unstable particles is performed
with the QQ program [71], originally developed by
the CLEO collaboration, using a decay table from
CDF which includes also B0

s and b-baryon decays.
The B0 and B0

s oscillation parameters are set to
xd = 0.755 and xs = 20 respectively.

In the following, we explain how some of the
PYTHIA parameters have been tuned based on the
available published data, and how bunch crossings
are described at the LHCb interaction point.

6.1.1 Tuning of PYTHIA

Several parton-parton interactions can occur in a
single proton-proton collision. In PYTHIA, the
average number of such interactions, and hence
the average particle multiplicity in a proton-proton
collision, is controlled by a parameter pmin

T that
represents the minimum transverse momentum of
the parton-parton interaction. Different multiple
parton-parton interaction models are available in
PYTHIA, which mainly affect the shape of the par-
ticle multiplicity distribution. One of these models,
called Model 3 in PYTHIA (MSTP(82)=3) and orig-
inally developed [72] to reproduce the UA5 data,
assumes a varying impact parameter between the
two colliding protons that is described with a Gaus-
sian distribution. Figure 6.1 shows that the UA5
data [73] indeed favour such a model over another
PYTHIA model (Model 1, i.e. MSTP(83)=1) which
assumes that all the proton-proton collisions have
a fixed impact parameter. Studies performed by
the CDF collaboration [74, 75] also conclude that
a varying impact parameter model is preferred to
describe the minimum-bias events and the under-
lying particles in bb events produced in pp colli-
sions at

√
s = 1.8 TeV. Model 1 is the default in

PYTHIA and was used for the performance stud-
ies reported in the Technical Proposal; however, all
simulation studies for subsequent Technical Design
Reports have been performed with Model 3.

In Fig. 6.2 (a) the densities of charged particles
at η = 0, where η is the pseudo-rapidity, are plot-
ted for non single-diffractive events measured at six
different center-of-mass energies ranging from 50 to
1800 GeV [76, 77]. The figure also shows the result

55
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Figure 6.1: Charged multiplicity distribution for
non single-diffractive events in pp collisions at√
s = 546 GeV as measured by UA5 [73], compared

with PYTHIA predictions using the CTEQ4L par-
ton distribution functions and either Model 1
(dashed) or 3 (solid histogram) for multiple inter-
actions. In each case the pmin

T parameter has been
tuned to reproduce the mean multiplicity of the
data.

of a quadratic fit in ln(s) [77] to the data. From
the extrapolation of the fit, we obtain

(dNch/dη)
direct fit
η=0 = 6.11 ± 0.29 at

√
s = 14 TeV ,

(6.1)
where the quoted error is due to the statistical un-
certainty of the fit.

Using PYTHIA Model 3, the value of the pmin
T

parameter has been tuned [78] so as to repro-
duce those measured charged particle densities at
η = 0 for different parametrizations of the struc-
ture functions. The tuned pmin

T values, displayed
in Fig. 6.2 (b), show an energy dependence which
is well described by a power law, as advocated in
recent PYTHIA versions. Although the values of
pmin
T themselves strongly depend on the assumed

set of structure functions, the predicted charged
particle density at η = 0 obtained at the LHC en-
ergy using the extrapolated values of pmin

T depends
only weakly on the choice of the structure func-
tions. Choosing the CTEQ4L parton distribution
functions together with Model 3, as PYTHIA set-
tings for the LHCb simulation study, an extrapo-
lated value of

pmin
T = 3.47 ± 0.17 GeV/c at

√
s = 14 TeV (6.2)

is obtained, which leads to

(dNch/dη)
pT fit
η=0 = 6.30 ± 0.42 at

√
s = 14 TeV .

This is in good agreement with Eq. (6.1), the di-
rect fit of Fig. 6.2 (a), supporting the validity of the
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Figure 6.2: (a) Average charged multiplicity at
η = 0 measured at different energies by UA5 and
CDF. (b) Corresponding values of pmin

T which allow
PYTHIA to reproduce these data, using different
multiple interaction models or parton distribution
functions. Details can be found elsewhere [78].

PYTHIA prediction at the LHC energy. A central
value of 3.47 GeV/c is therefore used as default to
generate collisions in LHCb.

Contrary to Model 1, a model for multiple
parton-parton interactions with varying impact pa-
rameter results in significantly different multiplic-
ities for minimum-bias and bb events. This is il-
lustrated in Fig. 6.3, where various predictions are
shown for the distribution of the number of charged
particles produced in hard pp collisions at LHC en-
ergy in the pseudo-rapidity region 1.8 < η < 4.9,
corresponding roughly to the LHCb acceptance.
The mean charged multiplicity is higher in bb
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Figure 6.3: Charged multiplicity distributions in the LHCb acceptance (1.8 < η < 4.9) for (a) minimum-
bias collisions and (b) collisions producing b-hadrons, as predicted by PYTHIA 6.2 with MSEL=1 (hard
collisions) and different settings for multiple parton-parton interactions. The plain histograms are ob-
tained with the nominal LHCb settings, the dashed histograms with modified LHCb settings where pmin

T

of Eq. (6.2) is lowered by three times its uncertainty, and the dotted histograms with a recent tuning
from CDF [79]. Decay products of K0

S mesons and Λ baryons are not counted.

events than in minimum-bias events. With the
nominal LHCb settings for PYTHIA (i.e. Model 3
tuned as explained above) these averages are 33.9
and 21.3 respectively; they increase by 26% and
19% respectively if the value of pmin

T from Eq. (6.2)
is lowered by three times its uncertainty.

The CDF collaboration has recently pub-
lished [75] their tuning of PYTHIA 5.7 which re-
produces best the soft and hard interactions they
observe in pp collisions at

√
s = 630 and 1800 GeV;

it involves Model 4 for multiple parton-parton in-
teractions, a variant of Model 3 with a double-
Gaussian parametrization of the matter distribu-
tions of the colliding hadrons. Using an updated
version of this tuning [79], valid for PYTHIA 6.2
and claimed to reproduce minimum-bias data and
the “underlying event” in hard scattering processes
at the two Tevatron energies, the average multiplic-
ities predicted in LHCb would be approximately
20% lower than those obtained with the nominal
LHCb settings (see Fig. 6.3).

6.1.2 Bunch-crossing description

The two proton beams of 7000 GeV each are as-
sumed to have a horizontal (vertical) crossing half-
angle of 285µrad (0µrad), with an angular spread
corresponding to an emittance of 0.503 m and a β∗

of 10 m. The luminous region is assumed to be a

Gaussian ellipsoid with σz = 5 cm and σx = σy =
70µm, truncated at ±4σ in all dimensions.

Several inelastic proton-proton collisions may
occur in the same bunch crossing. This “pile-up”
phenomenon is simulated assuming that the num-
ber of inelastic pp interactions in one bunch cross-
ing follows a Poisson distribution with a mean given
by Lσinel/ν, where L is the instantaneous luminos-
ity, σinel is the inelastic cross section taken to be
80 mb, and ν = 29.49 MHz is the average non-
empty bunch crossing frequency at the LHCb in-
teraction point. The luminosity L is assumed to
decrease exponentially with a 10-hour lifetime in
the course of 7-hour fills, with an average value of
2 × 1032 cm−2s−1 (implying a maximum value of
∼ 2.8 × 1032 cm−2s−1 at start of fill). In practice,
only “visible” collisions contribute to the pile-up;
we define such collisions as the ones producing at
least two charged particles reconstructible as long
tracks in the detector (according to the definition
of Sect. 7.3), corresponding to (79.1±0.2)% of σinel.
Pile-up characteristics, averaged over a fill and con-
sidered for visible collisions only, are given in Ta-
ble 6.1 for minimum-bias and bb events.

6.2 Detector simulation

Generated particles are tracked through the detec-
tor material and surrounding environment using
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Table 6.1: Average probabilities Fi to produce i visible pp collisions and average number
∑∞

i=1 iFi of
such collisions in bunch crossings producing at least one visible collision. This table effectively gives the
pile-up distribution and average in the generated minimum-bias sample (first line) and bb sample (second
line). Absolute uncertainties from MC statistics are approximately 0.001.

F1 F2 F3 F4 F5

∑∞
i=1 iFi

All bunch crossings 79.9% 17.2% 2.6% 0.3% 0.0% 1.234
Crossings producing b-hadrons 64.9% 27.8% 6.2% 1.0% 0.1% 1.420

the GEANT 3 package [57]. The geometry and ma-
terial of the LHCb detector are described in detail.
The description includes not only the active de-
tection components and their front-end electronics,
but also passive material such as the beam-pipe,
frames, supports and shielding elements. Low-
energy particles, mainly produced in secondary in-
teractions, are also traced, down to an energy cut-
off of 10 MeV for hadrons and 1 MeV for electrons
and photons. These values were shown to be ap-
propriate in a dedicated study [80] of the detector
response with 10 times lower energy thresholds.

In the simulation program the entrance and exit
points of each particle traversing a sensitive detec-
tion layer are registered, together with the energy
loss in that layer and the time-of-flight of the par-
ticle with respect to the primary interaction time.
These informations are then used to generate digi-
tized “raw data”, taking into account the details of
the sensitivity and response of each detector. De-
tection efficiencies and resolutions of the individual
sub-systems are adjusted using results from beam
tests of prototypes. Electronics noise and cross-talk
effects are also included.

The detector response is simulated as a function
of the arrival time of each particle and, depending
on the detection technology and electronics, may
span more than the time interval between two con-
secutive bunch crossings at 40 MHz. This effect
is referred to as “spill-over”. In order to take it
properly into account, the generated “event” fed
into the detector simulation consists not only of
the particles produced in a specific bunch cross-
ing (t = 0), but also of those, if any, produced
in the two preceeding (t = −50,−25 ns) and in
the following (t = +25 ns) bunch crossings. The
instantaneous luminosity is used to determine the
probability that the neighbouring bunch crossing
produce particles (but the fact that some bunches
are empty, due to the LHC beam structure, is con-
servatively neglected here).

In the Muon system, the number of hits gener-
ated by charged particles is rather low, and the

neutron-induced background thus becomes rele-
vant. Since the time structure of this background
is very different from that due to the charged parti-
cles, special studies have been made to find a suit-
able parametrization to include the effect in the
response of the Muon system [81].

Background from the LHC machine is presently
expected to contribute less than one extra particle
per bunch crossing, once stable beam conditions are
reached [82]. Such background has not been consid-
ered in the studies presented here, as its relative ef-
fect is clearly negligible. However, dedicated stud-
ies have been performed to assess the effect of the
beam halo muons on the trigger performance [3].

To demonstrate the level of detail of the de-
tector simulation, the part related to the tracking,
which is the system most affected by the detector
optimization, is described below at some length.
For the tracking detectors the response simulation
can be classified into two categories: silicon detec-
tor response (VELO, TT and IT) [83] and straw
detector response (OT) [84].

6.2.1 Silicon detector response

The number of primary electron-hole pairs corre-
sponding to the energy loss inside the silicon are
distributed along the particle trajectory. This tra-
jectory is subdivided into parts, in each of which
the number of electrons is sampled from a Lan-
dau distribution. Subsequently, the charge signals
of each part are collected on the readout strips
by applying a charge sharing function, which is
tuned to describe test-beam data. For each strip
a noise signal is added according to a Gaussian dis-
tribution corresponding to a signal-to-noise ratio
of 14 (VELO) or 12 (TT and IT). A 5% (VELO)
and 10% (TT/IT) cross-talk between neighbouring
strips is also implemented to simulate capacitive
coupling and cross-talk effects in the front-end chip.
A strip causes a hit if the signal surpasses a thresh-
old that is a multiple of the noise. Standard set-
tings are given in Table 6.2. The effective efficiency
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for a layer to observe a traversing particle is > 99%
(VELO) and between 97.5% and 98% for TT and
IT. The reasons for the lower TT/IT efficiencies are
the assumption that 1% of the silicon strips are in-
operative, the presence of small insensitive regions
between the silicon sensors of the TT/IT ladders
(such as guard rings), and the slightly reduced effi-
ciency due to the imperfect charge collection in the
region between two strips for the large TT/IT strip
pitch [6].

The analog front-end pulse shape has a remain-
ing amplitude of approximately 30% for VELO and
IT, and 50% for TT, after 25 ns. This is taken
into account by applying the same procedure as
mentioned above to all hits caused by the previous
bunch-bunch collisions at −25 ns (and −50 ns in the
case of TT and IT) after reducing the amplitudes
accordingly.

6.2.2 Straw detector response

The path length of a traversing track in each straw
is calculated as is its distance of closest approach to
the wire. A hit efficiency is assigned based on the
calculated trajectory length l and effective primary
ionization density ρ, using the parametrization [2]

η(l) = η0 (1 − e−ρl) ,

where η0 = 0.99 and ρ = 1.47 mm−1 have been
tuned to reproduce OT test-beam results [84], lead-
ing to an integrated cell efficiency of 97%. If a hit
is registered, a detector response time is generated
according to

tTDC = tbunch + ttof + tdrift + tdelay ,

where tbunch is the bunch time (−50, −25, 0, 25 ns),
ttof is the time-of-flight of the track as it passes
through the straw, tdrift is the drift time in the cell
and tdelay is the additional time delay due to signal
propagation along the wire. A measurement res-
olution of 200µm, again based on test-beam mea-
surements [2], is implemented by smearing tdrift ac-
cordingly.

Since the front-end readout works with a 50 ns
sensitive time gate, a hit is only registered if it falls
in a time window t0 < tTDC < t0+50 ns. The value
t0 is calibrated for each station as the rising edge
of the time spectrum of all hits from the bunch at
t = 0. In case two or more tracks pass through
a single straw only the one with the earliest tTDC

is registered, for the others the straw is inefficient.
Finally, cross-talk between straws is implemented
such that in 5% of the cases a signal in a neigh-
bouring straw is generated (with identical tTDC).

The overall efficiency to produce at least one
hit in a double layer depends on the momentum
of a track;3 for p > 2 GeV/c the overall efficiency
is 98%. The measurement resolution also depends
on the track momentum,4 however for tracks with
p > 2 GeV/c it is close to 200µm.

6.3 Monte Carlo samples

Several samples of Monte Carlo events have been
generated and simulated to assess the performance
of the reconstruction, trigger and offline selection
with the reoptimized LHCb detector:

• samples of specific signal B decays, with typ-
ically between 50k and 200k events for each
channel under study;

• other samples of specific b-hadron decays
identified as physics backgrounds for the
channels under study;

• a sample of approximately 107 inclusive bb
events, used for the estimation of the combi-
natorial background in the offline selections;

• two special background samples of approxi-
mately 380k events each with a prompt J/ψ
produced at the primary vertex and decaying
to µ+µ− and e+e−;

• a large sample of approximately 3 × 107

minimum-bias events (needed for the simu-
lation of spill-over for all the other samples),
used for the trigger studies.

No cut is imposed at generator level for the
minimum-bias sample. In all other cases, the parti-
cle of interest (i.e. the signal b-hadron, or one of the
b-hadron in inclusive bb events, or the prompt J/ψ)
is required to have a true polar angle smaller than
400 mrad. This avoids tracking and reconstructing
many events where not all interesting decay prod-
ucts are in the detector acceptance. The sample
sizes mentioned above are given after this require-
ment, which has an efficiency of 34.7% for signal B
events and 43.2% for inclusive bb events. All these
samples are produced using a nominal set of simula-
tion parameters, corresponding to the expectations
and assumptions from today’s knowledge.

3Due to the fact that very low momentum tracks (often
secondaries) have significantly longer time-of-flight, the digi-
tization time tTDC can occasionally fall outside the sensitive
time gate, resulting in inefficiency.

4The longer time-of-flight for low momentum tracks leads
to a biased drift time measurement after t0 subtraction,
which results in a worse resolution for very low momentum
tracks.
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Table 6.2: List of all simulation parameters that have been varied simultaneously for the “global robust-
ness test”, compared to nominal settings.

Subsystem(s) Parameter Nominal value Test value
PYTHIA pmin

T of multi-parton interactions 3.47 GeV/c 2.96 GeV/c
VELO cluster resolution nominal ⊕ 5µm
VELO inefficient channels 0.0% 1.5%
VELO noise (RMS/threshold) 1500 e− / 4680 e− 1900 e− / 6240 e−

TT, IT cluster resolution nominal ⊕ 30µm
TT, IT inefficient channels 1.0% 1.5%
TT noise (RMS/threshold) 2700 e− / 8640 e− 3600 e− / 11520 e−

IT noise (RMS/threshold) 2000 e− / 6400 e− 2700 e− / 8640 e−

OT hit resolution 200µm 250µm
OT single channel efficiency 97% 94%
OT noise hit rate per straw 0 kHz 10 kHz
OT cross-talk 5% 8%
RICH1, RICH2 p.e. detection efficiency nominal × 80%
RICH1, RICH2 random noise per pixel (HPD) 0.0% 0.3%
RICH1 emission point error 0.7 mrad 1.2 mrad
PS coherent noise 0.0 ADC 0.5 ADC
PS incoherent noise 1.0 ADC 1.5 ADC
ECAL, HCAL coherent noise 0.3 ADC 0.5 ADC
ECAL, HCAL incoherent noise 1.2 ADC 1.5 ADC
SPD, PS dead channels 0.0% 1.0%
ECAL, HCAL dead channels 0.0% 0.2%
SPD gain error 0.0% 1.5%
PS, ECAL, HCAL gain error 1.0% 1.5%
MUON low-energy background nominal × 2
MUON single-gap efficiency 95% 90%
MUON wire readout cross-talk 8% 20%
MUON cathode readout cross-talk 8% 30%
MUON electronics noise per channel 0.1 kHz 1 kHz
MUON channel dead-time 50 ns 80 ns

In addition, samples of minimum-bias events
and selected signal B decays have been generated
under special conditions to test the stability of the
performance with respect to our nominal assump-
tions.

In a first test, referred to as the “global ro-
bustness test”, several simulation parameters are
changed simultaneously in the direction of de-
graded performance, by a relatively large amount,
but still judged to be plausible. This primarily con-
cerns the efficiency, noise and cross-talk of the var-
ious sub-detectors. In the silicon detectors, an ad-
ditional smearing of the resolution is introduced, as
a simple way to simulate possible misalignment ef-
fects. In addition, a more conservative value of pmin

T

is used for the PYTHIA generator (see Sect. 6.1.1
and Fig. 6.3) leading to an increase in track multi-
plicity, and hence detector occupancy. The overall

result corresponds to a rather unlikely worse-case
scenario, where several of the expectations would
turn out to be too optimistic, and none to be too
pessimistic. The list of all parameter changes con-
sidered in this global test is given in Table 6.2.

As a second test, the detector is kept at its
nominal performance and only the PYTHIA pa-
rameters are modified. We use here the settings
obtained from a recent tuning on CDF data [79],
after extrapolation to LHC energy. As explained in
Sect. 6.1.1 and Fig. 6.3, this leads to a lower track
multiplicity than we assume by default.

The results of these tests are discussed in
Sects. 7.4, 8.9, and 9.4.



Chapter 7 Track Reconstruction

7.1 Introduction

In the track reconstruction program the registered
hits of the VELO, the TT, the IT and the OT de-
tectors are combined to form particle trajectories
from the VELO to the calorimeters. The program
aims to find all tracks in the event which leave
sufficient detector hits, not only possible B-decay
products. After fitting the reconstructed trajec-
tory a track is represented by state vectors (x, y,
dx/dz, dy/dz, Q/p) which are specified at given
z-positions in the experiment.

The performance of the reconstruction is ex-
pressed using the following quantities:

• the efficiency of the track finding procedure
and the corresponding ghost rate;

• the precision of the reconstructed momentum
parameter;

• the precision of the reconstructed impact pa-
rameter;

• the precision of the track slopes in the RICH
detectors.

The first three items are most important for
the B-decay products, while the last item is also of
importance for all tracks which traverse the RICH
detectors and have a momentum high enough to
emit Cherenkov light.

Depending on their generated trajectories in-
side the spectrometer the following classes of tracks
are defined, illustrated in Fig. 7.1:

1. Long tracks: traverse the full tracking set-
up from the VELO to the T stations. They
are the most important set of tracks for B-
decay reconstruction.

2. Upstream tracks: traverse only the VELO
and TT stations. They are in general
lower momentum tracks that do not tra-
verse the magnet. However, they pass
through the RICH1 detector and may gen-
erate Cherenkov photons. They are there-
fore used to understand backgrounds in the
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Figure 7.1: A schematic illustration of the various
track types: long, upstream, downstream, VELO
and T tracks. For reference the main B-field com-
ponent (By) is plotted above as a function of the z
coordinate.

particle-identification algorithm of the RICH.
They may also be used for B-decay recon-
struction or tagging, although their momen-
tum resolution is rather poor.

3. Downstream tracks: traverse only the TT
and T stations. The most relevant cases are
the decay products of K0

S and Λ that decay
outside the VELO acceptance.1

4. VELO tracks: are measured in the VELO
only and are typically large angle or back-
ward tracks, useful for the primary vertex re-
construction.

5. T tracks: are only measured in the T sta-
tions. They are typically produced in sec-
ondary interactions, but are useful for the
global pattern recognition in RICH2.

1In B0 → J/ψK0
S events in which the K0

S decay products

traverse the T stations, about 25% of the K0
S decays occur in

the VELO acceptance, 50% outside the VELO acceptance
but before the TT station, and 25% downstream of TT.

61
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The overall strategy to reconstruct all of the
above-mentioned track types with good perfor-
mance is discussed in the following section. The
sections thereafter describe the actual performance
of the track reconstruction algorithms.

7.2 Reconstruction strategy

The input of the tracking pattern recognition are
the simulated detector signals of the tracking de-
tectors (VELO, TT and T stations), discussed in
Sect. 6.2. The track reconstruction starts with a
search for track “seeds”, the initial track candi-
dates. Both the VELO region and the T stations
are well suited for such a search. As can be seen in
Fig. 7.1 the magnetic field in these regions is low
and a search for almost straight lines is possible.

• VELO seeds: are reconstructed as straight
segments in the VELO using the r and φ co-
ordinates of the VELO clusters. A VELO
seed provides an initial track state without
momentum information.

• T seeds: are reconstructed using the IT clus-
ters and OT hits after applying the drift time
corrections. A T seed is parametrized as a
parabola since the magnetic field in this re-
gion is low but not negligible. An initial
momentum estimate can be assigned to the
track seed either from the measured curva-
ture or by assuming that the track originates
from the nominal interaction point. For long
tracks the latter provides a momentum esti-
mate with a precision of approximately 1%.

Proceeding from these seeds, the following
strategy of consecutive steps has been adopted for
optimal performance:

1. Long track search. Starting from a VELO
seed an attempt is made to form a track with
each hit in the T stations in turn. A combina-
tion of a VELO seed and a single T-station
hit determines the momentum of the track
candidate and hence the particle’s trajec-
tory across the measurement planes. Around
this trajectory a search for hits in other sta-
tions, including the TT station, is performed.
When enough hits have been collected along
a trajectory, a track is reconstructed. This
method is referred to as the “forward track-
ing” algorithm [85]. About 90% of all long
tracks are reconstructed using this algorithm.

After this procedure has been applied to all
VELO seeds, the hits in the T stations that

have been used are discarded and the T-seed
search is performed [86]. An additional 5%
of the long tracks can be reconstructed by
extrapolating the track state of T seeds to the
VELO region and by requiring that they have
position and slope parameters that match to
a VELO seed [87].

All used VELO and T seeds are discarded
before searching for other track types.

2. Upstream and Downstream search.
Two separate algorithms search for up-
stream [88] and downstream [89] tracks by as-
sociating the remaining VELO and T seeds to
TT clusters. In order to reduce the number of
ghost tracks in the upstream track search al-
gorithm, hits in both TTa and TTb detectors
are required. The hits in TTa define, together
with the VELO seed, the momentum of the
track candidate while the hits in TTb con-
firm the track. For downstream tracks this re-
quirement does not apply since an initial mo-
mentum estimate is available, assuming that
the track originates from the nominal vertex.

3. VELO and T track search. Remaining
VELO and T seeds that have not been as-
sociated with any of the above mentioned
tracks are also stored as tracks, either with
no (VELO tracks) or a poor (T tracks) mo-
mentum estimate.

After tracks have been found their trajectories
are refitted with a Kalman filter fit [90]. An initial
state is obtained from the pattern recognition al-
gorithms and taken at the most downstream mea-
surement position. The fit then proceeds in the
upstream direction, updating the state vector at
each measurement plane. As it traverses the de-
tector the fit retrieves from the geometry database
any (inactive) layers of material encountered. This
allows for “kinks” in the trajectory due to multiple
scattering and in addition corrects for dE/dx en-
ergy loss. As soon as the most upstream measure-
ment is reached the fit reverses direction in order
to update the downstream state vectors with the
full information of all measurements.

The quality of the reconstructed tracks is moni-
tored by the χ2 of the fit and with the “pull” distri-
bution of the track parameters. The assigned errors
of the fitting procedure of the position and slope pa-
rameters are correct within 5%, while the assigned
momentum error is correct within 15%. The lat-
ter is mainly attributed to non-Gaussian multiple
scattering effects.
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Figure 7.2: Display of the reconstructed tracks and assigned hits in an event. The insert shows a zoom
in of the VELO and TT region. This particular event contains 50% more hits than average.

7.3 Performance

The pattern recognition performance is evaluated
in terms of efficiencies and ghost rates. The efficien-
cies are normalized to the different reconstructible
track samples. To be considered reconstructible,
the requirements for each track type are as follows:

• for VELO tracks the particle must give at
least 3 r and 3 φ hits;

• for T tracks the particle must give at least 1
x and 1 stereo hit in each station T1–T3;

• for long tracks the particle must be recon-
structible as a VELO and T track;

• for upstream tracks the particle must be re-
constructible as a VELO track and give at
least 3 hits in TT;

• for downstream tracks the particle must be
reconstructible as a T track and give at least
3 hits in TT.

To be considered as “successfully recon-
structed” a VELO or T track must have at least

70% of its associated hits originating from a sin-
gle Monte Carlo particle, an upstream or down-
stream track must have in addition a correct TT
hit assigned, and a long track must have both cor-
rectly found VELO- and T-track segments. The
reconstruction efficiency is defined as the fraction
of reconstructible particles that are successfully re-
constructed, and the ghost rate is defined as the
fraction of found tracks that are not matched to a
true Monte Carlo particle.

The results quoted in this section are obtained
from a sample of B0 → J/ψK0

S events. Particle
tracks originating from either decays of the signal
B0 or the other b-hadron in the event are referred
to simply as B tracks in the text.

The average number of successfully recon-
structed tracks in bb̄ events is 72, which are dis-
tributed among the track types as follows: 26 long
tracks, 11 upstream tracks, 4 downstream tracks,
26 VELO tracks and 5 T tracks. The track find-
ing performance is summarized for the most impor-
tant cases: the long tracks, the low momentum (up-
stream) tracks and K0

S decay (downstream) tracks.
An example of a reconstructed event is displayed
in Fig. 7.2.
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Figure 7.3: Performance of the long track finding: (a) efficiency as a function of the momentum of the
generated particle; (b) ghost rate, for tracks with reconstructed momentum greater than pcut; (c) ghost
rate, for tracks with reconstructed transverse momentum greater than pT,cut.

7.3.1 Long tracks

The efficiency of long track reconstruction is plot-
ted in Fig. 7.3 (a) as function of the track momen-
tum. For tracks with momentum higher than 10
GeV/c the average efficiency is 94%. For final state
particles of specific B decays even higher efficien-
cies are observed (95–96%) as can be deduced from
Table 9.4 in the physics performance chapter. The
corresponding ghost rates are plotted in Fig. 7.3
both as function of the track momentum and trans-
verse momentum. Although the average ghost rate
is 9%, most of the reconstructed ghost tracks have
a low reconstructed transverse momentum. Since
the majority of B tracks have pT > 0.5 GeV/c, the
effective ghost rate for physics reconstruction is ap-
proximately 3%.

The plots show that the search for low momen-
tum particles is more difficult than that for high
momentum particles. The main reason lies in the
fact that multiple-scattering angles are inversely
proportional to the particle momentum, requir-
ing relatively large search windows in the pattern
recognition algorithms for low momentum tracks.
However, large search windows lead to a higher
ghost rate. The choice of the search window sizes
follows from an optimization of efficiency and ghost
rate. For low momentum tracks both a reduced ef-
ficiency and a higher ghost rate is observed.

Distributions of the total number of hits on a
track, as well as the fraction of correctly assigned
hits, are shown in Fig. 7.4 for tracks which have
been successfully reconstructed. The small peak
in the left plot is due to tracks traversing the IT,
the larger peak is due to tracks passing through the

OT. On average a reconstructed long track contains
13.3 VELO hits, 3.7 TT hits, and 11.7 (22.0) IT
(OT) hits. Of these, on average 98.7% are correct,
which in practice implies one wrongly assigned hit
in two tracks.

The momentum and impact parameter reso-
lutions of the reconstructed track parameters are
shown in Fig. 7.5. The momentum resolution is
plotted as a function of the track momentum and
is seen to be increasing from δp/p = 0.35% for low
momentum tracks to δp/p = 0.55% for tracks at
the high end of the spectrum. In the same fig-
ure the momentum spectrum for B-decay tracks is
also illustrated. The impact parameter resolution
is plotted as function of 1/pT of the track. The
linear dependence can be parametrized as σIP =
14µm+ 35µm/pT with pT in GeV/c. For compar-
ison the momentum and 1/pT spectra of B-decay
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of 1/pT. For comparison, the momentum and transverse-momentum spectra of B-decay particles are
shown in the lower part of the plots.
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Figure 7.7: (a) Efficiency and (b) ghost rate, as a
function of momentum, for upstream tracks.

particles in the detector acceptance are plotted in
the same figure.

Figure 7.6 shows the resolutions for generic B-
decay tracks. In the left plot the reconstructed mo-
mentum is compared to the true particle momen-
tum for reconstructed B-decay tracks. The average
momentum resolution is seen to be δp/p = 0.37%.
In the right part of the figure the impact parameter
distance is plotted for B-decay tracks. The distri-
bution peaks at a value of δ(IP ) = 20µm, while
the average value is 〈δ(IP )〉 = 40µm.

7.3.2 Short tracks

The reconstruction procedure of the long tracks
profits from the fact that robust track segments are
measured at both sides of the dipole magnet. The
reconstruction of the short upstream and down-
stream tracks either misses a T or a VELO segment
and is therefore more difficult.
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Figure 7.8: Downstream track finding efficiency as
function of momentum.

Upstream tracks

The dependence of the efficiency and ghost rate
on the momentum of upstream tracks is shown in
Fig. 7.7. As for the long tracks, the search for
low momentum tracks suffers from reduced effi-
cency and leads to an increased number of low mo-
mentum ghost candidates. Since most tracks with
p < 1 GeV/c are below threshold in RICH1 the rel-
evant efficiency for this procedure is approximately
75% with a corresponding ghost rate of 15%. Since
the upstream tracks only see a small fraction of the
total B-field integral they have a relatively poor
momentum resolution: δp/p ∼ 15%.

Downstream tracks

As they have no hits in the VELO detector the
downstream tracks are mainly used to reconstruct
long-lived decays such as K0

S. Downstream tracks
of low momentum are relatively difficult to find
due to a long lever arm in the magnetic field be-
tween the T and TT stations. In order to maintain
high efficiency the reconstruction allows for typi-
cally two or three track candidates in TT to be
linked to a single track seed in the T stations. The
ghost tracks introduced by this procedure are eas-
ily eliminated at a later stage when the pion track
pairs are combined into K0

S decays, as is shown in
Chapter 8.

The efficiency for finding downstream tracks
is plotted as a function of track momentum in
Fig. 7.8. For tracks above 5 GeV/c the reconstruc-
tion efficiency is about 80%. Since the downstream
tracks traverse most of the magnetic field, the mo-
mentum resolution is relatively good with an aver-
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age of δp/p = 0.43% for pions originating from K0
S

decays in B0 → J/ψK0
S events.

7.3.3 Track slopes in the RICH

The particle-identification algorithms of the RICH
assume that the angle of the tracks as they traverse
the RICH are known. The precision in the recon-
struction of the Cherenkov photon angle is about
1.2 mrad in RICH1 and 0.6 mrad in RICH2 [7].
In order to not limit the particle-identification per-
formance the track slopes should be known with
better precision.

The particle-identification algorithm of the
RICH 1 uses as input the reconstructed long, up-
stream and downstream track types with an aver-
age efficiency of 92%; the algorithm in RICH2 uses
the long, downstream and T tracks types, also with
an average efficiency of 92% (p > 4 GeV/c). The
precision of the angle of the track segment in the
RICH detectors for these track types is plotted as
function of the track momentum in Fig. 7.9, both
for the slopes Sx = dx/dz and Sy = dy/dz. A
parametrization of the error on the slopes is given
in Table 7.1. Due to the stereo angle set-up of the
TT and T stations a difference is observed between
the Sx and Sy angular precision. This difference is
small in RICH1 as the VELO track extrapolation
has equal precision for both angles.

From the parametrizations given in Table 7.1
it can be concluded that the precision require-
ment is met for most of the spectrum of tracks
emitting Cherenkov light: for RICH1 for tracks
with p > 2.5GeV/c and in RICH2 for tracks with
p > 8GeV/c.

Table 7.1: The slope resolution parametrizations
δSx and δSy (p in GeV/c) for tracks in RICH1
and RICH2.

δSx (mrad) δSy (mrad)
RICH 1 2.16/p + 0.005 2.42/p + 0.017
RICH 2 2.55/p + 0.017 4.14/p + 0.027

7.4 Global robustness test

As discussed in Sect. 6.2 the robustness of the de-
tector has been tested with a dedicated simulation
in which each of the detectors is assumed to be op-
erating under conservatively estimated parameter
settings. For the tracking detectors this implies: a
reduced hit detection efficiency, a higher noise level
and cross-talk rate, and reduced measurement res-
olution. The exact parameters used are compared
to those of the standard simulation in Table 6.2.

The same track reconstruction program has
been run on these Monte Carlo events and the re-
sults are compared below. It should be noted that
this study reflects an unlikely scenario since not
only all detector parameters are of lower quality
than expected, but in addition the pattern recog-
nition algorithms have not been retuned to adapt
to the worse parameter settings.

Long Tracks

The efficiency and ghost rate in the robustness test
are compared to that of the standard simulation
program in Fig. 7.10. On average the track finding
efficiency is reduced by 2.5% while the ghost rate
is approximately 3% higher.

It is observed that a track reconstructed in the
robustness test has on average 0.7 reconstructed
hits less than a track reconstructed with the stan-
dard program, which is consistent with the detec-
tor efficiency degradation assumed in the program.
A priori, a reduction of the fraction of correctly
assigned hits is expected due to the fact that the
algorithms have not been re-tuned to adapt to the
worse resolution parameters. However, the purity
of the assigned hits is reduced only to 97.8% (from
98.7%) and is still very comfortable.

The momentum and impact parameter resolu-
tions are compared in Fig. 7.11. A degradation of
the momentum resolution in the robustness test is
only seen for tracks with very high momenta. The
impact parameter resolution is slightly reduced and
can be parametrized as: σIP = 18µm + 36µm/pT,
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which is consistent with the reduced cluster resolu-
tion in the VELO.

The slope precision in the RICH1 and RICH 2
detectors remains unchanged in the global robust-
ness test.

Upstream and Downstream tracks

The efficiency of the search algorithms for the up-
stream tracks is reduced, similarly to the long
tracks, by 2.5% while the efficiency to find down-
stream pion tracks of K0

S decays is reduced by 7%.
The resolutions for these tracks are not significantly
affected.

7.5 Other robustness tests

To test the reconstruction performance as a func-
tion of the hit occupancy in the detectors a sample
of 50k B0 → J/ψK0

S events has been subdivided in
bins of hit-multiplicity using a “relative multiplic-
ity” quantity:

nrel =
1
4

(
nVELO

〈nVELO〉 +
nTT

〈nTT〉 +
nIT

〈nIT〉 +
nOT

〈nOT〉
)

where ni is the number of hits in the correspond-
ing subdetector. Figure 7.12 shows the track recon-
struction efficiency and ghost rate for events classi-
fied according to this quantity for long tracks with
p > 5 GeV/c. For multiplicity variations within a
factor of two the track reconstruction efficiency and
ghost rate are seen to depend linearly on the total
number of hits in the tracking detectors, according
to the following parametrizations:

1 − efficiency = 0.048 + 0.026 nrel

ghost rate = 0.040 nrel

These parametrizations imply that a multiplicity
increase of a factor of two would lead to a 30%
increase in track reconstruction inefficiency and a
ghost rate increase of a factor of two.

Apart from the global robustness test, addi-
tional dedicated simulation studies reported in [91]
and [92] have been made to study the tracking per-
formance as function of individual detector param-
eters (such as detector efficiency, noise and cross-
talk). From these studies the following conclusions
have been drawn:

1. The track reconstruction efficiency depends
relatively mildly on the hit detection effi-
ciency of the tracking detectors. The VELO
track reconstruction efficiency is observed to
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Figure 7.12: Track reconstruction performance as
a function of the number of hits in the tracking
detectors. (a) Distribution of the quantity nrel,
(b) track reconstruction efficiency for tracks with
p > 5 GeV/c versus nrel, (c) ghost rate as function
of nrel.

reduce by 0.7%, 1.5%, 2.5% or 4.7% if the
detection efficiency of the silicon detectors is
reduced by 1%, 2%, 3%, 5% respectively. For
the reconstruction of long tracks the perfor-
mance is stable for additional detector in-
efficiencies in the Inner Tracker and Outer
Tracker up to ∼ 10% [91, 92].

2. The effect of additional detector hits in the
Outer Tracker due to electronic noise or cross-
talk has little effect on tracking, even for rel-
atively high values of 1MHz noise rate per
straw and 20% cross-talk. [92].

3. Degrading the detector resolution in the
Outer Tracker from 200µm to 300µm does
not significantly affect the reconstruction ef-
ficiency, while it leads to a 20% relative in-
crease in the ghost rate [92].
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Chapter 8 Particle Identification

8.1 Introduction

Particle identification within LHCb is provided by
the two RICH detectors, the Calorimeter system
and the Muon Detector. For the common charged
particle types (e, µ, π,K, p), electrons are primar-
ily identified using the Calorimeter system, muons
with the Muon Detector, and the hadrons with
the RICH system. However, the RICH detectors
can also help improve the lepton identification, so
the information from the various detectors is com-
bined. Neutral electromagnetic particles (γ, π0) are
identified using the Calorimeter system, where the
π0 → γγ may be resolved as two separate pho-
tons, or as a merged cluster. Finally K0

S are recon-
structed from their decay K0

S → π+π−. These var-
ious particle identification techniques are described
in this chapter.

8.2 RICH reconstruction

Details of the RICH system can be found in its
TDR [7]. The design of RICH 1 has been modified
as a consequence of the reoptimization of LHCb,
and the new design is described in Chapter 4. The
performance results presented here, and used for
the physics analyses in this document, have been
produced using a simulation that includes the mod-
ified design of RICH1. Local magnetic shielding
has to be provided for the RICH photon detectors,
and this has been achieved by adjusting the optics,
introducing a second (flat) mirror in a similar fash-
ion to RICH2. This new optical layout leads to a
slight reduction in the number of detected photo-
electrons per track from the gas radiator of RICH1,
as shown in Table 8.1. This is due to the ∼ 90%
reflectivity of the extra mirror. A similar effect is
not seen in the number of detected photoelectrons
from aerogel, as the reoptimized optical layout has
allowed a larger fraction of the aerogel image to
be covered for the same overall size of photode-
tector plane. For RICH2 the expected increase is
observed from the 20% extension of the radiator
length that was introduced between the TDR and
EDR [32]. The angular resolution per photoelec-

Table 8.1: Average number of detected photoelec-
trons per saturated track in the three RICH radia-
tors, compared to the number in the RICH TDR,
and resolution on the Cherenkov angle per photo-
electron.

Radiator Npe Npe (TDR) σ(θC)
Aerogel 6.8 6.6 1.9 mrad

C4F10 gas 30.3 32.7 1.3 mrad
CF4 gas 23.2 18.4 0.7 mrad

tron has not changed significantly since the RICH
TDR.

Particle identification with the RICH system is
performed as follows. The pattern of hit pixels ob-
served in the RICH photodetectors is compared to
the pattern that would be expected under a given
set of mass hypotheses for the reconstructed tracks
passing through the detectors, using the knowl-
edge of the RICH optics. A likelihood is deter-
mined from this comparison, and then the track
mass-hypotheses are varied so as to maximise the
likelihood. In the high track multiplicity environ-
ment typical of LHCb events, the main source of
background photons in the RICH detectors is from
neighbouring tracks. By maximising the global
likelihood for all found tracks, this background is
optimally controlled. Details of the method can be
found elsewhere [93].

Full pattern recognition is now in place for all
steps of the event reconstruction. Thus the qual-
ity of the reconstructed tracks includes the effects
of imperfect assignment of hits to tracks and of
ghost tracks. All expected backgrounds have been
included in the simulation of the RICH system re-
sponse. These include the effect of Rayleigh scat-
tering of light generated in the aerogel, hits from
tracks that point towards the photodetector plane,
and Cherenkov light produced by tracks that tra-
verse the windows of the photodetectors. The re-
sponse of the photodetectors themselves is simu-
lated in detail. For the results presented here,
the HPD photodetector was used [94]. However it
has been verified that the multianode photomulti-

71
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Figure 8.1: Event display of the detected photoelec-
trons for a typical event in RICH1, with all back-
ground sources included and with detailed photode-
tector simulation. The two detector plane halves
are drawn next to each other, and fitted rings are
superimposed, indicated by solid lines for rings
from long tracks and dashed lines for other tracks.

plier [95] gives equivalent physics performance [34].
An event display of the photodetector hits in a typ-
ical event is shown for RICH1 in Fig. 8.1 and for
RICH2 in Fig. 8.2. For RICH1, densely-populated
small diameter rings can be seen from the C4F10

gas radiator, as well as the more sparsely-populated
large diameter rings from the aerogel.

To study the performance of the RICH system,
“long” tracks (passing through the full spectrom-
eter, as defined in Chapter 7) have been studied
in a sample of B0

s → D−
s K+ events. The ratio of

likelihoods between assuming the pion and kaon hy-
pothesis in the RICH analysis is determined. This
is equivalent to a difference in log-likelihood:

∆ lnLKπ = lnL(K) − lnL(π) (8.1)
= ln [L(K)/L(π)] ,

which is plotted in Fig. 8.3 for tracks that have
been matched to true kaons and pions. As can
be seen, ∆ lnLKπ tends to have positive values
for kaons, with a double-peaked structure that is
due to the momentum-dependence of the π–K sep-
aration of the RICH system, whilst pions tend to
have negative values. The log-likelihood difference
can be converted into the significance of π–K sep-
aration, Nσ =

√
2 |∆ lnL|, signed according to

∆ lnL. The distribution of this significance can
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Figure 8.2: Event display of the detected photoelec-
trons for a typical event in RICH2, for the same
event as in Fig. 8.1.

be seen as a function of momentum in Fig. 8.4,
for tracks matched to true pions. The few nega-
tive entries correspond to tracks for which the kaon
hypothesis was preferred over the pion hypothesis.
The average of this distribution is superimposed,
and illustrates that substantial π–K separation is
achieved over most of the momentum range of in-
terest, 2 < p < 100 GeV/c.

Care should be taken when interpreting such π–
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Figure 8.3: Difference in log-likelihood between the
kaon and pion hypotheses from the RICH system,
for (a) kaons and (b) pions, in a sample of B0

s →
D−

s K+ events; the shaded histograms are for low
momentum tracks.
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Figure 8.4: π–K separation in sigma as a function
of momentum for true pions, for each track in a
sample of B0 → π+π− events. The average π–K
separation is superimposed as a line.

K separation figures, as the behaviour is not Gaus-
sian, as is evident from Fig. 8.4. More relevant is
the performance expressed as the efficiency for re-
constructing kaons, viewed in conjunction with the
misidentification rate for pions. Tracks are iden-
tified here according to their maximum-likelihood
hypothesis. For the kaon efficiency, shown in
Fig. 8.5, the effect of crossing the thresholds for
Cherenkov light production in the three radiators
is evident at p ∼ 2, 9 and 16GeV/c. The av-
erage efficiency for kaon identification between 2
and 100GeV/c is 88%. The pion misidentification
rate, ε(π → K), is also shown in Fig. 8.5. The
average pion misidentification rate between 2 and
100GeV/c is 3%.

By changing the cut on ∆ lnLKπ used to sepa-
rate kaons from pions, the misidentification rate of
pions can be reduced (thus improving the purity of
the selected sample) at the cost of reduction of the
kaon identification efficiency. As an example, the
efficiency and misidentification rates are shown in
Fig. 8.6, for a tighter cut of ∆ lnLKπ > 4, illustrat-
ing that the misidentification rate can be reduced
by a factor of 3 for a modest loss of efficiency (∼ 6%,
averaged over momentum). The trade-off between
efficiency and purity can be adjusted according to
the needs of the individual physics analyses. Rep-
resentative values are listed in Table 8.2. Tuning
the cut in each bin of momentum to reproduce the
pion misidentification rate that was quoted at the
time of the RICH TDR [34], the kaon efficiency is
now 5–10% lower than at that time. This is as-
cribed to the greater realism that is now present in
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Figure 8.5: Kaon identification efficiency (solid
points) and pion misidentification rate (open
points) as a function of momentum. For this fig-
ure tracks are selected as kaons if their maximum-
likelihood hypothesis kaon or heavier, and as pions
if it is pion or lighter.

the simulation.
Applying a cut of ∆ lnLKπ > 2 to the long

tracks in a sample of B0
s → D−

s K+ events, the
selected sample comprises 62% kaons, 10% pions
and 22% protons (the remainder being leptons or
ghosts). To suppress the proton background, a cut
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Figure 8.6: Kaon identification efficiency and pion
misidentification rate as a function of momentum,
for two different values of the ∆ lnLKπ cut, indi-
cated by the histograms and points respectively.
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Table 8.2: Effect of varying the cut on ∆ lnLKπ

on the average kaon selection efficiency and pion
misidentification rate.

∆ lnLKπ ε(K) ε(π → K)
> 0 91% 5.6%
> 2 88% 2.9%
> 4 85% 1.7%
> 8 79% 0.8%

can be made on ∆ lnLKp, shown in Fig. 8.7. Re-
quiring ∆ lnLKp > −2 reduces the proton contam-
ination by a factor two, for only a 3% loss of kaon
efficiency.

This performance is achieved with the use of
all classes of tracks discussed in Chapter 7, includ-
ing in particular the upstream tracks that do not
have hits in stations T1–T3: these help in the de-
scription of the observed photon distributions in
RICH1. The particle identification performance is
quoted for long tracks, though, as these are the
tracks which are of most interest for physics studies,
and the RICH reconstruction was tuned for these
tracks.

The RICH reconstruction programme used for
the analyses presented in this document, written in
FORTRAN, has been rewritten in object-oriented
C++. The performance of the new reconstruction
code [96] now matches that of the original, and
in addition particle identification is now available
for the upstream tracks, as shown in Fig. 8.8. Al-
though less powerful than the identification of long
tracks, this is expected to give significant improve-
ment in those analyses which should profit from
upstream tracks, such as kaon tagging and D∗ re-
construction.
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Figure 8.7: Difference in log-likelihood between the
proton and kaon hypotheses from the RICH sys-
tem, for kaons and protons in a sample of B0

s →
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s K+ events.
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Figure 8.8: Kaon efficiency (open points) and pion
misidentification rate (solid points) as a function
of momentum, for upstream tracks for which the
maximum-likelihood hypothesis is kaon.

8.3 Combined particle identi-
fication

Lepton identification with the Muon and Calorime-
ter systems will be described in the following sec-
tions. However, the RICH system also provides
some separation between leptons and hadrons,
which can be used to improve the overall parti-
cle identification performance. This is illustrated
in Fig. 8.9, which shows the value of ∆ lnLeπ from
the RICH for electron candidates that have been
selected using the Calorimeter information. The
true electrons predominantly have positive values
of this log-likelihood difference. To utilise this in-
formation in the combined particle identification,
all the Calorimeter and Muon system estimators for
lepton identification are now also expressed as like-
lihood ratios. In the case of electron identification
in the Calorimeter system, it is the ratio of likeli-
hood between the electron and background (non-
electron) hypotheses that is determined, whilst for
the Muon Detector it is the ratio between muon
and non-muon hypotheses. Then the likelihoods
from the various detectors are simply combined as
follows:

L(e) = LRICH(e)LCALO(e)LMUON(nonµ)
L(µ) = LRICH(µ)LCALO(non e)LMUON(µ)
L(h) = LRICH(h)LCALO(non e)LMUON(nonµ) ,

where h represents a hadron. Furthermore, if there
is more than one estimator from a given detector,
they can be simply combined by taking the product
of their individual likelihoods.
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Figure 8.9: ∆ lnLeπ from the RICH system for elec-
tron candidates selected using the Calorimeter sys-
tem, in a sample of B0 → J/ψ(e+e−)K0

S events.

8.4 Muon identification

Muons are identified by extrapolating well recon-
structed tracks with p > 3 GeV/c into the Muon
stations. The tracks must be within the M2 and
M5 acceptance. For details see the Muon Detector
TDR [9].

Muon Detector hits are searched within fields
of interest (FOI) around the extrapolation point
in each station, parametrized as function of mo-
menta for each station and region. A track is con-
sidered a muon candidate when a minimum number
of stations have hits in their corresponding FOI’s,
as shown in Table 8.3. This number was optimized
to maintain high efficiency.

Using single muons generated with a flat dis-
tribution both in momentum (between 1 and
200 GeV/c) and in polar angle, the FOI were
parametrized from plots of (x(y)MC − x(y)hit)/d
for x and y in each station region, where d is
the pad size, according to the parametrization
FOI = a + b e(−c p) [97]. The strategy used to
tune the FOI’s was based on maximising the ef-
ficiency while maintaining reasonable levels of pion
misidentification. Those remaining pions can then
be eliminated with discriminating variables or anal-
ysis cuts. Using a sample of B0 → J/ψK0

S the per-
formance was measured to be ε(µ) = 94.3 ± 0.3%
and ε(π → µ) = 2.9 ± 0.1%. The efficiency is a

Table 8.3: Stations that must have hits in their
FOI, for the selection of a muon candidate, as a
function of the track momentum.

Momentum (GeV/c) Muon stations
3 < p < 6 M2 + M3
6 < p < 10 M2 + M3 + (M4 or M5)
p > 10 M2 + M3 + M4 + M5
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Figure 8.10: Muon efficiency (open triangles), and
the pion misidentification rate (solid triangles, with
scale on the right) as a function of track momen-
tum.

flat function of the momentum, above 10GeV/c,
as shown in Fig. 8.10.

Discriminating variables to help further im-
prove the muon selection purity are constructed
from the comparison of slopes in the muon sys-
tem and the main tracker, and from the aver-
age track-hit distance of all hits in FOI’s associ-
ated to the track. The probability distributions
of these variables are shown in Fig. 8.11. For
each track the difference in log-likelihood between
the muon hypothesis and pion hypothesis is de-
termined, and summed with the values from the
RICH and Calorimeter systems (if available). The
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Figure 8.11: Variables used to construct the muon
identification estimators: (a) the comparison of
slopes in the Muon Detector and the main tracker,
(b) the average track–hit distance for all hits
in FOI’s; the distributions are shown for muons
(shaded) and pions (open histogram).
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resulting distributions of ∆ lnLµπ are shown in
Fig. 8.12. Requiring ∆ lnLµπ > −8 reduces the
pion misidentification rate to 1%, whilst maintain-
ing a muon efficiency of 93%, for muons above
3GeV/c inside the Muon Detector acceptance. Av-
eraged over all long tracks matched to muons from
B0 → J/ψ(µ+µ−)K0

S decays, the efficiency is 80%.
The high purity that can be achieved with such

cuts is illustrated in Fig. 8.13 (a), where the µ+µ−

mass plot is shown at the first step in the anal-
ysis of B0

s → J/ψ φ events, taking all oppositely-
charged pairs of tracks from signal events that pass
the muon identification requirements. As can be
seen, a clean J/ψ mass peak is reconstructed with
a resolution of about 13MeV/c2.

8.5 Electron identification

The electromagnetic calorimeter, ECAL, plays an
important role in electron identification [98]. The
major ECAL estimator χ2

e is constructed as a χ2

of a global matching procedure, which includes the
balance of track momentum and the energy of the
charged cluster in the ECAL, shown in Fig. 8.14,
and the matching between the corrected barycenter
position of the cluster with the extrapolated track
impact point. Charged clusters are defined as those
for which the estimator χ2

γ defined in Sect. 8.6 sat-
isfies χ2

γ < 49. The distribution of χ2
e is shown in

Fig. 8.15 (a).
A second estimator provided by ECAL is re-

lated to the Bremsstrahlung photons emitted by
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Figure 8.13: Invariant mass plots for the recon-
struction of J/ψ → �+�− decays in B0

s → J/ψ φ
signal events: (a) for � = µ, (b) for � = e, where
the open points are before any pT cut, and the solid
points are after requiring pT > 0.5 GeV/c for the
e± candidates.

electrons before the magnet. As there is little ma-
terial within the magnet, such neutral clusters are
expected in a well defined position given by the
electron track extrapolation from before the mag-
net, as illustrated in Fig. 8.16. A χ2 is calculated
of the track extrapolation from before the magnet
to ECAL and the neutral cluster matching, shown
in Fig. 8.15 (b). This estimator is also used in the
Bremsstrahlung photon recovery.

Further improvement in electron identification
is made by using the track energy deposition in
the Preshower detector, as shown in Fig. 8.15 (c),
and the deposition of the energy along the extrap-
olated particle trajectory in the hadronic calorime-
ter, HCAL, shown in Fig. 8.15 (d).

To combine these various sources of informa-
tion, likelihood distributions are constructed. Ref-
erence two-dimensional histograms are filled with
the variables described above, versus momentum,
using samples containing a selection of physics
channels, and inclusive bb̄ events. Two histograms
are filled, one for tracks that are matched to true
electrons and the other for non-electron tracks
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deposited in the Preshower, and (d) the deposi-
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trajectory in the hadron calorimeter. The track
sample for these plots was taken from a selection
of B-decay channels, and the shaded component la-
belled “hadrons” also includes the muons from that
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Figure 8.16: Schematic illustration of
Bremsstrahlung correction. An electron may
radiate photons when passing through material
before or after the magnet: in the first case, a well
defined cluster is seen in the ECAL, with energy
E1, whilst in the second case the Bremsstrahlung
energy forms part of the electron cluster with
energy E2; for electron identification E2 = p,
the momentum measured in the spectrometer,
while the energy of the electron at the origin,
E0 = E1 + E2.

(ghosts are ignored). After normalisation the his-
tograms provide the likelihood distributions for
electrons and background. For a given track, the
difference of log-likelihood for the electron and non-
electron hypotheses are computed, and summed
for the different variables. Finally, the Calorime-
ter information is combined with the RICH and
Muon detectors, as described Sect. 8.3, significantly
improving the electron identification performance.
The log-likelihood difference ∆ lnLeπ is shown in
Fig. 8.17, for tracks that have information avail-
able from the Calorimeter system.

To illustrate the performance of electron iden-
tification, the J/ψ mass plot is shown as the open
points in Fig. 8.13 (b). The signal is fit with a func-
tion including a radiative tail, to account for the
imperfect correction of Bremsstrahlung. The back-
ground is larger than in the muon channel, and
is either due to real (secondary) electrons, or due
to one of the pair of tracks being a ghost track;
the contribution from misidentified hadrons is very
small. These background tracks are dominantly of
low pT, and can be efficiently rejected by apply-
ing the requirement pT > 0.5 GeV/c for the elec-
tron candidates, as shown by the solid points in
Fig. 8.13 (b).

The average efficiency to identify electrons in
the calorimeter acceptance from J/ψ → e+e−

decays in B0 → J/ψK0
S events is 95%, for a

pion misidentification rate of 0.7%, as shown in
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Fig. 8.18. Without the requirement that the elec-
tron is within the calorimeter acceptance, the aver-
age efficiency drops to 81%, as indicated by the his-
togram in the figure; this is largely due to the inner
hole around the beam pipe, which leads to a drop
of efficiency with momentum as high-momentum
tracks tend to be at low angle.

8.6 Photon identification

Photons are reconstructed and identified with the
electromagnetic calorimeter, ECAL, as neutral
clusters [8]. ECAL clusters are created with a “Cel-
lular Automaton” algorithm [99] and are tested for
matching with all reconstructed tracks. The tracks
are extrapolated to the ECAL face, and the posi-
tions of the track impact point and cluster barycen-
ter, together with the track’s covariance matrix and
the matrix of second-order cluster moments, are
used to construct a cluster-track position matching
estimator, χ2

γ . The minimal value of the χ2
γ estima-

tor for each cluster is shown in Fig. 8.19. The clus-
ters due to charged tracks are clearly identified as
a peak at a small value of χ2

γ . Clusters with χ2
γ > 4

are selected as photon candidates. The background
(mainly hadrons) is large, and this cut removes a
large part of it. The remaining photon background
has low pT and in the cases of the B0 → π+π−π0

and B0 → K∗γ analyses no other photon identifica-
tion criteria are required. In B0 → π+π−π0 decays
the incorrect π0 reconstruction is due to combina-
torial background of real photons or fragmentation
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Figure 8.18: Efficiency for electron identification,
after requiring ∆ lnLeπ > 0, as a function of
momentum. The solid points are for electrons
within the Calorimeter acceptance, the dotted his-
togram for all electrons from J/ψ decays. The
pion misidentification rate is indicated by the open
points, with scale on the right.

π0, rather than the pairing of background clusters.
For the precise evaluation of the energy and po-

sition of photon candidates at the ECAL face sev-
eral effects are taken into account [100]:

1. The energy losses in the material before the
ECAL face, in particular in the lead absorber
of the Preshower detector.

2. The energy losses in the passive material be-
tween ECAL modules. The correction is esti-
mated using the evaluated position of photon
candidate within the ECAL cell.

3. The longitudinal and transversal shape of the
electromagnetic shower is used for evaluation
of energy and position corrections.

The identification of photons converted in the
passive material of the apparatus after the mag-
net, e.g. RICH2 or M1, is based on whether there
is a hit in the SPD cell that lies in front of cen-
tral cell of the ECAL cluster. Seventy percent of
reconstructed photons from B0 → K∗γ decays are
selected as non-converted photons, while the re-
maining photons are identified as converted pho-
tons, with correct assignment fractions of 90% and
79% respectively.

A cut on the energy deposition in the Preshower
detector can improve the purity of selected samples
both for converted and non-converted photons [100]



8.7. π0 RECONSTRUCTION 79

10
-4

10
-3

10
-2

10
-1

0 20 40 60 80 100

all clusters

charged tracks

electrons

min χ2
γ

Figure 8.19: The minimal value of the χ2
γ estimator

from the track-cluster position matching procedure
for ECAL clusters. The peak at small values of χ2

γ

corresponds to clusters due to charged particles, as
indicated by the hatched distribution; the distribu-
tion for electrons is shown cross-hatched.

and could be used for analyses requiring reconstruc-
tion of medium pT photons or π0, where part of the
background comes from hadron clusters.

8.7 π0 reconstruction

Neutral pion reconstruction has focussed on the
B0 → π+π−π0 decay channel, for which the mean
transverse momentum of the π0 is about 3GeV/c.
Below this value the π0 are mostly reconstructed
as a resolved pair of well separated photons, while
for higher pT a large fraction of the pairs of pho-
tons coming from the decay of the π0 cannot be
resolved as a pair of clusters within the ECAL gran-
ularity. About 30% of the reconstructible π0 from
B0 → π+π−π0 lead to a single cluster, referred to
as a merged π0.

8.7.1 Resolved π0

Photon candidates with pT > 200MeV/c are
paired to reconstruct resolved π0. Figure 8.20
shows the mass distributions obtained in the
cases where both photon candidates reached the
calorimeter (a), or one converted before the
calorimeter (b), according to the SPD signal. The
contributions of true π0 is roughly 20% of the distri-
bution in the range 105 < mπ0 < 165 MeV/c2, the
remaining contribution being due to background
cluster pairings and γ combinatorial background.
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Figure 8.20: π0 mass distributions, where (a) nei-
ther photon has converted, (b) one γ con-
verted before the calorimeter. The separation
converted/not-converted is obtained from the SPD
information. The contributions of true π0 are indi-
cated by the shaded histograms.

The distributions are fitted with the sum of a Gaus-
sian and a polynomial function, giving a resolution
for the π0 mass of σ = 10 MeV/c2.

8.7.2 Merged π0

An algorithm has been developed to disentangle a
potential pair of photons merged into a single clus-
ter. The energy of each cell of the cluster is shared
between two virtual sub-clusters according to an
iterative procedure based on the expected trans-
verse shape of photon showers. Each of the two
sub-clusters is then reconstructed as coming from
a photon, as for isolated photons. This method
allows the photons’ energy and direction to be cor-
rected for detector effects, and has been shown to
perform better than an analytical method based
on the moment analysis of the cluster shape, which
relies on shower symmetries.

The reconstructed invariant mass obtained from
all single clusters in B0 → π+π−π0 events is shown
in Fig. 8.21 (a). The bump around the π0 mass is
from merged pairs of photons. The same distribu-
tion for the clusters associated to the π0 from B0
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Figure 8.21: Invariant mass obtained with the
merged π0 algorithm (a) for all clusters in B0 →
π+π−π0 events, where the shaded histogram indi-
cates the contribution from true π0, and (b) for
clusters associated to true π0 from B0 decays,
where the shaded histogram indicates the contri-
bution from pairs of photons with at least one con-
version.

decay is shown in (b). The distribution is fit with
two Gaussians, to account for the broadening of the
resolution due to photon conversion. A core reso-
lution of about 15MeV/c2 is obtained. The recon-
struction of the 4-momentum of merged π0 is com-
petitive with the resolved configuration, with an
angular resolution of better than 1 mrad for merged
π0 above 20GeV.

As seen in Fig. 8.21 (a), the merged π0 have
to be identified within a large combinatorial back-
ground. This is achieved by applying the following
criteria:

1. The cluster has to be neutral, i.e. its posi-
tion is required not to coincide with a charged
track. The χ2

γ of the cluster-track matching
is required to be greater than unity.

2. The π0 energy is required to be compati-
ble with a pair of merged photons. A cut
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Figure 8.22: The reconstruction efficiency for π0

that give photons inside the geometrical acceptance
with pT > 200 MeV/c, versus the π0 transverse mo-
mentum. The separate contributions from resolved
and merged π0 reconstruction are indicated by the
solid and dashed histograms, respectively.

is applied on the minimal distance kinemati-
cally allowed between the impact on ECAL of
the two photons: dγγ = 2 zECALmπ0/Eπ0 <
1.8D, where D is the cell size. This cut is
equivalent to an energy cut of 45, 30 and 15
GeV in the inner, middle and outer parts
of calorimeter, respectively, and is roughly
equivalent to a cut of pT > 2GeV/c.

3. The invariant mass of merged photons is re-
quired to be compatible with the π0 mass.
Due to the fact that the combinatorial con-
tinuum decreases with mass, an asymmet-
ric window is applied around the nominal π0

mass, between 95 and 215MeV/c2.

The identification of merged π0 benefits from
several features with respect to the resolved case:
the large transverse energy required for the π0 to be
merged; the much lower combinatorial background
(∼ 60 clusters per event, compared to ∼ 2000 pairs);
and the fact that identification criteria such as clus-
ter neutrality are applied to a single cluster, while
a pair of clusters is involved for resolved π0 and
the corresponding efficiency is then squared. As a
consequence of the intrinsic purity of the merged
π0, a reasonably high efficiency can be maintained,
as shown in Fig. 8.22.
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Figure 8.23: Reconstruction of K0
S → π+π−. The

π+π− invariant mass is shown in B0 → J/ψK0
S sig-

nal events, using different categories of tracks for
the pion candidates: (a) downstream-downstream,
(b) long-long, (c) long-upstream. Combinations
coming from a K0

S are indicated by the shaded his-
tograms.

8.8 K0
S reconstruction

K0
S are reconstructed through their decay to π+π−.

For K0
S from B0 → J/ψK0

S decays, about 25% de-
cay inside the active region of the VELO, 50% de-
cay outside the active region of the VELO but up-
stream of TT, and the rest decay after TT (and
will therefore be difficult to reconstruct).

The K0
S that decay outside the active region

of the VELO but before TT are reconstructed us-
ing pairs of oppositely-charged downstream tracks,
which are found using the hits in the TT and
T1–T3 tracking stations, as described in Chap-
ter 7. The tracks are required to be well recon-
structed, with χ2/ndf < 5, to have an impact-
parameter significance greater than 3 with respect
to all reconstructed primary vertices, and a cut
is applied on the combined particle-identification
variable ∆ lnLπe > 0 for each track, to reject
electrons. A vertex is formed between the pair
of tracks, required to have χ2 < 50, and the
transverse-momentum of the pair is required to ex-
ceed 250MeV/c. The mass of the pair is then cal-
culated, under the assumption that they are both

Table 8.4: Number of reconstructible K0
S → π+π−

decays N1, number with both tracks reconstructed
N2, number of K0

S decays after selection cuts N3,
efficiency ε = N3/N1, and mass resolution σ, for
different categories of track pairs from a sample of
10,000 B0 → J/ψK0

S decays generated with the B0

polar angle less than 400mrad.

Cat. N1 N2 N3 ε (%) σ (MeV)
DD 1728 1135 927 54 7
LL 704 578 527 75 4
LU 341 248 208 61 12

pions, giving the distribution shown in Fig. 8.23 (a).
The pions from K0

S that decay within the VELO
acceptance give either a long track or an upstream
track, depending on whether they pass through
the magnet to give hits in the downstream track-
ing stations. They are reconstructed using pairs
of oppositely-charged tracks, either long-long or
long-upstream, with similar cuts to the downsteam
category [101]. The corresponding mass plots are
shown in Fig. 8.23 (b) and (c).

The number of reconstructed K0
S in the various

categories from a sample of B0 → J/ψK0
S decays

are listed in Table 8.4. As can be seen in Fig. 8.23
there is some combinatorial background from other
tracks in the signal events, particularly for the
long-upstream category, but this background is re-
moved by the additional requirements that are im-
posed when reconstructing the B meson, as will be
demonstrated in Chapter 9.

8.9 Robustness studies

Studies have been performed to verify that the par-
ticle identification will not be severely degraded in
case the event complexity is more severe than sug-
gested by the simulation, or if the intrinsic detector
performance is poorer than anticipated.

8.9.1 RICH robustness

The higher the number of rings in the event, the
harder it is for the RICH pattern recognition to
make the correct association between rings and
tracks, leading to a degradation in the particle
identification. This dependency has been quanti-
fied by evaluating the performance as a function
of the track multiplicity in the event. The results
are shown in Fig. 8.24, which shows the efficiency
of correctly identifying pions and kaons as light or
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long track multiplicity for the nominal simulation
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heavy particles respectively, and the correspond-
ing misidentification probabilities, as a function of
the number of long tracks in the event. As ex-
pected, the identification efficiencies are lower for
the events with more tracks, with the π efficiency
falling by 5% and the K efficiency by 16% over the
considered range of 1–100 tracks. In physics events
the mean (RMS) number of long tracks is 26 (16).
Therefore it can be seen that a factor of two in-
crease in track multiplicity above expectation will
induce a loss in kaon efficiency of 5%, with a few
percent increase in the pion misidentification rate.

The photoelectron yields shown in Table 8.1 as-
sume that the photodetectors and mirrors work to
specification. The consequences of an inferior per-
formance were probed by varying in the simulation
the number of detected photons from all three ra-
diators by a common scale factor. The change in
performance can be seen in Fig. 8.25 for tracks of
low momentum (2 < p < 10 GeV/c), which are
found to be most sensitive to changes in this pa-
rameter. In these plots a scale factor of 1 represents
the nominal photoelectron yield. A lower yield re-
sults in a worse performance as expected, but the
dependence is not severe.

Finally, in order to ascertain the global effects
on the LHCb physics reach of a degraded detec-
tor performance and a more pessimistic set of gen-
erator parameters, a special Monte Carlo “global
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Figure 8.25: Robustness of RICH reconstruction
against the scale factor on the number of detected
photoelectrons, for low momentum tracks: (a) pion
efficiency, (b) kaon efficiency, (c) pion misidentifi-
cation rate, (d) kaon misidentification rate.

robustness” production was performed. Details of
these settings are given in Table 6.2. The modi-
fications specific to the RICH simulation were as
follows:

1. A decrease of 20% in efficiency for all pho-
todetectors;

2. The introduction of random noise at the rate
of 0.3% per pixel;

3. The smearing of the emission-point error for
the RICH1 gas from 0.7 mrad to 1.2 mrad,
to represent the effect of a less optimal layout
of the mirrors and photodetector plane.

The particle-identification performance in this
simulation was inferior to that of the standard
production, but not dramatically so. Figure 8.26
shows, for example, the kaon identification and the
pion misidentification as a function of momentum,
for the standard and robustness productions. The
most significant effect is seen at low momentum,
where the kaon efficiency is 5–10% lower in the ro-
bustness production.

8.9.2 Muon Detector robustness

The effect of the low-energy background in the
Muon Detector has been studied, increasing it by
a factor of five in stations M2–M5. Applying
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Figure 8.26: RICH reconstruction performance in
the global robustness test: the kaon efficiency
(solid points) and pion misidentification rate (open
points) as a function of momentum. The distribu-
tions seen with the nominal parameters, as shown
in Fig. 8.5, are indicated by the dotted lines.

the standard muon identification algorithm to this
sample leads to an increase of the pion misiden-
tification rate to 11.7% (from the nominal 2.9%),
whilst the muon identification efficiency remains
unaffected at 94%. Retuning the fields of inter-
est in the algorithm, the pion misidentification rate
can be reduced. Applying a reduction factor of 2.5
for the FOI in Region 1 of the stations (the busiest
region), and a factor of 1.5 in the other regions,
reduces the misidentification rate back to the nom-
inal value, for a loss of 7% of muon identification
efficiency.

8.9.3 Calorimeter robustness

For the global robustness test the level of coher-
ent and incoherent noise was varied for calorimeter
channels, and conservative estimates of the per-
centage of dead channels were used. In addition
the unknown detector and calibration imperfec-
tions were combined into an effective parameter,
referred to as “gain error” which appears as an ad-
ditional constant term in the energy resolution of
the channel. The nominal values of these parame-
ters and their setting for the global robustness test
are listed in Table 6.2.
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Figure 8.27: Robustness of electron identification
versus track multiplicity: electron identification ef-
ficiency (solid points) and hadron misidentification
rate (open points, with scale on the right).

For the evaluation of estimators used for elec-
tron identification the same reconstruction and
identification procedure and parameters were used
without re-tuning, such that the nominal estima-
tors of uncertainties were used for evaluation of χ2

γ ,
χ2

e , and χ2
brem; the reference histograms obtained

with nominal parameter settings were used for the
log-likelihood difference estimation. For a sample
of 50,000 B0

s → J/ψ (e+e−) φ events a 2.5% loss
of efficiency of electron identification was observed,
with an increase of hadron misidentification rate
from 0.7% to 1%. For the B0 → K∗ γ decay a 7%
degradation in B0 mass resolution and 5% loss of
overall reconstruction efficiency were seen [102].

Events with high occupancy have an increased
hadron misidentification rate, as illustrated in
Fig. 8.27. A factor of two increase in track mul-
tiplicity above the expectation leads to no signifi-
cant loss of electron identification efficiency, but an
increase in the hadron misidentification rate to 1%.

Concerning π0 reconstruction, the global ro-
bustness test gave a degradation of the core mass
resolution of ∼ 14% and ∼ 19% for the resolved and
merged configurations, respectively [100]. No sig-
nificant change in the π0 reconstruction efficiency
was observed, but an overall∼ 10% loss of efficiency
was seen for the selection of B0 → π+π−π0 events
(before applying the trigger) [103].
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Chapter 9 Physics Performance

9.1 Introduction

In the Standard Model, flavour-changing processes
between the quarks are solely due to charged cur-
rent interactions with couplings given by a 3 × 3
unitary matrix, usually referred to as the Cabibbo-
Kobayashi-Maskawa (CKM) matrix [104, 105]:

V =


 Vud Vus Vub

Vcd Vcs Vcb

Vtd Vts Vtb


 .

The matrix can be parametrized with four indepen-
dent parameters, including one phase, which intro-
duces CP violation. One of the commonly used
parametrizations, introduced by Wolfenstein [106],
is based on the λ, A, ρ and η parameters. In this
parametrization, V can be approximated as

V≈

 1 − λ2/2 λ Aλ3 (ρ− i η)

−λ 1 − λ2/2 Aλ2

Aλ3 (1 − ρ− i η) −Aλ2 1


+δV ,

where

δV =


 0 0 0

−i A2λ5η 0 0
Aλ5(ρ+ i η)/2 Aλ4(1/2 − ρ− i η) 0


 .

CP violation is present if η 	= 0. Note that λ is
identical to the sine of the Cabibbo angle [104]. It
is measured to be 0.2229 ± 0.0022 from nuclear,
kaon and hyperon decays [107].

Among the nine unitarity relations of the CKM
matrix, the following two are the most relevant for
B physics:

VudV
∗
ub + VcdV

∗
cb + VtdV

∗
tb = 0 ,

VtbV
∗
ub + VtsV

∗
us + VtdV

∗
ud = 0 .

Using the approximation introduced above, the two
relations can be drawn as triangles (see Fig. 9.1).
Although the imaginary part of Vcd plays an im-
portant role in CP violation in K0–K0 oscillations,
it can be neglected in the first triangle. The second
triangle has a particular relevance to the B0

s meson
system. The parametrization implies

argVtd = −β, argVub = −γ, argVts = χ+ π ,

10 ρ(1−λ2/2)

η(1−λ2/2)

γ β

α

VudVub + VcdVcb + VtdVtb = 0

VtbVub + VtsVus + VtdVud = 0
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Figure 9.1: Two unitarity relations drawn in the
complex plane: (a) for VudV

∗
ub + VcdV

∗
cb + VtdV

∗
tb =

0, and (b) for VtbV
∗
ub + VtsV

∗
us + VtdV

∗
ud = 0.

and that all the other elements are real.
The quantities |Vcb| and |Vub| can be deter-

mined from the various B-meson decays generated
by tree diagrams. Assuming that B0–B0 and B0

s–B0
s

oscillations are given only by the Standard Model
box diagrams shown in Fig. 9.2, |Vtd| and |Vts|
can be calculated from the respective oscillation
frequencies. Currently, the B0–B0 oscillation fre-
quency is very well measured but only a lower limit
is known for the B0

s–B0
s oscillation frequency. From

Fig. 9.1, it is clear that those measurements are
sufficient to establish the triangles and extract A,
ρ and η. With the currently known values of |Vcb|,
|Vub|, |Vtd| and |Vts|, the phase of Vtd is determined
to be [107]

sin 2βside = 0.695 ± 0.055 . (9.1)

85
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Figure 9.2: The Standard Model box diagrams
which generate B0–B0 and B0

s–B0
s oscillations.

In 2001, long awaited CP asymmetries outside
of the neutral kaon system were measured for var-
ious CP eigenstates generated by the b→ c + W−

and b → c + W+ tree diagrams in B0 decays,
such as J/ψK0

S and ηcK0
S, by the BABAR [108] and

BELLE [109] collaborations. Assuming these de-
cays are dominated by the Standard Model pro-
cesses, CP asymmetries from those final states
yield [110]

sinφd =
{

0.741 ± 0.075 BABAR
0.719 ± 0.082 BELLE ,

where φd is identical to the phase of the B0–B0 os-
cillation amplitude, since the B0 and B0 decay am-
plitudes are real with the phase convention of the
Wolfenstein parameterization used here. As done
for the extraction of |Vtd| from the B0–B0 oscil-
lation frequency, if only the Standard Model box
processes contribute to the B0–B0 oscillation, φd is
identical to −2 argVtd = 2β, i.e.

φd = 2β . (9.2)

Averaging the two results, one obtains

sin 2βCP = 0.731 ± 0.055 . (9.3)

This is in very good agreement with the prediction
of β from the absolute values of CKM elements
given in Eq. (9.1), and shows that the Standard
Model can give a very consistent picture.

Results from the B0 → π+π− decays are less
consistent. BABAR [111] and BELLE [112] fit the
two CP violation parameters Adir

π+π− and Amix
π+π−

to the measured time-dependent CP asymmetries
between B0 and B0 decaying into π+π− with the
function

ACP
π+π−(t) = Adir

π+π− cos(∆mdt)+Amix
π+π− sin(∆mdt) ,

where ∆md is the oscillation frequency. The results
are

Adir
π+π− =

{
0.30 ± 0.25 BABAR
0.77 ± 0.28 BELLE

b→c+W+ tree diagram
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b→u+W+ tree diagram

0
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Figure 9.3: The two tree diagrams which generate
B0

s → D+
s K− and B0

s → D−
s K+ decays.

and

Amix
π+π− =

{
+0.02 ± 0.34 BABAR
−1.23 ± 0.42 BELLE ,

which do not allow us to draw a clear conclusion.
Unlike for the case of the J/ψK0

S decays, a the-
oretical interpretation of Adir

π+π− and Amix
π+π− is not

simple. In addition to the b → u+W+ tree process,
the b → d + g(γ,Z0) penguin process is expected
to make a sizeable contribution to the decay. Since
the two processes have different phases, γ and −β
respectively, we cannot extract γ and β without
knowing the exact relative contributions of the two
processes.

For many other B±, B0 and B0 decay modes, no
further evidence of CP violation has been seen so
far with the current statistics of the BABAR and
BELLE experiments.

If indeed new physics such as SUSY is just
around the corner, it must contribute to B0–B0 os-
cillations and various decay modes which are gener-
ated by the loop diagrams, e.g. penguins and boxes.
Since CP violation is sensitive to the phases of cou-
plings, it gives a unique opportunity to probe not
only the strengths but also the phases of the new
couplings.

If new particles contribute to B0–B0 oscilla-
tions, |Vtd| cannot be determined from the oscil-
lation frequency. Similarly, Eq. (9.2) is no longer
valid and β cannot be determined from the CP
asymmetry in J/ψK0

S decays. Therefore, neither
βside of Eq. (9.1) nor βCP of Eq. (9.3) will give the
phase of Vtd.

For a comprehensive study of CP violation in-
cluding possible contributions from new physics,
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Figure 9.4: The tree diagram and an example of
the penguin diagrams which generate B0 → π+π−

and B0
s → K+K− decays.

the B0
s meson plays an essential role, as shown in

the following example. The phase of Vub can be
measured in several ways:

I. A theoretically clean way to extract γ is to
mix the two tree diagrams, b → u + W+ and
b → c + W+. This can be done by studying
the time-dependent rates of B0

s decaying into
D+

s K− and D−
s K+ and their CP-conjugated

processes [113]. Figure 9.3 illustrates the cor-
responding diagrams. From them, one can
extract φs + γ without any theoretical am-
biguity. Here, φs is the phase of B0

s–B0
s os-

cillations, which can be obtained from the
time-dependent CP asymmetry of B0

s and B0
s

decaying into J/ψφ (or other CP eigenstates
produced by the b→ c+W− and b→ c+W+

tree processes). Combining the two results, γ
can be determined.

II. As already discussed, both b → u + W+ tree
and b → d + g(γ,Z0) penguin processes con-
tribute to the decay of B0 into π+π−. By
replacing all the d and d quarks by s and
s quarks, respectively, the tree and penguin
processes generate K+K− decays for the B0

s

meson. Figure 9.4 illustrates the relevant di-
agrams. If we assume that the strong in-
teraction dynamics remains invariant under
this interchange (U-spin symmetry) [114], the
relative contributions of the penguin process
with respect to the tree process are identical
for the B0→ π+π− and B0

s → K+K− decays.
Under this assumption, γ can be determined

d d

b c

s

u
W

B0

D0

K∗0

d d

b u

s

c
W

B0

D0

K∗0

b→u+W− tree diagram

b→c+W− tree diagram

Figure 9.5: The two tree diagrams which generate
B0→ D0K∗0 and B0→ D0K∗0 decays.

from the time-dependent CP asymmetry for
B0 and B0 decaying into π+π− and that for
B0

s and B0
s decaying into K+K−. Using the

φd and φs values obtained from the CP asym-
metries measured with B0,B0 → J/ψK0

S and
B0

s ,B
0
s → J/ψφ respectively, the assumed U-

spin symmetry can be tested as well.

III. Another opportunity for observing the inter-
ference between the two tree processes, b →
u + W+ and b → c + W−, and thus extract-
ing γ, is given by D0–D0 mixing [115]. This
can be done by measuring the time-integrated
decay rates for B0 → D0K∗0, B0 → D0K∗0,
B0 → D0

CPK∗0 and for their CP-conjugated
processes, where D0

CP = (D0 + D0)/
√

2 de-
notes the CP-even eigenstate of the D0–D0

system. Figure 9.5 shows relevant diagrams.

It is important to note that the phase γ mea-
sured in the first method will not be affected by
the possible existence of new particles. The second
method makes an explicit use of the penguin pro-
cesses where new particles can contribute to the
loops. Therefore, the extracted value of γ could
be affected by new physics. Equally for the third
method, new physics in D0–D0 mixing could affect
the extracted value of γ. From these three γ mea-
surements, we can

• determine γ and, together with the |Vub| mea-
surements, extract the CKM parameters, A,
ρ and η even in the presence of new physics,
and

• extract the contribution of new physics to the
oscillations and penguins.
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Note that the Standard Model analysis using the
present knowledge of |Vub|, |Vcb|, |Vtd| and sin 2β
predicts γ ∼ 65◦ [107].

There are many other CP-violating decay
modes where the extracted phases of Vtd, Vub and
Vts are affected differently by new physics. Studies
of those decay modes with high accuracy will give
us a different insight to the properties of the new
physics, compared to what could be obtained from
the direct search at ATLAS and CMS. As demon-
strated, B0

s mesons play a crucial role here. This
gives a distinct advantage to hadron machines over
e+e− B factories operating at the Υ(4S). Similarly,
B+

c mesons and b baryons are also an exclusive
domain of hadron machines. For interesting CP-
violating B0 decay modes such as π+π−, K±π∓

and K∗0�+�−, the LHCb experiment will be able
to collect several times more statistics in one year
than that obtained by BABAR and BELLE by the
time LHC becomes operational.

The purpose of the rest of this chapter is to
show, within the physics scope outlined above, the
potential of the reoptimized LHCb detector for the
reconstruction and selection of interesting B chan-
nels. We include in this discussion fully hadronic
decays (involving also neutrals like K0

S, π
0, η), de-

cays with leptons, and radiative decays. Emphasis
is put on the offline selections, whereas trigger as-
pects are discussed in detail elsewhere [3]. We also
present a few “toy Monte Carlo” studies of the sta-
tistical sensitivity to interesting physics parameters
and CP observables.

9.2 Primary vertex recon-
struction

The primary vertex search and fit is performed us-
ing the following iterative procedure:

• One builds an histogram of the z-coordinate
of the point of closest approach to the beam
line for all tracks measured in the VELO
(long tracks, upstream tracks and VELO
tracks). The bin width is 1 mm. The highest
bin of this histogram is used, together with its
4 neighbours on each side, to define a cluster
of tracks. The mean value computed from
these tracks is used as the z of an original
vertex (located on the beam axis).

• Tracks with a large χ2 contribution to the
vertex (> 225 for the first iteration, > 9 after-
wards) are eliminated from the cluster, and
the remaining tracks in the cluster are fitted

Table 9.1: Efficiency for finding the bb production
vertex as a function of the number of collisions pro-
ducing at least two long tracks in the detector.

No. of collisions 1 2 3 4
Efficiency (%) 99 96 90 81

to a new common vertex. This step is iter-
ated until no tracks are rejected anymore.

• If at least 6 tracks were used in the last itera-
tion, their vertex is kept as a primary vertex,
these tracks are removed from the overall set
of tracks, and the whole search procedure is
restarted to find additional primary vertices.

• Otherwise, the current vertex is discarded
and the search is stopped. In case no primary
vertex has been found, the original vertex ob-
tained from the histogram peak is kept as the
only primary vertex of the event.

The cuts have been chosen in order to optimize
the efficiency for finding the bb production vertex,
which is 98% on average. In the other 2% of the
cases, the search is disturbed by another primary
vertex from a minimum-bias interaction close to
the bb production vertex. This is illustrated in Ta-
ble 9.1 which shows the efficiency for finding the
bb production vertex as a function of the number
of visible pp collisions in the event (defined as pro-
ducing at least two long tracks in the detector).

The resolution on the bb production vertex in
the directions longitudinal (z) and transverse (x,
y) to the beam are shown in Figs. 9.6 and 9.7, for
bb events passing the trigger in which a b hadron
was produced forward within 400 mrad of the beam
axis. The distributions are fitted with a double
Gaussian with a common central value. The core
resolutions are 44µm and 7.8µm respectively with
about 25% of events in the second Gaussian, 2 to
3 times wider. The z-resolution is slightly better
(41.7µm) in single-interaction events. A small but
significant 8µm bias in z is caused by decay prod-
ucts of b- or c-hadrons that cannot be separated
from the primary vertex by the χ2 cut. This shift
is not present in minimum-bias events.

In the offline selections of B decays, the bb
production vertex is chosen as the primary ver-
tex with respect to which the fully reconstructed
B candidate has the smallest impact parameter or
impact parameter significance (and a positive de-
cay length). This implies that all cuts with respect
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Figure 9.6: z resolution of the bb production vertex
in forward bb events passing the trigger.

to this vertex (which will be referred to as “the”
primary vertex), e.g. on track impact parameters,
can only be applied once a B candidate has been
formed. Unless specified otherwise, this procedure
is applied in the analyses described below.

9.3 Reconstruction of specific
B final states

The main challenge in the offline selection of B
final states is to maintain high efficiency for the
signal while providing a very large rejection fac-
tor for the combinatorial background. The combi-
natorial background events surviving the selection
cuts are highly biased and non-typical of minimum-
bias events, sitting for example in the far tails
of pT, impact parameter and vertex χ2 distribu-
tions which are not known sufficiently well to be
parametrized. The studies are therefore performed
with fully simulated events (generated as described
in Chapter 6), with the drawback that only a lim-
ited statistics of background events can be gen-
erated. We have therefore chosen to focus on
what is very likely to be the dominant and there-
fore most dangerous source of combinatorial back-
ground, namely bb events where at least one b-
hadron is emitted forward within 400 mrad of the
beam axis (called forward bb events). Tracks from
inclusive b-hadron decays are displaced from the
primary vertex and, after minimum pT require-
ments, have a much larger probability to form fake
secondary vertices than tracks in cc or light-flavour

0

200

400

600

800

1000

−0.05 −0.04 −0.03 −0.02 −0.01 0 0.01 0.02 0.03 0.04 0.05
Primary vertex resolution in x, y [mm]

N
um

be
r 

of
 e

ve
nt

s

Mean = 0.4 ± 0.1 µm
σ1 = 7.8 ± 0.2 µm
σ2 = 18 µm (26.5%)

Figure 9.7: x and y resolution of the bb production
vertex in forward bb events passing the trigger.

events. Even with these assumptions, the Monte
Carlo background statistics available currently is
not sufficient to obtain a precise estimate of the
background levels (except for channels with a rela-
tively large visible branching ratio), so upper limits
are derived.

The offline selections of a few fully recon-
structed B0 and B0

s channels are presented below.
They represent examples of what can be done with
the LHCb detector. Each selection was developed
independently, without attempting so far to de-
fine a common selection strategy. Charged con-
jugate reactions are implied throughout. Unless
mentioned otherwise, only long tracks are used.

9.3.1 B0
(s) → h+h−

We outline here the selection of B0 → π+π−,
B0 → K+π−, B0

s → K+K− and B0
s → π+K− de-

cays [116]. Due to the large penguin amplitude,
B0 → π+π− alone does not provide a clean way
to determine CKM phases. However, the combi-
nation of the B0 → π+π− and B0

s → K+K− CP
measurements provides an interesting strategy to
extract the γ angle [114], as will be discussed in
Sect. 9.6.4.

The selection starts with the reconstruction and
identification of tracks as charged pions or kaons.
Each track must have a momentum p in the range
pmin < p < pmax, a transverse momentum pT larger
than (pT)each and an impact parameter significance
IP/σIP larger than (IP/σIP)each with respect to the
primary vertex.

Pairs of tracks with opposite charges are formed



90 CHAPTER 9. PHYSICS PERFORMANCE

Table 9.2: Summary of the offline selection cuts and
estimates of the remaining background levels for
the different B0

(s) → h+h− analyses. The meaning
of each cut is described in the text.

B0→ h+h− B0
s → h+h−

Channel ππ Kπ KK πK
Selection cuts

pmin [ GeV/c] 2.50 2.75 2.75 2.75
pmax [ GeV/c] 100 200 125 100

(pT )each [ GeV/c] 1.2 1.2 0.8 1.4
(pT )one [ GeV/c] 3.2 3.0 2.6 3.4

(IP/σIP)each 6 6 5 7
(IP/σIP)one 12 11 9 14

χ2
max 4 5 5 4

(pB
T )min [ GeV/c] 1.6 1.4 1.0 1.6
(IPB/σIPB)max 2.25 2.50 2.75 2.25

(L/σL)min 19 17 14 20
δm [ MeV/c2] 50 50 50 40

B/S ratios
two-body 0.13 0.04 0.04 0.41

combinatorial (bb) < 0.72 < 0.22 < 0.51 < 1.28

requiring at least one track with pT > (pT)one and
at least one track with IP/σIP > (IP/σIP)one. Each
pair surviving these cuts is fitted to a common ver-
tex and used to form a B0 candidate, which must
pass the following criteria:

• the vertex χ2 must be smaller than χ2
max;

• the pT of the B0
(s) must exceed (pB

T)min;

• the direction of flight must point to the pri-
mary vertex, with an impact parameter sig-
nificance smaller than (IPB/σIPB)max;

• the distance L between the primary and the
secondary vertices must have a significance
exceeding (L/σL)min;

• the invariant mass of the pair must lie within
±δm of the true B0

(s) mass.

The selection cuts have been optimized separately
for each of the decays under study, in order to reject
the backgrounds and maximize the signal efficiency.
The best cuts identified for each channel are shown
in Table 9.2, together with the estimates of the
background-to-signal (B/S) ratios after selection.
The distributions of signal and bb background for
some of the selection variables are shown in Fig. 9.8.

A crucial requirement for these selections is the
ability to suppress other b-hadron decays with the
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Figure 9.8: Distributions of some of the selection
variables for true B0

s → K+K− events (shaded his-
togram) and bb combinatorial background (black
dots). The meaning of each variable is described
in the text. The plots are obtained after track re-
construction and particle identification, but before
trigger and offline selection. Vertical dashed lines
indicate the cut value, while the arrows indicate
the accepted region.

same two-track topology. This is particularly im-
portant since such backgrounds may exhibit their
own CP asymmetries, thus biasing the CP mea-
surements of the channel under consideration. The
rejection of these backgrounds relies on the per-
formance of the RICH particle identification and
on the invariant mass resolution, which is about
17 MeV/c2. As an example, Fig. 9.9 shows K+K−

mass distributions after the trigger and the B0
s →

K+K− selection. As is clearly visible, the specific
two-body backgrounds can be kept small.

The combinatorial background is estimated
from a sample of 107 forward bb events, with a
relaxed δm mass cut of ±0.6 GeV/c2 (±1.2 GeV/c2

in the case of B0
s → π+K−); only a handful of bb

events survive the offline selection, leading to the
90% CL upper limits quoted in Table 9.2.

Finally, an important quantity is the resolu-
tion on the proper decay time. This is partic-
ularly relevant for the fast-oscillating B0

s meson,
where a bad resolution would dilute the sensitiv-
ity to the CP measurements. Figure 9.10 shows
the proper-time resolution for triggered and recon-
structed B0

s → K+K− decays, which has a width of
about 40 fs.
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Figure 9.9: Invariant mass distribution of triggered
and offline-selected B0

s → K+K− candidates. The
light-shaded (yellow) histogram is the signal and
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and Λb → pπ− decays. The vertical lines indicate
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9.3.2 B0
s → D−

s h+

We summarize here the B0
s → D−

s h+ selec-
tions [117], where h+ refers to a “bachelor” K+

or π+ coming directly from the B0
s decay. The

B0
s → D∓

s K± decays involve two tree amplitudes
(see Fig. 9.3) and can be used, together with B0

s →
J/ψφ, to extract the angle γ in a theoretically clean
way, even in presence of new physics in loop dia-
grams. With its large branching ratio and flavour-
specific final state, the B0

s → D−
s π

+ mode can be
used to measure the B0

s oscillation frequency, but
also constitutes both a background channel and a
control channel for the B0

s → D∓
s K± analysis.

All charged tracks used in this B0
s reconstruc-

tion are required to have a track fit χ2 less than
4 per degree of freedom, p > 2 GeV/c, pT >
0.3 GeV/c, and an impact parameter significance
larger than 1 with respect to the B0

s production ver-
tex, taken as the primary vertex with the highest
track multiplicity. These tracks are assumed to be
kaons if ∆ lnLKπ > −5 and pions if ∆ lnLπK > −5,
based on the RICH information. There is an over-
lap region, −5 < ∆ lnLKπ < 5, were a single track
can be considered both as a kaon or a pion.

The D−
s is reconstructed in the K+K−π− fi-

nal state. The three tracks must have
∑
pT >

2.2 GeV/c, an invariant mass within ±15 MeV/c2 of
the true D−

s mass, and a vertex with χ2 < 10.
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Figure 9.10: Proper-time resolution for triggered
and offline-selected B0

s → K+K− decays. The fit
is a double Gaussian. A fit with a single Gaussian
gives σ ∼ 40 fs.

B0
s candidates are formed by combining the D−

s

with remaining K+ and π+ tracks (bachelor h+),
and the following criteria are applied:

• the bachelor track must have pT > 0.7 GeV/c
and an impact parameter significance in ex-
cess of 4 with respect to the B0

s production
vertex;

• the D−
s vertex must be separated from the

B0
s production vertex by at least 4.5σ in the

downstream direction;

• the D−
s candidate must have an impact pa-

rameter significance larger than 2 with re-
spect to the B0

s production vertex;

• the D−
s h+ pair must form a vertex with χ2 <

4, between the D−
s and the primary vertices;

• the significance of the impact parameter of
the B0

s candidate with respect to its produc-
tion vertex must be smaller than 3;

• the angle θ between the reconstructed B0
s mo-

mentum and the line of flight determined by
its production and decay vertices must be less
than 8 mrad;

• the reconstructed B0
s mass must be within

±50 MeV/c2 of the true mass.

The only difference between the B0
s → D∓

s K±

and B0
s → D−

s π
+ selections is in the treat-

ment of the bachelor particle. Kaons must have
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+
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identification information of the bachelor particle.
The relative normalization is arbitrary.
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Figure 9.12: B0
s mass distribution for selected B0

s →
D∓

s K± candidates. The Gaussian fit gives a reso-
lution of 14 MeV/c2 for the signal. Also shown are
the misidentified B0

s → D−
s π

+ events normalized
to the branching ratios given in Table 9.5. Their
mass is shifted up due to the misidentification of
the bachelor π as a K.

∆ lnLKπ > 2 and ∆ lnLKe > 2 while pions must
have ∆ lnLπK > −5. This separation can be
seen in Fig. 9.11. These cuts greatly reduce the
B0

s → D−
s π

+ pollution of the B0
s → D∓

s K± channel,
which is estimated to correspond to B/S = 11%
with the cuts presented here, while retaining the
pions for the B0

s → D−
s π

+ selection (B0
s → D∓

s K±

pollution of B0
s → D−

s π
+ is negligible due to the
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Figure 9.13: B0
s proper-time resolution for B0

s →
D∓

s K± decays in selected and triggered events. The
fit is a double Gaussian with a core (69%) σ =
33 ± 1 fs. The resolution of B0

s → D−
s π

+ decays is
very similar.
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Figure 9.14: Total B0
s → D−

s h+ selection and
trigger efficiency as function of proper time, in
arbitrary units. The expression of the fitted
parametrization is shown.

difference in branching ratios).
Figure 9.12 shows the mass resolution for se-

lected B0
s → D∓

s K± candidates from signal events
along with the background from misidentified B0

s →
D−

s π
+ decays. Correctly selected B0

s → D−
s π

+

events show a similar mass resolution.
The combinatorial background is estimated

from a sample of 107 forward bb events, with a re-
laxed B0

s mass window of ±0.5 GeV/c2. Only 10 (1)
combinatorial background events survive the selec-
tion criteria with a bachelor pion (kaon) leading to
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the 90% CL upper limit B/S < 0.5 (1.0).
The B0

s proper-time resolution, after a B0
s mass

constrained fit of the B0
s vertex, is shown in

Fig. 9.13. The combined efficiency of the selection
and trigger has the proper-time dependence shown
in Fig. 9.14.

9.3.3 B0 → J/ψ(µµ)K0
S

B0→ J/ψK0
S is the best decay for the measurement

of the angle β. In addition to its physics interest,
we use it as a benchmark for our performance on
J/ψ→ �+�− and K0

S → π+π− reconstruction. We
summarize here the dimuon case [118], while elec-
trons will be discussed in the following section.

Muon candidates are identified with the require-
ment ∆ lnLµπ > −8 (see Sect. 8.4). Pairs of muons
with opposite charges are required to come from a
common vertex with χ2 < 20 and to have an invari-
ant mass within ±50 MeV/c2 of the true J/ψ mass
(the core resolution is ∼ 10 MeV/c2). After a mass-
constrained vertex fit with χ2 < 50, the vertex res-
olution along z has a core of 165µm.

The K0
S→ π+π− decays are reconstructed with

different types of tracks, as described in Sect. 8.8.
The J/ψ and K0

S candidates are combined to form
B0 candidates and the following requirements are
applied; cut values are given for the most frequent
case where the K0

S is formed with two downstream
tracks, and the values in parentheses apply to the
category with two long tracks:

• the significance of the displacement in z be-
tween the J/ψ vertex and the primary vertex
must be greater than 1.2;

• the significance of the displacement in z be-
tween the K0

S vertex and the primary vertex
must be greater than 0.0 (5.7);

• the impact parameter significance of the K0
S

with respect to the J/ψ must exceed 8 (3.5);

• the impact parameter significance of each K0
S

leg with respect to the primary vertex must
be larger than 2 (3), and similarly for each
J/ψ leg with a cut at 1.2 (1.4);

• the impact parameter significance of the B0

with respect to the primary vertex must be
smaller than 5.0, and that of the K0

S must be
larger than 0.0 (1.0);

• the B0 transverse momentum of must be
larger than 0 MeV/c (200 MeV/c);

• the J/ψK0
S vertex χ2 must be less than 16;
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Figure 9.15: Invariant mass distribution for B0 →
J/ψ(µµ)K0

S signal events where the K0
S is recon-

structed as two downstream (left) or two long
(right) tracks.

• the J/ψK0
S mass must be within ±60 MeV/c2

of the true B0 mass.

The B0 mass distribution obtained after this
selection has a core resolution of 12 MeV/c2

(9 MeV/c2) and is shown in Fig. 9.15. Core reso-
lutions are 150µm (120µm) for the z coordinate of
the B0 vertex, and 41 fs (46 fs) for the B0 proper
time.

B0 candidates are also reconstructed and se-
lected using K0

S formed with one long track and
one upstream track. These events have some-
what worse B0 mass resolution, which can how-
ever be recovered by applying a mass-constrained
fit to the K0

S. The relative contributions of the
various K0

S categories in the final B0 sample are
65% (downstream-downstream), 26% (long-long)
and 9% (long-upstream).

No forward bb event pass the selection out of
107 generated events. If the B0 mass window is
enlarged to ±600 MeV/c2, 37 candidates are ac-
cepted, which are mainly formed using a true J/ψ
originating away from the primary vertex. The de-
cay modes B0 → J/ψ(µµ)K∗0, B0

s → J/ψ(µµ)φ and
prompt J/ψ→ µ+µ− have been studied as a source
of background, and were found to give a negligible
contribution.

9.3.4 B0 → J/ψ(ee)K0
S

Oppositely-charged pairs of reconstructed and
identified electrons are used to reconstruct J/ψ→
e+e− candidates (see Sect. 8.5). In order to sup-
press ghosts, both electron tracks in a pair are re-
quired to have pT > 0.5 GeV/c and at least one
of them pT > 1.5 GeV/c. Only pairs which form
a common vertex with χ2 < 8 and have an in-
variant mass (after the Bremsstrahlung correction
explained in Fig. 8.16) between 2.7 GeV/c2 and



94 CHAPTER 9. PHYSICS PERFORMANCE

3.2 GeV/c2 are kept as J/ψ candidates. This mass
window is asymmetric to take into account the fact
that some Bremsstrahlung photons are not recov-
ered. The sample of J/ψ selected in this way has
a mass resolution of 59 MeV/c2 and a core vertex
resolution along z of 148µm.

The K0
S candidates are again selected in three

different categories. In the following we only de-
scribe the cuts applied on B0 → J/ψ(ee)K0

S candi-
dates involving K0

S formed with two downstream
tracks, and the values in parentheses apply to the
category with two long tracks (see [119] for details):

• the pT of the K0
S must exceed 0.8 (0.5)GeV/c;

• the B0 vertex χ2 must be less than 30 (16);

• the significance of the distance between the
B0 vertex and the primary vertex must be
greater than 3.5 (5);

• the impact parameter significance of each
pion from the K0

S with respect to the pri-
mary vertex must be larger than 3 (4), and
that each electron from the J/ψ larger than 2
(1.5);

• the impact parameter significance of the B0

with respect to the primary vertex must be
smaller than 4;

• the significance of the distance between the
K0

S vertex and the B0 vertex must be greater
than 12 (10);

• the unsigned impact parameter significance
of the K0

S with respect to the primary vertex
must be greater than 0 (1);

• the difference between the reconstructed
masses of the B0 and J/ψ candidates must be
within ±100 (80)MeV/c2 of its true value.

The latter cut is designed to compensate for the
electron Bremsstrahlung losses, and is more effec-
tive than a simple cut on the reconstructed B0

mass.
Figure 9.16 shows the distribution of the recon-

structed mass after all cuts, with a core resolution
of 20 MeV/c2 (17 MeV/c2). The B0 proper-time core
resolution is found to be 50±3 fs (51±3 fs).

The B0 → J/ψ(ee)K∗0, B0
s → J/ψ(ee)φ, B0

s →
J/ψ(ee)η decay modes were studied as source of
background and found to give a negligible contri-
bution. All prompt J/ψ events in a sample of 350k
events are eliminated. This selection was also ap-
plied to a 107 forward bb and 2 background events
pass the cuts. This number goes up to 23 in a B0

mass window which is 10 times wider.
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Figure 9.16: Invariant mass distribution for B0 →
J/ψ(ee)K0

S signal events where the K0
S is recon-

structed as two downstream (left) or two long
(right) tracks.

9.3.5 B0
s → J/ψφ

The reconstruction and selection of B0
s → J/ψφ has

been studied for both the dimuon and dielectron
channels [120]. We describe here only the former.

The J/ψ candidates are formed by taking op-
posite sign charged tracks, with a transverse mo-
mentum larger than 0.5 GeV/c, identified as muons
by the muon system. The pair is required to have
an invariant mass within ±50 MeV/c2 of the J/ψ
mass and the fit to a common vertex must have
a χ2 of less than 9. Similarly, for φ candidates,
we again require two charged tracks with a trans-
verse momentum of at least 0.5 GeV/c, but which
are identified by the RICH as kaons, have an in-
variant mass within ±20 MeV/c2 of the φ mass, and
form a common vertex with χ2 < 40. In addition,
we require that the φ candidate has a momentum
in excess of 12 GeV/c. Finally we combine the J/ψ
and φ into a B0

s candidate, requiring that the four
charged tracks form a common vertex with a χ2 of
less than 20. The impact parameter of the B0

s can-
didate with respect to the primary vertex has to be
less than 0.4 cm.

To reduce the large background from prompt
J/ψ and φ production, we determine the proper
time (and its resolution) from a fit which requires
consistency between the proper time, the momen-
tum and the vector between the production and de-
cay vertices of the B0

s candidate. We require that
the χ2 of this fit be less than 100, the proper-time
resolution less than 100 fs, and the proper-time sig-
nificance larger than five. These cuts remove all
events from a simulated sample of 350k events with
a prompt J/ψ in the forward direction.

The B0
s meson mass peak obtained from sig-

nal Monte Carlo after this selection is shown in
Fig. 9.17 (a). The 15 MeV/c2 width, obtained from
a single Gaussian fit, could be reduced with a con-
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Figure 9.17: Invariant mass distribution of offline-
selected B0

s → J/ψ(µµ)φ candidates in (a) signal
events, and (b) inclusive bb events.

straint on the J/ψ mass. Conservatively, we assume
a signal mass window of ±50 MeV/c2 around the
true B0

s mass.

The inclusive bb background mass distribu-
tions, applying the same cuts is presented in
Fig. 9.17 (b). Eleven events out of 107 forward
bb events passed the selection, all of which con-
tain a true signal decay. Enlarging the mass win-
dow to ±600 MeV/c2, we find 7 additional (back-
ground) events, from which we determine the bb
background-to-signal ratio to be less than 0.3.

Figure 9.18 shows the proper-time resolution for
selected signal decays. The width obtained from a
single Gaussian fit is 38 fs. The curve superimposed
on the figure is a parametrization using the event-
by-event uncertainty on the proper time estimated
from the track covariance matrices. It corresponds
to the projection onto the proper-time residual of
a pull distribution described by a double Gaussian
with widths of 1.02 (90%) and 2.3 (10%) respec-
tively, showing that the uncertainty is properly es-
timated for the majority of the events.
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Figure 9.18: Proper-time resolution of offline-
selected B0

s → J/ψ(µµ)φ signal events.

9.3.6 B0 → K∗0γ and B0
s → φγ

Radiative B decays like B0 → K∗0γ and B0
s → φγ

involve the b→ sγ quark transition which is loop-
suppressed in the Standard Model. New physics
could therefore show up in these decays, for exam-
ple with sizeable CP violation effects.

For the reconstruction of the B0→ K∗0γ (B0
s →

φγ) decay [102], we look for two oppositely-charged
tracks to form the K∗0 → K+π− (φ→ K+K−) de-
cay, and combine them with an energetic photon
candidate. Requesting a high transverse energy
photon suppresses drastically the dominant back-
ground from low energy photons. However, the two
photons from an energetic π0 can produce a single
merged cluster in the electromagnetic calorimeter,
and thus fake an energetic photon. In particular,
the decay B0→ K∗0π0 (B0

s → φπ0) could constitute
a potentially dangerous background. This back-
ground can be evaluated and discriminated using
the different polarization of the vector meson.

The offline selection criteria for the B0→ K∗0γ
(B0

s → φγ) reconstruction are the following:

• the two charged tracks must be identified,
satisfying ∆ lnLπK > 0 for the pion hypoth-
esis, and ∆ lnLKπ > 1 (2) and ∆ lnLKp > 1
(2) for the kaon hypothesis;

• the significance of the impact parameter of
each of the two tracks with respect to each
primary vertex must exceed 4 (2);

• the χ2 of the two-track vertex fit must be less
than 49;

• the invariant mass of the two-track com-
bination must be within ±60 MeV/c2

(±10 MeV/c2) of the true K∗0 (φ) mass;
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Figure 9.19: Transverse energy of the photon can-
didate E∗γ

T with respect to the B0 momentum di-
rection versus the transverse energy of the photon
candidate Eγ

T: (a) for B0→ K∗0γ, (b) for bb events;
the selection cuts are superimposed.

• the transverse energy of the photon candidate
Eγ

T must exceed of 2.8 GeV;

• the transverse energy of the photon candidate
E∗γ

T with respect to the flight direction of the
B candidate must be between 2.2 (2.0) and
2.7 GeV;

• the angle between the B-candidate mo-
mentum and the direction defined by B-
production and B-decay vertices must be less
than 6 mrad (15 mrad);

• the polarization angle θhel between the B and
the K+ candidates in the K∗0 (φ) rest frame
must satisfy | cos θhel| < 0.7;

• the reconstructed B mass must be within
±0.2 GeV/c2 of the expected value.

The cuts were chosen to maximize the signal
significance, estimated with the S/

√
B ratio. To

illustrate the discriminating power between signal
and background, Fig. 9.19 shows the distributions
of the transverse energiesEγ

T versusE∗γ
T of the pho-

ton candidates for B0→ K∗0γ signal and inclusive
bb events.

The mass distribution of selected and triggered
B0 → K∗0γ candidates is shown in Fig. 9.20.
The B0 (B0

s ) mass resolution is 64 ± 2 MeV/c2

(65 ± 4 MeV/c2).
The contribution from B0 → K∗0π0 (B0

s →
φπ0) background is estimated to be less than 2.2%
(4.0%) of the signal, assuming a ratio of branching
fractions of BRπ0/BRγ < 8% [121]. The combina-
torial background was studied with a sample of 107

forward bb events; none of them passes the selec-
tion cuts, even when the B mass window is enlarged
to span the interval from 4.5 to 6.0 GeV/c2.
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Figure 9.20: B0 mass after selection and trigger for
B0→ K∗0γ signal and B0→ K∗0π0 background.
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Figure 9.21: B0
s → φγ proper-time resolution:

(a) simple vertex fit, (b) direction vertex fit (see
text).

CP violation studies with B0
s → φγ require a

proper-time analysis, since the final state is not
flavour-specific. However, the φ → K+K− decay
provides a rather poor B0

s vertex and proper-time
determination, because of the small opening angle
between the two kaons. This can be improved by
a special choice of selection cuts and vertex fitting
procedure. Figure 9.21 (a) shows the proper-time
resolution after removing the cut on E∗γ

T and re-
quiring Eγ

T > 3.2 GeV, while Fig. 9.21 (b) shows
the additional improvement obtained when apply-
ing a vertex fit where the B0

s is constrained to orig-
inate from the primary vertex (“direction” fit). Af-
ter this, the resolution can be described as a dou-
ble Gaussian with widths of 62 ± 6 fs (60%) and
200±30 fs (40%). Furthermore the core component
can be nicely isolated by requiring cos θ∗ < −0.4,
where θ∗ is the B0

s decay angle.
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Figure 9.22: Normalized Dalitz plot for the signal
events after all selection cuts, involving both re-
solved π0 and merged π0. The hatched region is
excluded from the analysis.

9.3.7 B0 → ρπ

In order to be able to extract unambiguously the
angle α ≡ π − β − γ of the unitarity triangle, it
is important to have access to the ρ-interference
regions of the B0→ π+π−π0 Dalitz plot. These re-
gions correspond to different kinematical regimes.
The region where m2

π+π0 + m2
π−π0 > 10 GeV2/c4

is characterized by the presence of an energetic
π0, one fast charged track and a slow one (in
the interference region itself, one of the charged
tracks is almost at rest in the B0 center-of-mass
frame). The other part of the Dalitz plot, defined
by m2

π+π0 + m2
π−π0 < 10 GeV2/c4 and correspond-

ing to the hatched area of Fig. 9.22, is populated by
events with two fast charged tracks and a slow π0.
This region has a large combinatorial background
from soft π0’s and is not included in the selection
presented here [103].

Only events with exactly one reconstructed pri-
mary vertex are used. The π0 candidates are re-
constructed either as “resolved π0” or as “merged
π0” (see Sect. 8.7), and selected in the mass re-
gions 105 < mπ0 < 165 MeV/c2 and 105 < mπ0 <
175 MeV/c2 respectively. In order to reduce the
combinatorial background, their transverse mo-
menta are required to be larger than 1.5 GeV/c.
They are combined with charged pions of trans-
verse momenta greater than 150 MeV/c to form
π+π−π0 combinations which are selected as B0

candidates under the following conditions:
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Figure 9.23: The B0 → π+π−π0 mass distribu-
tions obtained with signal Monte Carlo for the
selection involving resolved π0 (top) and merged
π0 (bottom). The B0 mass resolutions are both
∼ 75 MeV/c2.

• the vertex formed by two charged tracks must
be displaced by more than 500µm with re-
spect to the primary vertex;

• the slowest (fastest) track should have
an impact parameter significance IP1/σIP1

(IP2/σIP2) in excess of 2 (3) with respect to
the primary vertex;

• the angle θB between the B0 line of flight and
the B0 momentum should be smaller than
20 mrad;

• the distances in space d1 and d2 between
the charged-pion tracks and the B0 direction
should be smaller than 100µm;

• one of the three two-pion invariant masses
should be less than 1.2 GeV/c2.

In addition, in order to reject as much as possi-
ble of the large bb combinatorial background while
keeping a reasonable signal efficiency, a combined
variable has been designed. It is constructed as the
ratio of the product of the probability density func-
tions for the signal and background of the follow-
ing discriminating variables: IP1/σIP1 , IP2/σIP2 ,
d1, d2, θB, the π0 transverse momentum, the B0

transverse momentum and the arithmetic sum of
the transverse momenta of the three pions with re-
spect to the B0 direction. This combination does
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not take into account the correlations between the
variables and as such cannot be seen as a true prob-
ability. However it offers an easy way to optimally
reduce the large combinatorial background which
is due to the presence of a low momentum track
in conjunction with the absence of tight mass con-
straints. It has been designed keeping in mind the
need to preserve the ρ-interference regions in the
Dalitz plot. After cutting on this combined variable
(computed separately for the selection involving re-
solved and merged π0) the normalized Dalitz plot
and the B0 mass plots obtained with signal Monte
Carlo are shown in Figs. 9.22 and 9.23 respectively.
The proper-time resolution is approximately 80 fs.
After all cuts including trigger, 64% of the selected
signal events are reconstructed with a merged π0.

Monte Carlo signal events were generated with
a ρ+π−:ρ−π+:ρ0π0 mixture of 1.00:0.39:0.39. The
proportion of ρ0π0 is therefore inflated compared
to model estimates [122]. This could lead to the
efficiency of the analyses described above being
optimistic by as much as 12%. To compensate
for this we assume a B0 → ρπ branching ratio of
2 × 10−5, to be compared to BR(B0→ ρ±π∓) =
(2.27 ± 0.25) × 10−5 measured at the B facto-
ries [123, 121].

The final selection has been applied to a sample
of 107 forward bb events. In an enlarged B0 mass
window (±950 MeV/c2 around the true B0 mass)
four events are kept by the selection using resolved
π0 and one by the selection using merged π0. From
these numbers, we compute 90% CL upper limits
for the background-over-signal ratio of 15 and 5.3,
respectively, or 7.1 on average.

9.3.8 B0 → D0K∗0

The simultaneous measurement of the rates
for the decays B0 → D0(K+π−)K∗0, B0 →
D0

CP(K+K−)K∗0, B0 → D0(π+K−)K∗0 and their
CP conjugates, where K∗0 → K+π−, allows the
CKM angle γ to be extracted, without the need
of flavour tagging or proper-time determination.
The reconstruction and selection of the first two
modes was studied [124] using B0 → D0(Kπ)K∗0

and B0 → D0(KK)K∗0 events, and is summarized
here. The efficiency for selecting B0 → D0K∗0 is
assumed to be equal to that of B0→ D0K∗0.

Tracks are identified as kaons and pions using
the combined particle-identification information.
K∗0 (D0) candidates are selected as K+π− (K+π−

or K+K−) pairs having a good quality vertex with
χ2 < 20 and an invariant mass within ±150 MeV/c2

(±50 MeV/c2) of the nominal K∗0 (D0) mass. For

Table 9.3: Cuts applied to select B0→ D0(Kπ)K∗0

and B0 → D0(KK)K∗0 events. Transverse mo-
menta (pT) are in MeV/c, and impact parameters
(IP) are with respect to the primary vertex, unless
specified otherwise.

Requirement Kπ KK
D0 mass-constrained vertex χ2< 25 25
B0 vertex χ2 < 10 10
IPB/σIPB < 3.8 5.0
max(IPK∗/σIPK∗ , IPD/σIPD) > 1 1
min4

i=1(IPi/σIPi
) > 2.4 2.3

IPD/σIPD w.r.t. K∗0 vertex < 5 3.5
θ (mrad) < 45 14
min(pTK∗ , pTD) > 900 900
max(pTK∗ , pTD) > 0 2000∑4

i=1 ln(pTi) > 27.7 24.0∑4
i=1 ln(IPi/σIPi) > 7.0 5.0

the B0 → D0(Kπ)K∗0 case where the combinato-
rial background is more severe the K∗0 mass cut
is tightened to ±80 MeV/c2. The momentum of
the D0 candidates is improved by refitting the two-
track vertex under the D0 mass constraint. The B0

candidates, formed with D0K∗0 pairs are required
to survive cuts applied on the following variables
(cut values are given in Table 9.3):

• the χ2 of the B0 vertex;

• the impact parameter significances IP/σIP of
the B0, D0, K∗0 and their daughters with re-
spect to the primary vertex;

• the impact parameter significance of the D0

with respect to the K∗0 vertex;

• the angle θ between the B0 momentum and
the flight direction defined by the primary
and B0 decay vertices;

• the D0 and K∗0 transverse momenta pT;

• the sum of ln(pT) and the sum of ln(IP/σIP),
where the sums run over the four final state
tracks.

The requirements on the latter two variables are
very effective in rejecting the inclusive bb back-
ground, as shown in Fig. 9.24.

The invariant D0K∗0 mass distribution for se-
lected B0 candidates in B0 → D0(Kπ)K∗0 events
is displayed in Fig. 9.25; a D0 mass constraint is
applied, which improves the B0 mass resolution
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Figure 9.24: The sum of the logarithms of the pT

(in MeV/c) for the 4 final state particles forming a
B0 → D0(Kπ)K∗0 candidate versus the sum of the
logarithms of their impact parameter significances,
for inclusive bb background (red points at small
values) and signal (blue boxes spread at higher val-
ues). The lines indicate the selection cuts on these
two variables.

(single Gaussian fit) from 15 to 11 MeV/c2. The
B0 → D0(KK)K∗0 channel has a similar resolu-
tion. After all the above cuts, no forward bb back-
ground event (from a sample of 107) falls within
±500 MeV/c2 of the true B0 mass. For the final se-
lection, B0 candidates must have a reconstructed
mass within ±25 MeV/c2 of the true B0 mass.

9.4 Summary of event yields

This section summarizes the efficiencies, signal
yields and background estimates for various B-
decay channels. The following channels are in-
cluded, in addition to those described in the previ-
ous section:

• B0 → D∗−π+ (D∗−→ D̄0π− → K+π−π−)
[125] for another way of measuring the angle
γ;

• B0
s → J/ψ(µµ)η (η → γγ) [126] and B0

s →
ηcφ (ηc→ π+π−π+π−, π+π−K+K−) [127] as
pure CP eigenstates to increase the sensitiv-
ity, together with B0

s → J/ψφ, to the B0
s mix-

ing phase;

• B0 → µ+µ−K∗0 [128] and B0
s → φφ [129] as

interesting channels to look for new physics
in loop diagrams;

• B0 → J/ψK∗0 [130] and B+ → J/ψK+ [120],
which can be used as control channels; and
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Figure 9.25: Invariant mass distribution of selected
B0 → D0(Kπ)K∗0 candidates in signal events, be-
fore (a) and after (b) D0 mass constraint.

• B+
c → J/ψ(µµ)π+ [131] for high statistics

measurements of the B+
c mass and lifetime.

In all these channels, K∗0 and φ mesons are re-
constructed in the K+π− and K+K− mode respec-
tively. Only long tracks are used, with the excep-
tion of the “slow” pions from D∗ decays which are
also reconstructed as upstream tracks; the use of
upstream tracks increases the yield of fully recon-
structed B0→ D∗−π+ decays by ∼ 15% at constant
purity [125]. A preliminary study has indicated
that the B0 → D∗−π+ yield can be increased by a
factor 4 by using an inclusive reconstruction of the
D0, but that is not applied here.

The total signal efficiency is obtained as the
fraction of events containing a signal B decay that
are triggered, reconstructed, and selected with of-
fline cuts for physics analysis. It is given by various
factors. A possible way to break it down is

εtot = εdet × εrec/det × εsel/rec × εtrg/sel ,

where εdet is the detection efficiency1 (including
the geometrical acceptance in 4π and all mate-
rial effects in the detector, like secondary inter-
actions), εrec/det is the reconstruction efficiency
on detected events (track finding efficiency and
neutral cluster reconstruction2), εsel/rec is the ef-
ficiency of the offline selection cuts on the recon-
structed events (designed to discriminate against

1In practice εdet contains everything which is not ac-
counted for by the other factors, and is computed as
εtot/(εrec/det × εsel/rec × εtrg/sel).

2For photons we require ET > 200 MeV in the definition
of the numerator of εdet, while we do not include the loss due
to conversions; the latter is accounted for in εrec/det since
the reconstruction of photons converted before the magnet
will be attempted in the future.
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Table 9.4: Summary of the signal efficiencies, untagged annual signal yields and background-over-signal
(B/S) ratios from inclusive bb events. The meaning of the breakdown of the total efficiency εtot is
explained in the text. The annual signal yields include both the indicated decays and their charge
conjugates. Quoted errors on B/S are from the Monte Carlo statistics; estimates based on less than 10
Monte Carlo background events are quoted as 90% CL upper limits.

Factors (in %) forming εtot(in %) Assumed Annual B/S ratio
Decay channel εdet × εrec/det × εsel/rec × εtrg/sel = εtot visible BR signal from incl.

εdet εrec/det εsel/rec εtrg/sel εtot (in 10−6) yield bb back.
B0→ π+π− 12.2 91.6 18.3 33.6 0.688 4.8 26. k < 0.7
B0→ K+π− 12.2 92.0 25.2 33.2 0.94 18.5 135. k 0.16 ± 0.04
B0

s → π+K− 12.0 92.1 13.5 36.7 0.548 4.8 5.3 k < 1.3
B0

s → K+K− 12.0 92.5 28.6 31.1 0.988 18.5 37. k 0.31 ± 0.10
B0→ ρπ 6.0 65.5 2.0 36.0 0.028 20. 4.4 k < 7.1
B0→ D∗−π+ 9.4 77.7 18.5 27.4 0.370 71. 206. k < 0.3
B0→ D0(Kπ)K∗0 5.3 81.8 22.9 35.4 0.354 1.2 3.4 k < 0.5
B0→ D0

CP(KK)K∗0 5.2 81.4 29.4 31.2 0.390 0.19 0.59k < 2.9
B0

s → D−
s π

+ 5.4 80.6 25.0 31.1 0.337 120. 80. k 0.32 ± 0.10
B0

s → D∓
s K± 5.4 82.0 20.6 29.5 0.269 10. 5.4 k < 1.0

B0→ J/ψ(µµ)K0
S 6.5 66.5 53.5 60.5 1.39 19.8 216. k 0.80 ± 0.10

B0→ J/ψ(ee)K0
S 5.8 60.8 17.7 26.5 0.164 20.0 25.6 k 0.98 ± 0.21

B0→ J/ψ(µµ)K∗0 7.2 82.7 35.1 69.9 1.462 59. 670. k 0.17 ± 0.03
B+→ J/ψ(µµ)K+ 11.9 89.6 44.8 68.7 3.28 68. 1740. k 0.37 ± 0.02
B0

s → J/ψ(µµ)φ 7.6 82.5 41.6 64.0 1.672 31. 100. k < 0.3
B0

s → J/ψ(ee)φ 6.7 76.5 22.0 28.0 0.315 31. 20. k 0.7 ± 0.2
B0

s → J/ψ(µµ)η 10.1 69.6 10.1 64.8 0.461 7.6 7.0 k < 5.1
B0

s → ηcφ 2.6 69.5 15.8 27. 0.078 21. 3.2 k < 1.4
B0

s → φφ 6.7 79.7 37.9 23.2 0.470 1.3 1.2 k < 0.4
B0→ µ+µ−K∗0 7.2 82.4 16.1 73.5 0.704 0.8 4.4 k < 2.0
B0→ K∗0γ 9.5 86.8 5.0 37.8 0.156 29. 35. k < 0.7
B0

s → φγ 9.7 86.3 7.6 34.3 0.220 21.2 9.3 k < 2.4
B+

c → J/ψ(µµ)π+ 11.5 89.3 20.7 60.8 1.30 680. 14.0 k < 0.8
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background), and εtrg/sel is the combined L0+L1
efficiency on offline-selected events. The high-level
trigger (HLT), which is expected to have a very
high efficiency, is not considered here. Flavour tag-
ging efficiency is not included here and is discussed
in Sect. 9.5. The values of all these different factors,
together with their products, are given in Table 9.4.
As expected, both εdet and εrec/det are larger for
lower multiplicity channels. Track reconstruction
efficiencies are defined and discussed in Sect. 7.3,
while trigger performance is discussed in a separate
TDR [3]. The selection efficiencies are fairly large
(typically between 10% and 30%), given the high
background rejection that needs to be achieved.

The annual signal event yield is computed as

S = Lint × σbb × 2 × fB × BRvis × εtot , (9.4)

for a nominal annual integrated luminosity of
Lint = 2 fb−1 (107 s at 2 × 1032 cm−2s−1) and a
bb production cross section of σbb = 500µb. The
probability for a b-quark to hadronize into a hadron
is assumed to be fB = 39.1% for B0 or B+ [121],
10.0% for B0

s [121], and 8 × 10−4 for B+
c [131].

The factor 2 takes into account the production of
both b- and b-hadrons. The visible branching ra-
tio BRvis, given in Table 9.4, is the product of all
branching ratios involved in the b-hadron decay of
interest. The individual branching ratios are as-
sumed to be equal to the central values given in
Table 9.5 and [121]. Note that the J/ψ → �+�−

branching ratios are increased by the J/ψ→ �+�−γ
radiative contribution, which is also included in
the Monte Carlo signal samples. Furthermore, all
branching ratios are taken to be averages for the
specified decay and its CP conjugate.

The estimates of the inclusive bb background
levels, quoted in the last column of Table 9.4, are
assumed to correspond to the most significant con-
tribution to the combinatorial background. They
are based on a sample of 107 inclusive bb events
where at least one b-hadron is emitted forward
within 400 mrad of the beam line (we assume that
all other events do not contribute). This sample of
fully-simulated events corresponds to only 4 min-
utes of data-taking under nominal conditions. To
cope with the limited Monte Carlo statistics, the
B mass cut is relaxed when analyzing these events,
and the background under the B mass peak is es-
timated assuming a linear dependence on the re-
constructed B mass, after removal of events with a
true signal decay (or similar decays which will nec-
essarily lead to a reconstructed mass outside the
tight window). In addition, in order to further in-
crease the effective bb statistics, all B/S ratios are

Table 9.5: Assumed branching ratios (branching
ratios not listed here are taken from [121]).

Decay BR estimated as Ref.
(in 10−6)

B0
s → K+K− 18.5 ± 1.2 B0→ K+π− [121]

B0
s → π+K− 4.8 ± 0.5 B0→ π+π− [121]

B0→ ρπ 20 see Sect. 9.3.7
B0→ D0K∗0 7.0 see Sect. 9.6.5
B0→ D0

CPK∗0 35 see Sect. 9.6.5
D0

CP→ K+K− 8240 2 × (D0→ K+K−) [121]
B0

s → D−
s π

+ 2760 ± 250 B0→ D−π+ [121]
B0

s → D−
s K+ 200 ± 60 B0→ D−K+ [121]

B0
s → D+

s K− 27 ± 10 B0→ D+
s π

− [121]
B0

s → D∓
s K± 227 ± 61 sum of above two

B0
s → φγ 43 ± 4 B0→ K∗0γ [121]

B0
s → φφ 5.2 SM prediction [132]

B0→ µ+µ−K∗0 1.19 ± 0.39 SM prediction [133]
B0

s → J/ψη 283 ± 17 (B0→ J/ψK0)/3 [121]
B0

s → ηcφ 1310 ± 640 see belowa) [121]
B+

c → J/ψπ+ 104 [131]
a) (B0→ ηcK0) × (B0

s → J/ψφ)/(B0→ J/ψK0)

estimated without applying the trigger. It should
be noted that, for most channels, this estimation
is done using the same samples as the ones used
to optimize the cuts, hence the procedure is not
unbiased.

Background levels from some specific b-hadron
decays have been discussed in the previous section.
The selections involving a J/ψ were also tuned such
as to reject all events in a sample of prompt J/ψ cor-
responding approximately to the same luminosity
as the inclusive bb sample. For the B0→ µ+µ−K∗0

selection, we also considered muons from semilep-
tonic b-hadron decays and found B/S = 0.5 ± 0.1
from events with two b→ � decays and B/S < 1.1
from events with b → cµ, c → µ cascade de-
cays [128].

In order to study the robustness of the signal ef-
ficiencies as a function of the detector performance
and PYTHIA generator settings we have gener-
ated a few special signal Monte Carlo samples for
each of the two following conditions, as described
in Sect. 6.3:

• the “global robustness test”, which corre-
spond to a significantly worse overall detector
performance than assumed nominally (many
parameters such as efficiency, noise, cross-
talk and alignment are degraded simultane-
ously) as well as conservative settings for the
PYTHIA generator leading to an increase in
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Table 9.6: Change in untagged signal efficiencies
and annual yields under two different conditions,
relative to the nominal assumptions.

Global CDF tuning
Decay channel robustness of PYTHIA

test generator
B0

s → K+K− −31% +6%
B0

s → D∓
s K± −36% +19%

B0→ J/ψ(µµ)K0
S −32% +2%

B0
s → J/ψ(µµ)φ −29% +3%

B0
s → J/ψ(ee)φ −36% +5%

B0→ K∗0γ −28% +16%

average track multiplicity;

• the “CDF tuning of PYTHIA”, which corre-
sponds to the nominal detector performance
but with PYTHIA settings extrapolated (to
LHC energy) from a recent tuning on CDF
data, leading to a lower track multiplicity
than those assumed by default.

These special samples of events were analyzed with-
out retuning the reconstruction algorithms nor the
selection cuts. However the trigger thresholds were
changed in order to maintain the nominal trigger
output rates of 1 MHz after L0 and 40 kHz after L1.
The variations obtained on the untagged signal ef-
ficiencies and yields are shown in Table 9.6. The
changes in the B/S ratios have not been studied.

Large uncertainties exist on the production
cross sections at 14 TeV, as well as on the branching
ratios of some channels, which have not been taken
into account in the above robustness studies. The
dependence on some of these parameters (BRvis,
σbb, . . . ) can be seen directly from Eq. (9.4). The
dependence on the inelastic cross section, currently
assumed to be σinel = 80 mb, can be argued as fol-
lows: if the average number of pp collisions per
bunch crossing is a fixed number obtained by ad-
justing the instantaneous luminosity at Point 8,
then Lint ∝ 1/σinel and hence S ∝ σbb/σinel.

9.5 Flavour tagging

Flavour tagging, i.e. the identification of the initial
flavour of reconstructed B0 and B0

s mesons [134],
is necessary in order to study decays involving CP
asymmetries and flavour oscillations.

The statistical uncertainty on the measured CP
asymmetries is directly related to the effective tag-
ging efficiency εeff , also known as “εD2”, which is

defined here as

εeff = εtag(1 − 2w)2 ,

where εtag is the tagging efficiency (probability that
the tagging procedure gives an answer) and w is the
wrong tag fraction (probability for the answer to be
incorrect when a tag is present). The probabilities
εtag and w are calculated as

εtag =
R+W

R+W + U
, w =

W

R +W
,

where R, W , U are the number of correctly tagged,
incorrectly tagged, and untagged events, respec-
tively.

Flavour tagging is performed using several algo-
rithms, all using long tracks and particle identifica-
tion for leptons and kaons based on optimized cuts
on the combined ∆ lnL quantities (see Sect. 8.3).

9.5.1 Opposite-side tagging

Opposite-side tagging algorithms determine the
flavour of the b-hadron accompanying the recon-
structed B meson under study. They use the charge
of the lepton from semileptonic b decay and of the
kaon from the b → c → s decay chain. They also
use the charge of the inclusive secondary vertex re-
constructed from b-decay products (vertex charge).
When the accompanying b hadron is a neutral B
meson, due to the possibility of flavour oscillations
all these methods have an intrinsic dilution.

To select opposite-side tag lepton candidates, a
momentum p > 5 GeV/c and pT > 1.2 GeV/c are re-
quired, reducing the contribution from b → c → �
decays which tag the wrong charge. In case of mul-
tiple candidates, the one with highest pT is cho-
sen. Figure 9.26 shows for opposite-side muon tag
candidates the pT distribution and the effective ef-
ficiency as a function of the pT cut. Once the B
meson has been reconstructed in the event, which
passed Level-0 and Level-1 trigger, the probabil-
ity that the lepton from a semileptonic decay of
the opposite b-hadron is produced in the detec-
tor acceptance (15 < θ < 250 mrad) is 8.7% and
6.3% for muons and electrons, respectively. With
the condition that the particle is reconstructed as a
long track, these fractions become 8.1% and 5.1%.
The particle identification and selection cuts reduce
them to 5.7% and 2.8%, respectively.

To select opposite-side tag kaon candidates, a
momentum p > 3 GeV/c, pT > 0.4 GeV/c and an
impact parameter with respect to the primary ver-
tex with significance IP/σIP > 3.7 are required.
These cuts enhance the contribution of kaons from
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Figure 9.26: Upper plot: pT distribution for
opposite-side muon tag candidates, having p >
5 GeV/c, after Level-0 and Level-1 trigger. Lower
plot: effective efficiency as a function of the min-
imum pT required. The events used are B0

s →
K+K−.

b decays with respect to kaons produced in the
fragmentation. Figure 9.27 shows the distribution
of the significance IP/σIP for opposite-side kaon
tag candidates, after p and pT cuts have been ap-
plied, and the effective efficiency as a function of
IP/σIP. About 33% of the triggered events have a
kaon produced in the decay of the accompanying b
hadron carrying the right tag charge, in the detec-
tor acceptance. The momentum spectrum of these
kaons is quite soft and about 16% of them decay
before reaching the tracking chambers. The frac-
tion of triggered events having the tagging kaon
reconstructed as a long track is 21%. The cuts
for selection and particle identification reduce it to
11%.

If more than one opposite-side tag kaon can-
didate is present in the event, the charges of all
candidates are summed and the result is used as
flavour tag.

An inclusive reconstruction of the accompany-
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Figure 9.27: Upper plot: Distribution of the sig-
nificance IP/σIP for opposite-side kaon tag candi-
dates, after p and pT cuts have been applied and
after Level-0 and Level-1 trigger. Lower plot: effec-
tive efficiency as a function of the minimum IP/σIP

required. The events used are B0
s → K+K−.

ing b-decay vertex is used to determine the b-vertex
charge. The inclusive secondary vertex reconstruc-
tion starts using two tracks as seeds. Track pairs
compatible with a K0

S decay are excluded. Other
tracks are then included if they satisfy kinematic
criteria on impact parameters, χ2 of the secondary
vertex and distance from the primary vertex. The
vertex charge, Qvtx, is defined as the sum of the
charges of all tracks associated to the vertex. Fig-
ure 9.28 shows the distribution of the vertex charge
when the decaying b hadron is charged.

9.5.2 Same-side tagging

Same-side tagging algorithms determine directly
the flavour of the signal B meson exploiting the
correlation in the fragmentation decay chain. The
method is used to tag B0

s mesons. If a B0
s (bs) is

produced in the fragmentation of a b quark, an ex-
tra s is available to form a kaon, which is charged
in about 50% of the cases and neutral otherwise.
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Figure 9.28: Vertex charge distribution when the
decaying b hadron is a B−.

These kaons emerge from the primary vertex and
are correlated in phase space with the B0

s . They
are selected requiring an impact parameter with
respect to the primary vertex with a significance
IP/σIP < 2.5, a difference in pseudo-rapidity with
respect to the reconstructed B0

s |∆η| < 1, a differ-
ence in φ angle |∆φ| < 1.1 and |∆m| < 1.5 GeV/c2,
where ∆m is the difference between the mass of
the B0

sK combination and the mass of the recon-
structed B0

s . For this tag we require also p >
4 GeV/c and pT > 0.4 GeV/c.

9.5.3 Tagging performance

When more than one primary vertex has been re-
constructed in the event, all single particle tags are
required to have an impact parameter significance
in excess of 3.7 with respect to any primary vertex
which was not chosen as the bb production vertex.

The final decision on the production flavour of
the reconstructed B candidate is taken using the
charge of the tagging particle, or the secondary ver-
tex charge, when only one tag is available. The
same-side kaon tag is used only for B0

s candidates.
If there are more than one tag, the vertex charge is
ignored and the final decision is taken as follows: if
both the muon and the electron tag are available,
the one with the highest pT i.e. highest probabil-
ity to come from a b → � decay, is used. If two
single-track tags are available and they disagree,
the B candidate remains untagged. If three single-
track tags are available, the decision taken by the
majority of them is used.

In order to determine the performance of this
combined tagging decision, events are sorted in dif-
ferent categories according to which tags were in-

Table 9.7: Tagging performance for B0
(s) → h+h−

signal events passing trigger and offline cuts. Un-
certainties are statistical.

Tag εtag (%) w (%) εeff (%)
µ 11.1±0.3 35.3±1.1 1.0±0.2
e 5.2±0.2 35.6±1.7 0.4±0.1

Kopp 16.6±0.3 31.2±0.9 2.4±0.2
Qvtx 24.3±0.6 39.9±0.8 1.0±0.2

Combined (B0) 40.9±0.4 34.6±0.7 3.9±0.3
Ksame 17.5±0.4 32.8±1.2 2.1±0.3

Combined (B0
s ) 49.8±0.5 32.8±0.8 5.9±0.5

Table 9.8: Performance of the combined tag for
different signal decays passing trigger and offline
cuts. Uncertainties are statistical.

Channel εtag (%) w (%) εeff (%)
B0→ π+π− 41.8±0.7 34.9±1.1 3.8±0.5
B0→ K+π− 43.2±1.4 33.3±2.1 4.8±1.0
B0→ J/ψ(µµ)K0

S 45.1±1.3 36.7±1.9 3.2±0.8
B0→ J/ψ(µµ)K∗0 41.9±0.5 34.3±0.7 4.1±0.3
B0

s → K+K− 49.8±0.5 33.0±0.8 5.8±0.5
B0

s → π+K− 49.5±1.8 30.4±2.6 7.6±1.7
B0

s → D−
s π

+ 54.6±1.2 30.0±1.6 8.7±1.2
B0

s → D∓
s K± 54.2±0.6 33.4±0.8 6.0±0.5

B0
s → J/ψ(µµ)φ 50.4±0.3 33.4±0.4 5.5±0.3

cluded in the final decision; the performance is first
determined in each category, and the total effective
efficiency is obtained as the sum of the effective ef-
ficiencies determined in each category separately.
This procedure is more powerful than simply mea-
suring the performance of the combined tag after
lumping all categories together.

Results for tagging efficiencies, wrong tag prob-
abilities and effective efficiencies are shown in Ta-
ble 9.7 for B0→ π+π−, B0→ K+π−, B0

s → K+K−

and B0
s → π+K− signal decays passing the trigger

and offline selection. The performance is shown for
each tag independently, as well as for the combined
tagging decision. Table 9.8 gives the combined per-
formance for several more channels. Differences oc-
cur between channels because the accompanying b-
hadron is biased by the trigger, and, through the bb
correlation, by the acceptance and offline selection
cuts on the reconstructed B.

As expected, the tagging performance is bet-
ter in events with a single visible collision, but
remains very reasonable for events with multiple
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Table 9.9: Effective tagging efficiency for differ-
ent sub-samples of B0

s → D∓
s K± events (after trig-

ger but before offline cuts), defined by the num-
ber of visible collisions, or by the PYTHIA process
type [70] (for single-collision events).

Sample fraction εeff (%)
All 7.1 ± 0.3
Single collision 73% 7.5 ± 0.4
Multiple collisions 27% 6.6 ± 0.6
f + f→ f + f 9% 7.5 ± 1.2
f + g→ f + g 45% 6.5 ± 0.5
g + g→ f + f 18% 10.2 ± 1.0
g + g→ g + g 27% 8.0 ± 0.7

collisions. This is illustrated in Table 9.9, with
triggered B0

s → D∓
s K± events, where all four B0

s

final state particles are reconstructed in the detec-
tor. The tagging performance also depends rather
strongly on the bb production mechanism, as dif-
ferent processes produce different bb correlations
(see Table 9.9). For example, when a bb pair is
produced back-to-back as in g + g → f + f, the b
hadrons tend to be more cleanly separated in az-
imuthal angle, and this improves the tagging per-
formance for this particular process.

Differences in tagging performance between a
reconstructed B containing a b or a b quark at pro-
duction have been examined with the B0→ J/ψK∗0

channel and found to be smaller than 0.9%, consis-
tent with zero with the present Monte Carlo statis-
tics.

All results presented in this section use the
truth information to determine whether a tag is
correct or not, and the quoted uncertainties on the
performance arise from the present Monte Carlo
statistics. In order to reduce the dependence on the
Monte Carlo, it will be possible, in a real physics
analysis, to determine the wrong tag fractions di-
rectly from the data. This can be done for de-
cays to flavour-specific final states by measuring the
amplitude of the B0 or B0

s oscillations, i.e. of the
cos(∆mt) term in the mixing asymmetry. How-
ever, this is not possible for a non flavour-specific
channel (e.g. B0→ J/ψK0

S or B0
s → D∓

s K±); in this
case, we will be able to use another channel with
the same topology (B0→ J/ψK∗0 or B0

s → D−
s π

+ in
our examples) for which the trigger and the selec-
tion have a very similar response and hence intro-
duce the same bias on the tagging performance.

9.6 Expected sensitivities to
physics parameters

The sensitivities of LHCb to some CP observables
have been assessed by the use of “toy Monte Carlo”
programs. These programs generate event sam-
ples for certain assumptions of the physics param-
eters to be measured, and with the statistics ex-
pected at LHCb. Whenever possible, the char-
acteristics of these samples (signal resolution, ef-
ficiency, purity, etc.) are taken from the studies
with fully-simulated events described above. Due
to the lack of fully-simulated background statis-
tics, however, assumptions need to be made for
the properties of background events. In the real
analyses, these properties will be extracted from
the data (e.g. looking at the sidebands in the B
mass distribution). Systematic effects will be mon-
itored from the data as well, whenever this is pos-
sible (e.g. using control channels without expected
CP violation to determine the asymmetry between
b-hadron and b-hadron production). Unless speci-
fied otherwise, we assume no production asymme-
try, and perfect knowledge of all signal and back-
ground parameters, except for those left free in the
fits. The background-over-signal ratios B/S are
taken to be the central values of the estimates ob-
tained from the fully simulated inclusive bb sam-
ple. In the cases of the B0

s → D∓
s K±, B0→ D0K∗0

and B0 → D0
CPK∗0 selections, where these central

values would be derived based on only 1, 0 and 0
background events respectively, the assumed value
of B/S is taken as half of the upper limit shown in
Table 9.4. This is justified by the existence of addi-
tional cuts, not applied in the selections presented
here, which are efficient for the signal and are ex-
pected to further reduce the background [117, 124].

In the studies involving time-dependent anal-
yses, the proper-time distributions of the samples
are fitted to extract estimates of the statistical un-
certainties to be expected in the actual measure-
ments. With the exception of B0 → J/ψK0

S, where
the large, and (by the time of the experiment) well
known asymmetry serves mainly as a calibration,
unbinned maximum likelihood fits are used. The
likelihood is defined as

L =
∏

i

[
f sig

i Lsig
i + (1 − f sig

i )Lbkg
i

]
,

where the product runs over all events, and the
signal probability, f sig

i , is derived for each B candi-
date individually, based on the reconstructed mass.
The signal and background likelihoods, Lsig

i and
Lbkg

i contain the time dependence according to the
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physics parameters for which they are evaluated
and according to the expected mistag probabili-
ties. The analytical decay rates are convoluted
with proper-time resolution functions and weighted
with acceptance functions, both obtained from the
full simulation. The time-resolution functions are
single or double Gaussians and take advantage of
the per-candidate computed proper-time resolu-
tion. Overall scale factors for the widths of the
time resolution are fixed to match the observed
time resolution in the full simulation (see Fig. 9.18
for instance). Such scale factors may be left free in
the fit, providing a handle on possible systematic
effects in the time resolution.

For the analytical decay rates, used for the gen-
eration of the events and the signal likelihoods, we
have for initial3 B or B decaying to a final state f
or its CP-conjugated state f at proper time t:

ΓB→f (t) =
|Af |2

2
e−Γt [I+(t) + I−(t)] ,

ΓB→f (t) =
|Af |2

2

∣∣∣∣pq
∣∣∣∣
2

e−Γt [I+(t) − I−(t)] ,

ΓB→f (t) =
|Af |2

2
e−Γt

[
I+(t) + I−(t)

]
,

ΓB→f (t) =
|Af |2

2

∣∣∣∣qp
∣∣∣∣
2

e−Γt
[
I+(t) − I−(t)

]
,

(9.5)

where Af (Af ) is the instantaneous B → f (B →
f) decay amplitude, and Γ = (ΓL + ΓH)/2 is the
average decay width of the two mass eigenstates BL

and BH given by

|BL,H〉 =
1√|p|2 + |q|2 (p|B〉 ± q|B〉) .

Introducing the two complex quantities (of which
the real and imaginary part are observables)

λf =
q

p

Af

Af
and λf =

p

q

Af

Af

,

the functions I±(t) are expressed by

I+(t) = (1 + |λf |2) cosh(∆Γ t/2)
−2 Re(λf ) sinh(∆Γ t/2) ,

I−(t) = (1 − |λf |2) cos(∆mt)
−2 Im(λf ) sin(∆mt)

(and similarly for I±(t) replacing λf with λf ),
where ∆m = mH − mL and ∆Γ = ΓL − ΓH are
the mass and decay-width differences.

3B represents either B0 or B0
s mesons.

We assume here |q/p| = 1, an approximation
which is valid to a few per mil, even in the presence
of new physics. Then, the CP asymmetry, defined
for a CP eigenstate f = f , is given by

ACP
f (t) =

ΓB→f (t) − ΓB→f (t)

ΓB→f (t) + ΓB→f (t)

=
Adir

f cos(∆mt) + Amix
f sin(∆mt)

cosh(∆Γ t/2) −A∆
f sinh(∆Γ t/2)

,

where

Adir
f =

|λf |2 − 1
|λf |2 + 1

, Amix
f =

2 Im(λf )
|λf |2 + 1

,

and

A∆
f =

2 Re(λf )
|λf |2 + 1

.

The relative decay-width difference ∆Γ/Γ is ex-
pected to be of the order of 10% for B0

s

mesons [135], while it can be safely neglected for
B0 mesons. If ∆Γ = 0 is assumed, the CP asym-
metry reduces to

ACP
f (t) = Adir

f cos(∆mt) + Amix
f sin(∆mt) .

The quantity Adir
f parametrizes direct CP viola-

tion (in decay amplitudes), while Amix
f is related

to mixing-induced CP violation. These parameters
depend on the angles of the CKM unitarity trian-
gles. A discussion can be found in [136].

9.6.1 Mixing-induced and direct CP
violation in B0 → J/ψK0

S decays

For the B0→ J/ψK0
S decay, the Standard Model ex-

pectations are Adir = 0 (i.e. |λ| = 1) and Amix =
Im(λ) = sin(2β), and have been confirmed by the
B-factories. New physics could, however, affect
these parameters at the level of precision reached
by LHCb. The statistical sensitivity on these pa-
rameters with one year of data is assessed [118]
from toy Monte Carlo samples generated as follows:

• the number of tagged signal and background
events are randomly distributed around 91k
and 61k respectively (the same tagging effi-
ciency is assumed on the bb background as
for the signal);

• the true proper-time distribution of the signal
is generated with |λ| = 1 and Im(λ) = 0.73,
and is multiplied by an acceptance function
determined from the full Monte Carlo sam-
ple; for the background, no CP asymmetry is
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Figure 9.29: Background-subtracted CP asymme-
try with B0 → J/ψ(µµ)K0

S decays in one year of
data.

generated and an effective lifetime of 0.78 ps
is used (consistent with that observed in the
full bb Monte Carlo sample after a loose set
of cuts) with the same acceptance function as
for the signal;

• the true proper time of each event is smeared
with a double Gaussian resolution obtained
from the full Monte Carlo signal sample;

• the mistag probability is set to w = 34.3%
for signal events, and equal numbers of back-
ground events are tagged as B0 or B0.

In each sample, the background is subtracted
statistically, based on the parametrization used in
the generation. A binned maximum likelihood fit
of the function ACP(t)×(1−2w) is then performed
on the background-subtracted CP asymmetry, with
Im(λ) and |λ| as the only free parameters (see ex-
ample of Fig. 9.29). The parameter w is fixed to
the result obtained from a fit to a control sample of
B0 → J/ψK∗0 decays, corresponding to one year of
data and generated with w = 34.3%. The absolute
statistical uncertainty obtained on w, ±0.11%, is
then propagated to the B0→ J/ψK0

S results.
The average total statistical uncertainties on

Amix and |λ| are found to be 0.022 and 0.023 re-
spectively.

9.6.2 B0
s mixing phase and decay-

width difference with B0
s →

J/ψφ

The channel B0
s → J/ψφ is the SU(3) analogue

of B0 → J/ψK0
S. As such it can be used to de-

termine the phase φs due to B0
s -B0

s oscillations.

φ

φ tr

θtr
K -

K+

φ 

l+

J/ψ

l -

θ

y

z

x

Figure 9.30: Definition of the transversity angle θtr
in the B0

s → J/ψ(�+�−)φ(K+K−) decay.

In the Standard Model, the CKM picture pre-
dicts that this phase difference should be small,
φs = −2χ = −2ηλ2, of the order of −0.04. The
observation of a large CP asymmetry in this chan-
nel would therefore be a striking signal for physics
beyond the Standard Model.

Compared to B0→ J/ψK0
S, this channel presents

several challenges:

1. Due to the fact that both J/ψ and φ are vector
mesons, there are three distinct amplitudes
contributing to this decay: two CP even, and
one CP odd. Fortunately, the two CP com-
ponents can be disentangled on a statistical
basis by taking into account the distribution
of the so-called transversity angle, θtr, defined
as the angle between the positive lepton and
the φ decay plane in the J/ψ rest frame (see
Fig. 9.30).

2. The CP-even and CP-odd components are
expected to have a non-negligible relative
decay-width difference ∆Γs/Γs of the order
of 10%.

3. The oscillation frequency ∆ms of the time-
dependent CP asymmetry is very large, re-
quiring excellent proper-time resolution.

The values of the physics parameters are ex-
tracted [137] using an unbinned maximum likeli-
hood fit to the proper time, cos θtr, and mB0

s
distri-

butions. For this channel, the signal likelihood is
given by the sum of the CP-even and the CP-odd
components:

Lsig
i = RT Lsig

odd(ti, σt,i)
(
1 + cos2 θtr,i

)
/2

+(1 −RT)Lsig
even(ti, σt,i)

(
1 − cos2 θtr,i

)
,



108 CHAPTER 9. PHYSICS PERFORMANCE

Table 9.10: Expected statistical precision on sinφs

and ∆Γs/Γs after one year of data taking, for var-
ious values of physics parameters. Unless other-
wise specified, ∆ms = 20 ps−1, ∆Γs/Γs = 0.1,
sinφs = −0.04, RT = 0.2.

∆ms in ps−1 15 20 25 30
σ(sinφs) 0.057 0.064 0.075 0.088
σ(∆Γs/Γs) 0.018 0.018 0.018 0.018

∆Γs/Γs 0 0.1 0.2
σ(sinφs) 0.059 0.064 0.070
σ(∆Γs/Γs) 0.015 0.018 0.019

sinφs 0 −0.04 −0.1 −0.2
σ(sinφs) 0.064 0.064 0.064 0.066
σ(∆Γs/Γs) 0.018 0.018 0.018 0.018

RT 0.1 0.2 0.3
σ(sinφs) 0.050 0.064 0.084
σ(∆Γs/Γs) 0.015 0.018 0.019

where RT is the fraction of the decays given by the
CP-odd amplitude. The resolution of θtr, observed
to be 20 mrad in the full Monte Carlo, is included
in the event generation.

The fit is performed on the interval [0.2, 20] ps,
where the full simulation shows the acceptance to
be constant to a good approximation. Hence a flat
acceptance function is used for this channel.

The background proper-time distribution is
again obtained from the full Monte Carlo simula-
tion of inclusive bb events, with less stringent cuts,
and is described by the sum of a prompt compo-
nent, formed by two Gaussians, and a lifetime com-
ponent, formed by the convolution of an exponen-
tial with the same two Gaussians. The lifetime
is found to be 0.55 ps. In the interval [0.2, 20] ps,
12.5% of the events are due to the prompt compo-
nent. Finally, the distribution of θtr is assumed to
be flat for the background.

The fit proceeds in three steps. First the mass
distribution is fitted, and the per-candidate signal
probability is determined. Next, the sidebands,
defined as those candidates for which the recon-
structed mass deviates by more than 75 MeV/c2

from the nominal B0
s mass, are used to determine

the background parameters. Finally, candidates
within a window of ±50 MeV/c2 are used to de-
termine the signal parameters sinφs, RT, ∆Γs/Γs,
1/Γs, ∆ms and w. To allow a determination of the
latter two, this fit is performed simultaneously on
both B0

s → J/ψφ and B0
s → D−

s π
+ events.

To determine the sensitivity of sinφs and
∆Γs/Γs, events are generated for a series of likely
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Figure 9.31: Proper-time distribution of simulated
B0

s → D−
s π

+ candidates that have been flavour-
tagged as having not oscillated, for two different
values of ∆ms. The data points represent one year
of data, while the curves correspond to the maxi-
mized likelihood.

values of RT, ∆ms, ∆Γs/Γs and sinφs. For each
setting, 1000 experiments are simulated, each cor-
responding to one year of LHCb data-taking (100k
signal events with εtag = 50%, w = 35% and 15k
background events in the signal region). The av-
erage error obtained from the ensemble of experi-
ments is quoted as sensitivity in Table 9.10.

9.6.3 ∆ms with B0
s → D−

s π
+ and γ

with B0
s → D∓

s K±

The decay B0
s → D−

s π
+ is a flavour-specific B decay

in which only a single tree diagram contributes. In
this case the generic decay formula Eq. (9.5) can
be applied with the constraint λ = λ = 0 and a
flavour asymmetry can be defined:

Aflav =
ΓB→f − ΓB→f

ΓB→f + ΓB→f
= −D cos(∆ms t)

cosh(∆Γs t)
,

where D is a dilution factor due to wrong tagging
and experimental resolution. From this asymmetry
the B0

s oscillation frequency ∆ms and, optionally,
the decay width difference ∆Γs can be determined.

The decay B0
s → D∓

s K± can proceed through
two tree decay diagrams, the interference of which
gives access to the phase γ + φs, and hence to the
CKM angle γ if φs is determined otherwise (e.g.
with B0

s → J/ψφ). In this case the generic for-
mula is applied with |λ| = |λ| ≈ 0.5, arg(λ) =
∆T1/T2 +(γ+φs) and arg(λ) = ∆T1/T2 − (γ+φs).
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Figure 9.32: Time-dependent B0
s -B

0
s asymmetry of

simulated D−
s K+ (top ) and D+

s K− (bottom) can-
didates for ∆ms = 20 ps−1. The data points repre-
sent five years of data, while the curves correspond
to the maximized likelihood.

Here ∆T1/T2 denotes the strong phase difference
between the two tree diagrams of Fig. 9.3.

In this study [138], B0
s → D−

s π
+ and B0

s →
D∓

s K± signal events are generated for different set-
tings of the physics parameters γ+φs, ∆T1/T2 and
∆ms, while ∆Γs/Γs is fixed to 10%. The accep-
tance and decay time resolutions of both decays
are taken from Sect. 9.3. Background events are
generated with a lifetime that is half the lifetime of
B-mesons, and according to the mass distribution
observed in the full simulation.

Since the B0
s → D−

s π
+ and B0

s → D∓
s K± events

B/S
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Figure 9.33: Statistical uncertainty on γ + φs for
one year of data as a function of the B/S ratio in
the B0

s → D∓
s K± selection.

are topologically similar the same mistag rate is as-
sumed. A value of w = 32% was used in the event
generation. In the fit, the likelihoods of all tagged
B0

s → D−
s π

+ and B0
s → D∓

s K± events are simultane-
ously maximized by varying the parameters ∆ms,
|λ| = |λ|, arg(λ), arg(λ) and w. The mistag rate
w is then effectively determined (with a relative
precision of 1.5%) from the amplitude of the Aflav

asymmetry in the B0
s → D−

s π
+ event sample while

being applied at the same time to measure the CP
asymmetry in the B0

s → D∓
s K± sample. The value

of the weak phase γ+φs follows from the difference
of the fitted parameters arg(λ) − arg(λ).

Figure 9.31 shows the B0
s → D−

s π
+ decay rate

as a function of proper time t, for one year of data
and two different values of ∆ms. The maximized
likelihood is shown as well. The B0

s → D∓
s K± asym-

metries are shown in Fig. 9.32. Their amplitudes
increase with t due to the lower background level
at high values of t.

The expected statistical uncertainties on ∆ms

and γ+φs are shown in Tables 9.11 and 9.12. The
dependence of the γ + φs sensitivity on the B/S
ratio and the decay time resolution is shown in
Figs. 9.33 and 9.34.

In order to estimate the highest ∆ms value that
can be measured, the cos(∆mst) term in the ex-
pression of the flavour asymmetry was multiplied
with an amplitude factor A. Data were generated
for an infinite ∆ms value and then fitted with A
as a free parameter. The uncertainty σA on A is
shown in Fig. 9.35, where it can be seen that the
requirement 5σA < 1 (for an observation with a
statistical significance of at least 5σ) is satisfied up
to ∆ms = 68 ps−1. The effect of a change in the
decay time resolution by ±10% is also shown.
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Figure 9.34: Statistical uncertainty on γ + φs for
one year of data as a function of the decay time
resolution in the B0

s → D∓
s K± selection, relative to

that determined in the full simulation.
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Table 9.11: Statistical precision on ∆ms (in ps−1)
with one year of data.

∆ms 15 20 25 30
σ(∆ms) 0.009 0.011 0.013 0.016

Table 9.12: Expected statistical uncertainty on
γ + φs for one year of data. Unless otherwise spec-
ified, ∆ms = 20 ps−1, ∆Γs/Γs = 0.1, γ + φs = 65◦

and ∆T1/T2 = 0◦. All values are given in degrees,
except ∆ms in ps−1.

∆ms 15 20 25 30
σ(γ + φs) 12.1 14.2 16.2 18.3

∆Γs/Γs 0 0.1 0.2
σ(γ + φs) 14.7 14.2 12.9

γ + φs 55 65 75 85 95 105
σ(γ + φs) 14.5 14.2 15.0 15.0 15.1 15.2

∆T1/T2 −20 −10 0 +10 +20
σ(γ + φs) 13.9 14.1 14.2 14.5 14.6

9.6.4 γ with B0 → π+π− and B0
s →

K+K−

The combination of the B0 → π+π− and B0
s →

K+K− measurements provides a promising strat-
egy to determine the CKM angle γ [114].

In the Standard Model, Adir
ππ and Amix

ππ can be
expressed as

Adir
ππ =

2d sinϑ sin γ
ξ

,

Amix
ππ = −1

ξ
[sin(φd + 2γ)− 2d cosϑ sin(φd + γ)

+ d2 sinφd] , (9.6)

with
ξ = 1 − 2d cosϑ cos γ + d2 ,

where the hadronic parameters d and ϑ represent
the magnitude and phase of the penguin-to-tree
amplitude ratio of the decay transition [114]. Anal-
ogously, Adir

KK and Amix
KK can be written as:

Adir
KK = −2d̃′ sinϑ′ sin γ

ξ′
,

Amix
KK = − 1

ξ′
[sin(φs + 2γ) + 2d̃′ cosϑ′ sin(φs + γ)

+ d̃′2 sinφs] , (9.7)

with
ξ′ = 1 + 2d̃′ cosϑ′ cos γ + d̃′2 ,

]
−1
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Figure 9.35: Statistical uncertainty on the B0
s oscil-

lation amplitude A as a function of ∆ms. An obser-
vation of ∆ms with a statistical significance above
5-sigma is possible up to 68 ps−1 (where σA = 1/5).
Also shown are the results for the cases where the
decay time resolution would be better or worse by
10%. These expectations are for one year of data.

where d̃′ = d′ (1 − |Vus|2)/|Vus|2, and d′ and ϑ′ are
the analogs of d and ϑ for the B0

s → K+K− decay.
In the limit of exact U-spin symmetry of the

strong interactions, the relations d = d′ and ϑ = ϑ′

hold, and the measurements of the four asymme-
try coefficients allow the simultaneous determina-
tion of φd and γ, provided that φs is determined
elsewhere (from B0

s → J/ψφ for instance) or consid-
ered negligibly small as expected in the Standard
Model. Moreover, φd will be accurately known at
the time of LHCb, and its precision will be further
increased by the LHCb B0→ J/ψK0

S measurement,
thus allowing a more precise determination of γ.

The sensitivity on Adir and Amix is estimated
from toy Monte Carlo samples [139]. Signal events
are generated for different settings of the physics
parameters d, ϑ, γ, φs, ∆Γs and ∆ms. The proper-
time acceptance and resolution functions used in
the generation are determined from the full simula-
tion. Combinatorial background events are gener-
ated with mass and proper time distributed accord-
ing to what observed in fully simulated bb samples,
selected after trigger and slightly loosened offline
selection cuts [116].

Since the B0 → π+π− and the B0 → K+π−

(B0
s → K+K− and B0

s → π+K−) events are topo-
logically similar, the same tagging efficiency and
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mistag probability are assumed. The values used
in the generation are taken from the full simula-
tion, which gives εtag = 41.8% and w = 34.9%
(εtag = 49.8% and w = 33.0%).

The uncertainties and correlations on Adir and
Amix are determined by maximizing an unbinned
extended likelihood. In order to determine the
mistag probability, the B0→ K+π− (B0

s → π+K−)
sample is included in the same fit, together with
the B0 → π+π− (B0

s → K+K−) sample. There are
17 free parameters in the fit. In addition to Re(λ),
Im(λ), and the Kπ charge asymmetry, the fit deter-
mines ∆Γ, ∆m, Γ, w, two signal yields, the mean
and resolution of the B-meson mass distribution,
and six parameters for the mass and proper-time
distributions of the background. Once the max-
imum of the likelihood function is found, uncer-
tainties and correlation for Adir and Amix are cal-
culated by a Monte Carlo error propagation using
the full covariance matrix returned by the fit.

In order to improve the resolutions on the CP-
violating parameters, for the B0

s → K+K− and
B0

s → π+K− combined fit, expected knowledge
on ∆Γs and Γs from B0

s → J/ψφ and ∆ms from
B0

s → D−
s π

+ (see the previous two sections) is
included in the fit by multiplying the total like-
lihood with Gaussian priors. For B0 → π+π−

and B0 → K+π−, current knowledge of Γd and
∆md [121] is used.

The mistag probability w is determined with a
relative precision of 1.0% for B0→ π+π− and B0→
K+π− (between 6.1% and 9.1% for B0

s → K+K−

and B0
s → π+K−, depending on ∆ms).

The resulting uncertainties and correlations on
Adir and Amix and the uncertainties on the charge
asymmetries, corresponding to nominal true values
of the physics parameters and for one year of data
taking, are shown in Table 9.13 (for B0

s → K+K−

and B0
s → π+K− also the results of a scan on the

true values of ∆ms and ∆Γs/Γs are reported). The
larger error on w for B0

s → K+K− and B0
s → π+K−,

due to the smaller yield of B0
s → π+K−, has the

effect of introducing a sizeable dependence of the
resolutions and correlations of Adir and Amix on
their true values. For B0→ π+π− and B0→ K+π−

only a moderate dependence is observed. The re-
sults of a study of this dependence are reported
in [139]. Due to correlation, the experimental prob-
ability density functions (p.d.f.s) for Adir and Amix

are best described by bi-variate Gaussians.
The p.d.f.s of the four asymmetry terms Adir

ππ,
Amix

ππ , Adir
KK and Amix

KK and of the weak phases φd and
φs can be propagated into p.d.f.s for the quantities
γ, d and ϑ. Using a Bayesian approach one can

Table 9.13: Statistical uncertainties and correla-
tions on Adir and Amix for B0 → π+π− and B0

s →
K+K− and uncertainties on charge asymmetries for
B0 → K+π− (AKπ) and B0

s → π+K− (AπK), cor-
responding to one year of data. Unless otherwise
specified, ∆ms = 20 ps−1, ∆Γs/Γs = 0.1, γ = 65◦,
ϑ = 160◦, d = 0.3, φs = −0.04.

σ(Adir
ππ) 0.064

σ(Amix
ππ ) 0.055

ρ(Adir
ππ ,Amix

ππ ) −0.43
σ(AKπ) 0.0035

∆ms in ps−1 15 20 25 30
σ(Adir

KK) 0.043 0.051 0.060 0.076
σ(Amix

KK ) 0.058 0.067 0.077 0.093
ρ(Adir

KK,Amix
KK ) −0.24 −0.22 −0.20 −0.17

σ(AπK) 0.024 0.024 0.024 0.024

∆Γs/Γs 0 0.1 0.2
σ(Adir

KK) 0.054 0.051 0.047
σ(Amix

KK ) 0.070 0.067 0.061
ρ(Adir

KK,Amix
KK ) −0.20 −0.22 −0.21

σ(AπK) 0.023 0.024 0.024

obtain a joint p.d.f.:

F (γ, d, ϑ) ∝
∫
Gπ(Adir

ππ ,Amix
ππ )GK(Adir

KK,Amix
KK )

×F0(γ, d, ϑ) gd
0 (φd) gs

0(φs) dφd dφs ,

where the dependence of the asymmetry coeffi-
cients on φd, φs, γ, d, and ϑ is given by the con-
straints of Eqs. (9.6) and (9.7). Gπ and GK are the
bivariate Gaussian p.d.f.s for the asymmetry coef-
ficients as determined experimentally, while F0, gd

0

and gs
0 are prior p.d.f.s describing previous inde-

pendent measurements or theoretical expectations
of these quantities. Ignoring any a priori knowl-
edge on γ, d, and ϑ, we use a uniform distribution
for F0, while gd

0 and gs
0 are described by Gaussians

with the resolutions obtained from B0→ J/ψK0
S and

B0
s → J/ψφ, respectively.

The sensitivity on γ is explored for different val-
ues of the physics parameters γ, d, ϑ, φs, and also
∆ms and ∆Γs/Γs, since the resolutions on Adir

KK

and Amix
KK depend on these last two. The results are

shown in Table 9.14. Since the resulting p.d.f. for
γ can be asymmetric for some of the input param-
eters, we quote the resolutions as half of the range
covered by 68% confidence intervals (calculated as
highest posterior density intervals).

As an example, Fig. 9.36 shows the confidence
regions for d and γ in the (d, γ) plane for one year
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Table 9.14: Statistical uncertainty on γ for one
year of data. Unless otherwise specified, ∆ms =
20 ps−1, ∆Γs/Γs = 0.1, γ = 65◦, ϑ = 160◦, d = 0.3,
φs = −0.04. ∆ms values are given in ps−1, φs val-
ues in radians, while γ, ϑ and σ(γ) are given in
degrees.

∆ms 15 20 25 30
σ(γ) 4.0 4.9 5.9 8.5

∆Γs/Γs 0 0.1 0.2
σ(γ) 5.2 4.9 4.5

γ 55 65 75 85 95 105
σ(γ) 5.8 4.9 4.3 4.7 4.7 4.7

ϑ 120 140 160 180 200
σ(γ) 3.8 3.8 4.9 6.7 5.2

d 0.1 0.2 0.3 0.4
σ(γ) 1.8 2.7 4.9 9.0

φs 0 −0.04 −0.1 −0.2
σ(γ) 4.9 4.9 4.9 5.4

of data, together with the one-dimensional p.d.f.s
for d and γ.

Within the considered parameter ranges and for
one year’s statistics, secondary fake solutions are
observed, which have a smaller probability than the
correct solution. These solutions (erroneously) im-
ply small values of d (< 0.15) and large values of
γ (> 160◦). They can be eliminated with larger
statistics or by combining the measurement of d
and γ with information from other analyses (i.e.
starting from a non-uniform prior in d and γ). The
wrong solutions are ignored in the determination
of the resolutions given in Table 9.14. Furthermore
our study assumes exact U-spin symmetry for the
penguin-to-tree amplitude ratio. In practice, the
validity of this symmetry can be checked from the
data itself by, for instance, extracting the parame-
ters d, d′ and γ for given assumptions for ϑ.

9.6.5 γ with B0 → D0K∗0, D0K∗0

The method [115] relies on the measurement of six
time-integrated decay rates:

Γ+ = Γ(B0→ D0K∗0) ,
Γ− = Γ(B0→ D0K∗0) ,
ΓCP = Γ(B0→ D0

CPK∗0) ,
Γ+ = Γ(B0→ D0K∗0) ,
Γ− = Γ(B0→ D0K∗0) ,
ΓCP = Γ(B0→ D0

CPK∗0) .
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Figure 9.36: (a) Confidence regions in the (d, γ)
plane for one year of data generated with ∆ms =
20 ps−1, ∆Γs/Γs = 0.1, γ = 65◦, ϑ = 160◦, d = 0.3,
φs = −0.04; the darker (red) bands delimit the
95% confidence region obtained by combining the
two contraints of Eq. (9.6) from B0 → π+π−; the
lighter (cyan) bands delimit the 95% confidence re-
gion obtained by combining the two constraints of
Eq. (9.7) from B0

s → K+K−; the black solid curves
represent analytical relations between d and γ ob-
tained with perfect knowledge of the true values
of the asymmetry coefficients (the intersection at
d = 0.3 and γ = 65◦ corresponds to the solution);
the light (yellow and white) deformed ellipses en-
close the 68% and 95% confidence regions obtained
by using all four constraints as described in the
text. (b) p.d.f. for γ, F (γ) =

∫
F (γ, d, ϑ)dddϑ.

(c) p.d.f. for d, F (d) =
∫
F (γ, d, ϑ)dγdϑ. In the

plots, the presence of the satellite fake solution is
clearly visible.

The rates fulfill the following relations:

Γ+ = Γ− ≡ g1 ,

Γ− = Γ+ ≡ g2 ,

and

ΓCP =
g1 + g2

2
+
√
g1g2 cos(∆ + γ) ,

ΓCP =
g1 + g2

2
+
√
g1g2 cos(∆ − γ) ,

(9.8)

from which one can extract the CKM angle γ as
well as the strong phase difference ∆ between the
two tree diagrams of Fig. 9.5.
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Table 9.15: Expected statistical precision on γ for
different values of γ after one year of data taking.
The value of ∆ is set to 0. The line labeled “Fail”
indicates how often no measurement can be made
(see text).

γ 55◦ 65◦ 75◦ 85◦ 95◦ 105◦

σ(γ) 9.0◦ 8.2◦ 7.6◦ 7.1◦ 7.0◦ 7.0◦

Fail 3% 0.5% 0% 0% 0% 0%

All rates can be determined from the recon-
structed numbers of events for the six decay modes,
after the reconstruction efficiencies and D0 branch-
ing fractions have been taken into account. In the
following, we assume negligible uncertainties on the
reconstruction efficiencies and D0 branching frac-
tions.

As shown in Table 9.4, 3.4k B0 → D0K∗0 plus
B0→ D0K∗0 reconstructed decays are expected af-
ter one year of data taking. The branching frac-
tion for the B0→ D0K∗0 decay is suppressed com-
pared to that for B0 → D0K∗0 [121], by a factor
assumed to be equal to η̄2 + ρ̄2 = 0.147, using the
central values of ρ̄ = ρ(1 − λ2/2) = 0.162 and η̄ =
η(1 − λ2/2) = 0.347 estimated in [107]. With the
same total efficiency, we thus expect to collect 0.49k
B0→ D0K∗0 plus B0→ D0K∗0 decays in one year.
Using the total efficiencies given in Table 9.4, the
expected number of reconstructed B0 → D0

CPK∗0

and B0 → D0
CPK∗0 decays can be calculated for

given values of γ and ∆ using Eq. (9.8). For exam-
ple, the B0 → D0

CPK∗0 branching ratio quoted in
Table 9.5 and the yield of 0.59k for B0→ D0

CPK∗0

plus B0→ D0
CPK∗0 decays quoted in Table 9.4 cor-

respond to the assumptions γ = 65◦ and ∆ = 0.
With these numbers, we generate sets of mea-

surements for the six decay modes assuming Pois-
son statistics [124]. The statistical fluctuations
for the number of signal events are scaled by√

1 +B/S, where B/S is the background-over-
signal ratio assumed for each of the six decay rates:
we use 0.3 for the B0 → D0K∗0 mode and its
CP conjugate (corresponding to half of the limit
quoted in Table 9.4), 1.8 for the B0→ D0K∗0 mode
and its CP conjugate (derived from the previous
one assuming the same absolute background level),
and B/S ratios which depend on γ and ∆ for the
B0 → D0

CPK∗0 mode and its CP conjugate. If
γ = 65◦ and ∆ = 0, the latter ratios are both equal
to 1.4 (half of the upper limit given in Table 9.4);
for other assumptions, these ratios are recomputed
according to Eq. (9.8) and using the same absolute
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Figure 9.37: Expected statistical precision on γ as
a function of the assumed background levels in the
six B0→ D0K∗0 decay modes, after one year of data
taking. The horizontal scale goes from no back-
ground (B = 0) to the background levels Blimit

corresponding to the upper limits from Table 9.4.
The phases are fixed to γ = 65◦ and ∆ = 0◦.

background level.
Table 9.15 summarizes the expected statistical

precision on γ for six values of γ after one year of
data taking. This precision is obtained as the width
of a Gaussian fitted to the distribution of the γ
values obtained in 100k independent sets of Monte
Carlo experiments. Due to the statistical fluctua-
tions in the generated number of events, some ex-
periments can fail to provide a measurement for
γ, because the measured rates imply cos(∆ + γ)
or cos(∆ − γ) outside the interval [−1,+1]. These
cases are excluded from the estimation of the pre-
cision on γ, and their frequencies, indicated in Ta-
ble 9.15 for one year of data, vanish with increas-
ing statistics. Within the range of γ considered
here, the precision on γ remains unchanged for
−20◦ < ∆ < 20◦. Figure 9.37 shows the depen-
dence of the precision on γ on the assumed back-
ground levels.

9.7 Systematic effects

In order to exploit the large statistical samples ex-
pected in the LHCb experiment, systematic errors
due to acceptance, detection efficiency, decay-time
resolution, production asymmetries, tagging per-
formance and trigger efficiency, must be well un-
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derstood.
In the time-dependent asymmetry between the

B and B decays into a given final state, the effect of
acceptance cancels out to first order. An example
is the extraction of sin 2β from the time-dependent
CP asymmetry between the initial B0 and B0 de-
caying into J/ψK0

S. For the study of B0
s and B0

s

decaying into D±
s K∓, two time-dependent B0

s–B0
s

asymmetries can be constructed from the same fi-
nal states necessary for the γ extraction.

A difference in the detection efficiency between
positively and negatively charged particles would
introduce a fake CP asymmetry. This is partic-
ularly important for the flavour tagging and CP
violation measurements with final states which are
not CP eigenstates. If the detection efficiency is
different between the left- and right-hand sides of
the spectrometer, the detection efficiency for the
positive and negative particles will differ due to the
magnetic field of the spectrometer dipole. This will
be corrected by regularly changing the polarity of
the magnetic field.

Detailed understanding of the B0 proper-time
resolution is not very important since it is much
smaller than the B0–B0 oscillation period. For
the B0

s meson studies, such understanding of the
proper-time resolution will be important, since its
oscillation is much more rapid. This can be investi-
gated by measuring the lifetimes of particles which
are well known. Multi-particle production due to
the interaction of the primary particles with the
material of the detector at well known positions
can also be used for this study.

The tagging performance is best understood us-
ing control samples. Flavour-specific decays such as
B0→ D−π+, B0→ J/ψK∗0 and B0

s → D−
s π

+, which
are suitable to measure B–B oscillations, can be
used to extract the wrong tag fraction. They also
provide the difference between the b and b flavour
tagging efficiencies. Final states of the B± decays
such as J/ψK± can also be used to extract the wrong
tag fraction and the difference in the tagging effi-
ciencies. In addition, control samples are used to
test the production asymmetry. The production
asymmetry does not depend on lifetime, and can
therefore be extracted with high precision from the
decay asymmetry of many non-CP as well as CP-
violating decay modes of neutral B mesons. As seen
from Table 9.4, LHCb is able to reconstruct various
control samples with high statistics.

It must be noted that tagging performance de-
pends on the reconstructed final state due to se-
lection and trigger. Therefore, it is important that
the control channels have decay characteristics sim-

ilar to those of the final states being studied (e.g.
J/ψK∗0 for J/ψK0

S and D−
s π

+ for D−
s K+). A sizeable

fraction of the events will be triggered by more than
one trigger component, such as high-pT muons and
hadrons. Those events can be used to calibrate the
trigger efficiencies.

9.8 Conclusions

In this document, the performance of the LHCb ex-
periment has been illustrated by the measurement
of the angle γ in three different ways:4

I. Time-dependent decay asymmetries in B0
s →

D∓
s K± decays combined with the CP asym-

metry in the B0
s → J/ψφ decays, giving σ(γ) =

14–15◦ without theoretical uncertainty.

II. Time-dependent CP asymmetries in B0 →
π+π− and B0

s → K+K− decays, in combina-
tion with B0→ J/ψK0

S and B0
s → J/ψφ respec-

tively, giving σ(γ) = 4–6◦ assuming U-spin
symmetry.

III. Time-integrated rates of B0 → D0K∗0, B0 →
D0K∗0 and B0 → D0

CPK∗0 decays, giving
σ(γ) = 7–8◦ without theoretical uncertainty.

The current Standard Model analysis of the
CKM parameters using the processes generated by
the tree and box diagrams leads to the following
most likely values of ρ̄ and η̄ [107]

(ρ̄, η̄) ≈ (0.162, 0.347) , (9.9)

which correspond to

β ≈ 22.5◦, γ ≈ 65◦ .

If there is no new physics affecting the B meson
system via loop processes, all three methods should
yield measurements consistent with γ ≈ 65◦ .

There is an interesting hint that γ could be dif-
ferent: the analysis of the measurements of CP-
averaged B→ ππ,Kπ rates indicates that a γ value
around or above 90◦ is preferred [140]. To illustrate
a possible scenario, let us assume that the B0–B0

oscillation amplitude is affected by new physics, in
such a way that the new physics contribution to
∆md is about −30% of the Standard Model con-
tribution, with a phase difference of a few degrees
compared to the Standard Model. However |Vub|

4All statistical uncertainties given in this section are the
expectations for a nominal year of data taking, defined as
107 s at 2×1032 cm−2s−1 luminosity with 500µb of bb pro-
duction cross section, i.e. 1012 bb pairs produced.
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Figure 9.38: The CKM parameters ρ̄ and η̄ in the
complex plane including the effect due to possible
new physics: (a) The point marked by × is the
CKM parameter position (ρ̄, η̄) and the open cir-
cle indicates the currently favoured (ρ̄, η̄) from the
Standard Model analysis based on |Vub|, ∆md and
CP asymmetry in B0 → J/ψK0

S decays. The new
physics contribution is also indicated. (b) Possible
picture with LHCb results for γ from Methods I
and II after one year of data taking. It is assumed
that |Vub| is determined with an error of 5% and the
hadronic uncertainty in the theoretical calculation
of ∆md is 10%.

would remain unchanged. This could then lead to
γ = 95◦, corresponding to

(ρ̄, η̄) = (−0.033, 0.382) .

In this situation, illustrated in Fig. 9.38 (a), the
constraints from the current measurements of ∆md

and the CP asymmetry between B0 and B0 decay-
ing to J/ψK0

S would still give, together with the
|Vub| measurement, the solution shown in Eq. (9.9).

For this scenario, Method I will measure γ =
95◦ since it gives the phase of Vub even if new
physics contributes to the oscillations. Similarly,
Method II will provide γ = 95◦, if the U-spin sym-
metry is valid. Thus, the LHCb experiment will
measure the real value of γ (different from 65◦)
with an accuracy of better than 5◦ with the first
year of data taking. Figure 9.38 (b) illustrates the
LHCb measurement, which would clearly signal the
existence of new physics in the B–B oscillations and
allow to separate the contributions from the Stan-
dard Model and from new physics. It is interesting

to note that the value of γ measured by Method III
reveals whether new physics also affects the D0–D0

mixing.
If instead new physics appears in the b → d

penguin diagrams, the currently known CKM pa-
rameters of Eq. (9.9) are the correct values, and
the γ measurements from Methods I and III will
give γ ≈ 65◦. However, the γ measurement from
Method II will yield a different value.

Finally new physics may contribute to both the
oscillations and penguin diagrams. Method I will
still yield the correct value of γ, while Method II
will give a value different from the CKM parame-
ters. Again the result of Method III, when com-
pared to that of Method I, will indicate whether
new physics appears in the D0–D0 mixing.

This demonstrates how these three different γ
measurements at LHCb would isolate new physics.

Note that the extraction of γ with Methods I
and II requires the ability to resolve the fast B0

s–
B0

s oscillations, even in presence of new physics.
LHCb will be able to measure ∆ms up to a value of
∼ 68 ps−1, far beyond the Standard Model expec-
tation. These methods also require a good knowl-
edge of φs (equal to −2χ in absence of new physics),
which LHCb will be able to measure with a preci-
sion of 5 σ(φs) = 0.058 for ∆ms = 20 ps−1.

If new physics appears in B–B oscillations, it is
also expected that the B0

s → µ+µ− decay will be
affected. The branching fraction is ∼ 3.5 × 10−9

in the Standard Model, but new physics might in-
crease this significantly. For the reconstruction of
a final state with such a small branching fraction,
estimating background becomes really difficult be-
fore the start of the experiment. A careful study
of this decay [142], previously made with the TP
detector design, showed that the major source of
background are pairs of muons coming from the
semileptonic decays of both the b- and b-hadron in
bb events. With a dedicated very high statistics
Monte Carlo sample of this event type, it was esti-
mated that 48 signal events (with Standard Model
branching ratio) can be reconstructed after three
years of data taking, with an expected contamina-
tion of 118 background events, corresponding to a
statistical significance of S/

√
S +B = 3.7. A dedi-

cated study to investigate the background with the
new setup is in progress. However, since the muon
detection performance of the reoptimized detector
is unchanged from that of the TP design, we an-
ticipate that this performance figure will be main-

5The result of Sect. 9.6.2 is scaled here to the current
knowledge of tagging performance for B0

s → J/ψφ given in
Sect. 9.5.



116 CHAPTER 9. PHYSICS PERFORMANCE

tained.
If new physics appears in the b→ s penguin pro-

cesses, decays such as B0→ µ+µ−K∗0, B0→ K∗0γ,
B0

s → φγ and B0
s → φφ (which are governed by pure

penguin diagrams) will be affected and this will be
studied in great detail by LHCb. A recently ob-
served difference by the BELLE collaboration be-
tween the CP asymmetry in B0 → J/ψK0

S decays
and that in B0 → φK0

S decays [141] might indeed
be the first sign of this. The LHCb detector has no
trouble to trigger and reconstruct final states with
φ or K0

S mesons. The performance for the recon-
struction of the B0→ φ(K+K−)K0

S(π+π−) decay is
under investigation.

Similarly to the B0→ π+π− decays, the b→ d
penguin diagrams contribute to B0 → ρπ decays.
The ρπ final states have the advantage that com-
binations of γ and β can be measured without in-
cluding other decay modes in the Standard Model
framework. If new physics contributes to the b→ d
penguin processes, the measurement of γ obtained
in this way will no longer correspond to the CKM
value given by Method I. Since π0 from those
decays are rather energetic, they are well recon-
structed in LHCb detector. Backgrounds and the
sensitivity to γ are under investigation.

Important features of the LHCb experiment for
the above studies are:

• Measurements in both the B0 and B0
s sys-

tems.

• Excellent decay time resolution, needed for
the CP violation study in the B0

s system.

• A trigger which is efficient both for the fi-
nal states that contain leptons and those with
hadrons only.

• Excellent particle identification and mass res-
olution to suppress background, in particu-
lar from the b-hadron decays with the same
topologies as the signal.

In summary, the reoptimized LHCb experiment can
trigger and reconstruct many different b-hadron
decay final states with high statistics, as demon-
strated in this document using representative decay
modes with kinematics and decay products which
are common to many interesting channels. This
will enable LHCb to extract the CKM parameters
and disentangle possible new physics.



Chapter 10 Plan and Cost of the Experiment

10.1 Schedules and milestones

Figure 10.1 shows the layout of the experimental
area. The cohabitation with the LHC machine in
the experimental area requires careful planning and
follow-up of progress, to minimize the interference
with the installation of the LHCb detector. On the
LHC machine side, the installation of the general
services, the cryogenic lines in the tunnel and the
installation of the cryogenics boxes in UX85 are
planned for the years 2003 and 2004. These activi-

U
X

85

Figure 10.1: Layout of the LHCb experimental area
(from above).

ties have to be coordinated with the installation of
general infrastructure for the detector, the assem-
bly of the magnet and the assembly of the muon
filter.

Later on, the injection test that will possibly
take place would require beam passing through the
experimental area of Point 8. This test is presently
planned for April 2006 and will interfere with the
assembly of the detector at a critical phase when
the installation of the beam pipe, the VELO detec-
tor and RICH1 will have to be coordinated with
the requirements of the injection test. Figure 10.2
gives an overview of the installation schedule and
the LHC machine activities.

The important milestones for the three projects
RICH1, Trigger Tracker (TT) and the beam pipe
are given in Tables 10.1, 10.2 and 10.3. In line with
the global schedule, the milestones are set such as
to achieve the goal of finishing individual system
commissioning in September 2006. This leaves six
months for the global commissioning of the detector
with the experiment ready for beam in April 2007.

In the following the schedules for the different
project items affected by the reoptimization are
presented. The project schedule for the VELO de-
tector remains unchanged. In Fig. 10.3 the project
schedule for the RICH1 detector is shown; this
schedule is very tight.

Figure 10.4 shows the project schedule for the
TT station. This detector will be pre-assembled
and tested as much as possible on the surface. Its
installation in the experimental area will take place
only after the LHC machine injection test (if the
test takes place) and will be finished by July 2006,
leaving 3 months for sub-system commissioning.

Figure 10.5 shows the project schedule for the
beam pipe. If the prototype beam pipe is accept-
able, the order for the final beam pipe can be placed
such that there is ample time left to pre-assemble
and test the complete beam pipe on the surface
prior to installation in early 2006.

Overall, the system schedules are in agreement
with the requirements for the installation schedule.
The sequence of the detector installation could be
modified within certain constraints, if need arises,
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Figure 10.2: Installation summary schedule and major tasks.
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Task Name

Design
Engineering design
Complete production drawings

Manufacture
Place order for mirrors and struc
Fabrication of components

Testing and Pre-Assembly
Testing optical components
Pre-assemly in Bat 156
Transport and lower into cavern

Installation at IP8
Install provisionally in final positi
Retract RICH and install Be beam
Seal RICH1 to VELO tank
Install and seal exit window
Install quartz windows
Install mirror assembly
Close gas vessel
Bake out vacuum pipe
Re-install mirrors after bake-out
Install photon detectors

Commissioning
System commissioning
Ready for global commissioning 

Jun 30

Feb 27

Mar 1 Jun 30

Aug 2 Mar 31

Aug 2 Aug 13

Aug 16 Mar 31

Jan 3 Oct 21

Jan 3 Jul 1

Jun 1 Oct 14

Oct 17 Oct 21

Oct 24 Sep 8

Oct 24 Dec 22

Jan 2 Jan 20

Jan 23 Jan 27

Jan 30 Feb 10

Feb 13 Feb 24

Feb 27 Mar 10

Mar 13 Mar 24

Jul 3 Jul 21

Jul 24 Jul 28

Jul 31 Sep 8

Jul 31 Oct 2

Jul 31 Sep 29

Oct 2 Oct 2

Qtr 1 Qtr 2 Qtr 3 Qtr 4 Qtr 1 Qtr 2 Qtr 3 Qtr 4 Qtr 1 Qtr 2 Qtr 3 Qtr 4 Qtr 1 Qtr 2 Qtr 3 Qtr 4 Qtr 1 Qtr 2
2003 2004 2005 2006 2

Figure 10.3: Project schedule for RICH1.

Task Name

Project
Engineering design
System installation IP8
Full system ready for global com

Silicon sensors
Sensor specifications
Order sensors / preseries produc
Sensor production (full batch)

Ladder prototyping
Hybrid, pitch adapter, cable and 
Parts production
Assemble and test prototype ladd

Ladder production and assembly
Beetle production run
Hybrid, pitch adapter and cable p
Prepare assembly site
Ladder assembly and testing

Readout link and service box
Production

Detector station
Mechanical design
Construction

Infrastructure: HV, LV, cooling
System engineering
Ordering, delivery, installation

Sep 4

Jun 14

May 2 Jul 24

Sep 4 Sep 4

Jun 24

Sep 26

Oct 1 Apr 2

Jun 15 Jun 24

Jun 3

Nov 21

Nov 24 Apr 2

Apr 5 Jun 3

Jan 5 Dec 30

Jan 5 Apr 23

Jun 15 Dec 31

Jan 5 Dec 3

Jan 3 Dec 30

Jan 3 Dec 30

Jan 3 Dec 30

Aug 2 May 13

Aug 2 May 21

Oct 25 May 13

Sep 16

Dec 17

Jan 3 Sep 16

Qtr 1 Qtr 2 Qtr 3 Qtr 4 Qtr 1 Qtr 2 Qtr 3 Qtr 4 Qtr 1 Qtr 2 Qtr 3 Qtr 4 Qtr 1 Qtr 2 Qtr 3 Qtr 4 Qtr 1 Qtr 2
2003 2004 2005 2006 2

Figure 10.4: Project schedule for the Trigger Tracker (TT).

Task Name

Al Bellows development
Be flanges
Al flanges
VELO window prototype
Supports
LHCb UX85/1 Qualif. prototype
RB86 beam pipe
UX85 beam pipe fabrication
Spare Al beam pipe
Installation equipment
Overpressure tests
Cu coating of UX85/4
NEG coating
Full assembly test in bldg. 927
Installation in point 8
Sector tests
Beam pipe commisioning

May 30

Apr 7 Aug 29

Apr 21 Dec 8

ar 10 Dec 8

Jun 23 Jan 16

Jul 21 Dec 31

Apr 7 Nov 11

Jan 12 Jun 30

Mar 1 Jan 31

Jan 5 Jun 4

Feb 21 Apr 29

Mar 1 Apr 4

Mar 1 Aug 1

Aug 15 Nov 15

Jan 3 Jul 31

Apr 3 Apr 21

May 1 Jul 14

Qtr 1 Qtr 2 Qtr 3 Qtr 4 Qtr 1 Qtr 2 Qtr 3 Qtr 4 Qtr 1 Qtr 2 Qtr 3 Qtr 4 Qtr 1 Qtr 2 Qtr 3 Qtr 4 Qtr 1 Qtr 2
2003 2004 2005 2006 2

Figure 10.5: Project schedule for the beam pipe.
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Table 10.1: Milestones for the RICH1 detector.

Milestone Date
Mechanics and optics

Engineering Design June 2004
Review

Production drawings September 2004
completed

Order for mirrors November 2004
and structure placed

Begin assembly at CERN September 2005
Mirrors produced September 2005

and tested
Installation and commissioning

RICH1 begin December 2005
installation in IP8

System commissioned with September 2006
> 50% photon detectors

Table 10.2: Milestones for the TT station.

Milestone Date
Project

Engineering design October 2004
finished

Full system ready for September 2006
global commissioning

Silicon sensors
Final order placed October 2004
10% sensors delivered April 2005
All sensors delivered October 2005

L0 electronics
10% hybrids assembled April 2005
and tested

All hybrids assembled October 2005
and tested

Mechanics
Detector station box ready August 2005
for mounting ladders

because of the open geometry of the detector. How-
ever, the installation also depends critically on the
timely progress of the machine installation and
this imposes careful coordination and monitoring
of both activities.

Table 10.3: Milestones for the beam pipe.

Milestone Date
UX85/1 qualification December 2003

prototype delivered
Engineering Design December 2003

Review
Be beam pipe order June 2004

placed
Be beam pipe delivered June 2005
Beam pipe installed July 2006

10.2 Cost of the experiment

The Memorandum of Understanding (MoU) for the
detector construction of November 2000 set the
cost of the LHCb detector to be 75.05 MCHF [143].
From the very beginning of the reoptimization
studies, we have strived to keep the cost of the re-
sulting detector within this limit. The planned de-
tector changes have reduced the cost of the Outer
Tracker, where the number of planes of chambers
is now smaller, but have also led to an increase in
costs for other sub-detectors owing to the use of
more technologically advanced materials.

The design of the Trigger Tracker has been af-
fected by the reoptimization work in order to im-
prove the performance of the trigger. As described
in this document, the major change is that it is
made entirely from silicon strip detectors rather
than a mixture of the straw Outer Tracker and sil-
icon Inner Tracker. Since the silicon detector has
to cover a larger area, the cost of the station has
increased. Table 10.4 summarizes the cost of the
Trigger Tracker.

Reoptimization of VELO resulted in a reduc-
tion in the number of silicon sensors. However, the
cost per station has increased in order to maintain
the high detection efficiency with thinner silicon
sensors than proposed in the TDR. As a result, the
cost of the VELO system remains unchanged com-
pared to the estimate given in the TDR [4].

Compared to the design of the tracking station
described in the Inner Tracker TDR [6], no change
has been introduced by the reoptimization work.
Further development in the electronics since the
submission of the TDR has allowed the cost of the
IT to be reduced by 680 kCHF.

In the Outer Tracker TDR, eight stations were
foreseen for the Outer Tracker. This is now reduced
to three large stations downstream of the magnet.
As a result, the cost of the Outer Tracker is reduced
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Table 10.4: Cost estimate for the Trigger Tracker
in kCHF.

Item Number Cost
of units (kCHF)

Sensors 1110 1732
L0 electronics 269

FE chips 1600
Hybrid 530
Substrates 530
Pitch adaptors 530
Interconnects 336

Readout links 6359 530
L1 electronics 490

L1 board 67
Readout unit 6
Crates 6

Mechanics 200
Infrastructure 180

HV 1
LV 1
Cooling system 1

Total 3401

by 3074 kCHF with respect to the cost given in the
TDR [2].

Table 10.5 summarizes the cost of the RICH 1
mechanics which has increased by 492 kCHF com-
pared to that given in the TDR [7]. This has been
necessary in order to decrease the material bud-
get and protect the photon detector from the mag-
netic field introduced to improve the trigger per-
formance. The design change also requires a slight
increase in the area to be covered by the photon
detector. The cost for the service equipment evalu-
ated to be 365 kCHF in the TDR has also increased
by 60 kCHF.

RICH2 has not been affected by the reoptimiza-
tion work. However, the cost of its mechanics has
increased by 71 kCHF with respect to the TDR
cost [7].

The baseline solution for photon detection re-
cently changed from the hybrid photodiode (HPD)
to the multianode photomultiplier (MaPMT).
Technical details of the change and its consequences
will be described in an addendum to the RICH
TDR. A costing has been made for MaPMT’s with
analogue read-out, as binary read-out of MaPMT’s
has not yet been proven to work. The use of
MaPMT’s and the increase of the area to be cov-
ered by the photon detector in RICH1 results in a
cost increase of 341 kCHF compared with that es-

Table 10.5: Cost estimate for the RICH 1 mechan-
ics in kCHF.

Item Number Cost
of units (kCHF)

Superstructure 1 380
Spherical mirror 4 170
Plane mirror 16 33
Mirror supports 4 94
Photodetector support 2 110
Quartz window 2 50
Aerogel 50 l 134
Shielding box 2 150
Total 1121

Table 10.6: The currently estimated cost of the
LHCb detector in MCHF. The estimate for the to-
tal cost given in the MoU in November 2000 is also
indicated.

Subsystem Cost [MCHF]
VELO 4.82
IT 2.47
TT 3.40
OT 6.23
RICH 9.57
Calorimeters 15.06
Muon Detector 6.93
Muon filter 4.00
Level-0 trigger 2.43
DAQ and CPU farm 5.71
ECS and TFC 1.58
Computing infrastructure 0.71
Infrastructure 4.00
Magnet 6.00
The current total cost 72.91
MoU cost in 2000 75.05

timated in the TDR. The analogue read-out elec-
tronics involves an additional cost of 925 kCHF,
which has to be added to the overall RICH cost.

The calorimeter system has not been affected
by the reoptimzation work and its construction is
progressing well. The current cost estimate of the
system is 300 kCHF less than that given in the
TDR [8].

Several modifications have been introduced to
the Muon system since the approval of TDR, such
as replacing the RPC part by MWPC. Details of
the modifications can be found in the Addendum
to the Muon TDR submitted to the LHCC [10].
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The revised cost of the system is 100 kCHF more
than that given in its TDR [9].

As described in the Trigger TDR [3], the Level-0
Trigger architecture remains unchanged from that
of the Technical Proposal [1]. The evolution of the
Level-1 trigger implementation has resulted in a
design where the Level-1 and High Level Trigger
algorithms are executed in the same CPU farm.
The cost of the total system which includes the
Level-1/HLT farm and the data acquisition system
is 5711 kCHF.

The costs for the Experimental Control Sys-
tem (ECS) and Computing Infrastructure remain
unchanged compared to those given in the Online
TDR [144].

The cost of the magnet remains unchanged from
that given in the TDR [5].

Table 10.6 summarises the cost of the experi-
ment after the reoptimization work. Compared to
the MoU estimate of November 2000, it shows a
cost reduction of 2.14 MCHF.
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