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A micromechanical model for the low-frequency dynamics of spherical composite vesiclessCVsd is pro-
posed. Solidlike viscoelastic properties of the CVs are taken into account. The equations of motion of a CV
surrounded by a viscous liquid are derived. They have discrete solutions which describe linearly coupled
stretching and bending relaxation modes and an independent shear mode. The qualitative difference between
the bending modes excited in a spherical vesicle and that in a flat membrane is demonstrated. The shear
elasticity of the CVs gives an essential contribution to the relaxation rate of the bending mode at small wave
numbers. It is also shown that even in an incompressible spherical vesicle with a finite shear modulus, the
bending mode involves both radial and tangent displacements. These reasons make both in-plane and out-of-
plane low-frequency responses of the CV quite different with respect to those of the flat membrane. To
compare our theoretical results with published experimental data, the power spectra of the actin-coated CV are
calculated.

DOI: 10.1103/PhysRevE.71.021905 PACS numberssd: 87.16.Dg, 82.70.Uv, 46.35.1z

I. INTRODUCTION

The response of the living cell to external perturbations is
closely related to the mechanical properties of its membrane.
The cell membrane consists of the phospholipid bilayer an-
chored to the underlying cytoskeleton which is composed of
the cross-linked network of biopolymersf1g. Both the spec-
trin networksin red blood cellsd and the actin cortex interact
strongly with the bilayer and ensure cell elastic properties
which prevent membrane failure during large deformations
f1–4g. Thanks to recent experimental progress, one can now
createin vitro composite systems which approach the cell
membrane dynamics, namely protein-coated phospholipid
vesiclesf5g, or vesicles coated with stiff cytoskeletal fila-
mentsf6–8g. Both the traditional micropipette methodff5g,
and reference therein,f9gg and a new microrheology tech-
niquef6–8g have revealed striking differences in behavior of
these bio-mimetic complexes with respect to that of bare
vesicles. In lipid vesicles with attached biopolymer net-
works, a dramatic reduction in the thermal fluctuation ampli-
tudes is observedf5–8g. In addition, typical solidlike vis-
coelastic properties of the composite vesiclessCVsd,
including finite inplane shear and stretching moduli, have
been observedf6–8g. Furthermore, a dynamical external load
on a CV results in a buckling instabilityf8g.

Conventional hydrodynamic theoryf10–12g describes the
dynamics of the nearly spherical vesicles with a fluid shell.
The approachf10–12g is based upon the explicit constraints
of constant vesicle volume and area during the shape fluc-
tuations. The above constraints are usually justified by the
principle of energy scale separation. According to this prin-
ciple, if the vesicle possesses some excess area with respect
to the sphere of equivalent volume, then it is much easier to
bend the vesicle than to stretch it. The motion of the incom-
pressible surrounding liquid inside and outside the vesicle is
described by the Navier-Stokes equation without the inertial
term. This simplification is possiblef10–12g because the

Reynolds number for such a system is very small. Finally, in
the equation of motionf10–12g the forces due to bending
elasticity of the fluid vesicle are balanced by the viscous
forces of the liquid. Therefore, the solutions of this model
form the single overdamped bending branch.

In contrast to the liquid shell, the pure bending deforma-
tion of a solid shell without holes and with any nontrivial
shapesincluding spherical and nearly spherical onesd is im-
possible. For geometrical reasons, bending of a spherical
elastic shell is always accompanied by stretchingf13g. The
corresponding elastic energy of a thin solid shell differs
greatly with respect to that of a fluid vesicle and explains the
elastic instability of the shellf14,15g. Along the same line,
the geometrical coupling between the strain components of a
CV leads to a series of peculiarities in its dynamical behavior
in hydrodynamic flows. A recent studyf16g of a flat vis-
coelastic membrane has already shown the importance of
shear and compression modes in the dynamics of bio-
mimetic objects, emulsions, and Langmuir monolayers.
However, Ref.f16g does not consider the influence of curva-
ture on the membrane dynamics. Furthermore, its authors
mention that the results obtained cannot be applied to the
spherical viscoelastic membranes. The aim of the present
article is to develop a linear dynamics theory for the spheri-
cal CV coupled hydrodynamically to the inner and outer vis-
cous liquid. The paper is organized as follows. Section II is
mainly devoted to the calculation of viscoelastic forces in-
duced by a small deformation of a thin spherical shell. For
this purpose the linear dynamics method is applied. Section
III deals with coupled dynamics of the spherical CV and
surrounding liquid. The solutions of corresponding elastohy-
drodynamic equations are derived. Section IV discusses the
practically important limit case of an incompressible spheri-
cal shell. Power spectra of the model are calculated in Sec. V.
A numerical fitting of the actin-coated vesicle dynamics and
a discussion are given in the last section.

PHYSICAL REVIEW E 71, 021905s2005d

1539-3755/2005/71s2d/021905s13d/$23.00 ©2005 The American Physical Society021905-1



II. EQUATIONS OF MOTION OF A THIN SPHERICAL
VISCOELASTIC SHELL

We limit the model to a simple two-dimensionals2Dd
description of the spherical CV with the energy depending on
local shell density variation, local shear, and local bending.
Of course, such a description does not take into account a
possible relative motion of the bilayer with respect to the
protein cortex or one of the monolayers with respect to an-
other one. However, the elasticity of the lipid bilayer is much
smaller than that of the cortex. In such a case, the energy
scale separation principle allows a separate description of
slow and fast modes. The present study deals only with the
fast modes related mainly to the cortex deformation.

The physical model considered in the paper is a thin
spherical viscoelastic shell. We will characterize the defor-
mation of the shell by its strain tensor. According to the
principles of the mechanics of continuous media, such a de-
formation is characterized by a three-component local dis-
placement fieldu=sur ,uu ,ufd depending on two local angu-
lar variables u and f. This displacement field can be
expressed in Cartesian coordinates as

ux = ursinu cosf + uucosu cosf − ufsinf,

uy = ursinu sinf + uucosu sinf + ufcosf,

uz = urcosu − uusinu. s1d

EquationR8=R0+u relates the initial Cartesian coordinates
sRsinu cosf ,Rsinu sinf ,Rcosud of a material pointR0

on the equilibrium sphere surface with its final coordinates
R8 in the deformed state. The final positions of all points
given by the dependenceR8su ,fd determine the shape of the
deformed shell. Then, the simplest way to introduce the
strain tensor is to express it in terms of the metric tensor of
the surface. On the one hand, following Landauf13g ssee
also f17gd, the squared distancedl82 between two infinitely
close points on the deformed shell surface is expressed as

dl82 = dl0
2 + 2ei jdl idl j , s2d

wheredl0
2=di jdl idl j is the squared distance between the same

points in the initial state,ei j is the strain tensor, anddl1
=dlf=Rsinudf and dl2=dlu=Rdu are the distances along
the meridiansu directiond and parallelsf directiond of the
sphere. On the other hand, the squared distancedl82 defines a
metric tensorĝsu ,f ,ud :dl82=gijdvidv j, wheredv1=df and
dv2=du f18g, tensorĝ being dependent on fields1d. Finally,
the strain tensorei j can be constructed from the normalized
metric tensor in the form

ei j =
1

2
sgikgklgl j − di jd, s3d

whereĝ=sĝ0d−1/2 is the normalization,ĝ0 is the metric tensor
of the undeformed sphere, anddi j is the Kronecker symbol.
In the explicit form g12=g21=0,g11=sRsinud−1 and g22

=sRd−1. In the linear dynamics approximationsstudied in the
present articled, the strain is considered to be small. Thus, the
nonlinear terms of the strain tensor are neglected and its
linear part takes the following form:

ê =
1

R
U ]fuf/sinu + ur + uuctgu s]fuu/sinu + ]uuf − ufctgud/2

s]fuu/sinu + ]uuf − ufctgud/2 ]uuu + ur
U , s4d

where]f and]u stand for the derivatives with respect to the
angular variables.

The geometrical meaning of the components of tensors4d
is similar to that of an ordinary 2D symmetrical tensor char-
acterizing the planar strain. In particular,r8 /rs=−eii =
−div u, wherer8 is the local density variation andrs is the
average density of the shell. Then the quadraticswith respect
to the fieldu componentsd elastic energy per unit shell area
can be expressed as

Ed = l/2seiid2 + mei j
2 + K/2s2urR

−2 + Dsurd2, s5d

wherel andm are the in-plane elastic moduli analogous to
Lame coefficients in the 3D casef13g. The first two terms in
energys5d are constructed as the invariants of tensors4d and
have the form widely used in the mechanics of elastic solids
f13g. These two contributions can also be expressed in terms
of two eigenvaluese1 and e2 of tensors4d: seiid2=se1+e2d2

andei j
2 =e1

2+e2
2. The last term in the energy expression takes

into account the possibility of bending deformation. In this

term,Ds is the projection of the LaplacianD upon the sphere
surface,

Ds =
1

R2sin2u
]f

2 +
1

R2]u
2 +

ctgu

R2 ]u. s6d

CoefficientK stands for the bending rigidity. For small de-
formation, the linear part of the mean curvature deviation
from the equilibrium value 2/R−1/R1−1/R2 is 2urR

−2

+Dsur, whereR1 andR2 are the principal curvature radii.
Energys5d is quite similar to that used in Ref.f16g but the

expressions of strain tensor and of the mean curvature devia-
tion in Ref.f16g are different since the equilibrium curvature
of the flat membrane is zero. Furthermore, inner and outer
regions separated by the sphere surface are not equivalent.
The local symmetryC`v of a point on the sphere surface is
lower than the local symmetryD`h of a point on the plane
surface. Consequently, elastic energy of the spherical mem-
brane may contain additional terms forbidden by the symme-
try of the plane membrane. Here, for the sake of clarity, we
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consider the simplest form of the elastic energy which pro-
vides a description of the linear dynamics of CVs with sol-
idlike properties.

The quadratic part of the elastic energy determines com-
pletely the linear dynamics but is not sufficient to describe
the spontaneous variation of the equilibrium shape. The sim-
plest energy valid for the shape transition description should
include at least fourth-order terms. A model containing
fourth-degree terms in local principal stretchesli has been
proposed in Ref.f19g to simulate numerically the shape tran-
sitions in red blood cells. The local principal stretchesli f19g
are related to eigenvaluese1 ande2 of strain tensors4d in the
following way: ei =sli

2−1d /2. In the case of the small strain,
this relation takes the formei =li −1. The quadratic part of
energyf19g coincides with energys5d up to the coefficient
notations. Namely, the coefficientskb,Ka, and m from Ref.
f19g should be replaced byK ,l, andm−l from the present
work. The analytical description of the shape transition is
outside the framework of this paper.

We divide the derivation of the equations of motion for
the viscoelastic CV coupled with the surrounding liquid into
two steps. First, the equations of motion of an empty elastic
shell are deduced in order to evaluate the elastic forces acting
in the system and to perform the symmetry analysis of the
modes. Second, these equations are modified by taking into
account internal and external nonelastic forces induced by
the internal viscosity of the shell and by the interaction be-
tween the shell and the surrounding liquid, respectively. The
first step can be completely performed within the frame of
the action minimization approach. The action in the devel-
oped model reads

A = R2 eee frssu̇d2/2 − Edgsinududfdt, s7d

whereu̇=]tu is the velocity of the shell.
Formal minimization of the action with respect to the

function usu ,f ,td gives three equations of motion corre-
sponding to the three components of the fieldu,

rsür = −
]Ed

]ur
+

d

sinudu

]sEdsinud
]s]ur/]ud

−
d2

sinudu2

]sEdsinud
]s]2ur/]u2d

−
d2

df2

]sEdd
]s]2ur/]f2d

,

rsüu = −
]Ed

]uu

+
d

sinudu

]sEdsinud
]s]uu/]ud

+
d

df

]sEdd
]s]uu/]fd

,

rsüf = −
]Ed

]uu

+
d

sinudu

]sEdsinud
]s]uf/]ud

+
d

df

]sEdd
]s]uf/]fd

. s8d

The right-hand terms in Eqs.s8d express the elastic forces
acting on the unit area of the shell. The structure of the first
equation in systems8d differs from that of the two other
equations since energys5d contains second-order derivatives
of the ur component and does not contain terms with]fur
derivative. The explicit form of systems8d is given below,

rsür = −
2sl + md

R
div u − KS 2

R2 + DsD2

ur ,

rsüu = mhDsuu + fuus1 − 2 cos2ud − 2 cosu]fufg/sR2sin2udj

+
sl + md
R2sinu

s− ctgu]fuf + ]f,u
2 uf + cosu]uuu − uu/sinu

+ 2 sinu]uur + sinu]uu
2 uud,

rsüf = mhDsuf + fufs1 − 2 cos2ud + 2 cosu]fuug/sR2sin2udj

+
sl + md
R2sinu

sctgu]fuu + ]f,u
2 uu + 2]fur + ]ff

2 uf/sinud.

s9d

To obtain the solution of systems9d, we use the usual
methods of linear dynamics. The complete description of
these methods can be found elsewheref20g. Here we recall
several basic ideas only. In the linear approximation, each
mode spans one irreducible representationsIRd of the sym-
metry group of the system. The corresponding solution of the
equation of motion is the basis function of this IR. For sev-
eral mutually independent basis functions of the same IR, the
solution snormal moded is their linear combination. In other
words, the modes of the same symmetry are linearly coupled.
Following this general procedure, we have to investigate the
symmetry properties of the displacement fieldsi.e., to deter-
mine the list of active IRs of the sphere symmetry group O3
and to deduce the explicit form of their basis functions span-
ning the displacement fieldd. The direct productsD0f1g
+D1f−1g+D2f1g¯ d3V contains all possible irreducible dis-
placement fields. Corresponding basis functions result from
its projection onto IRs. HereDlfPrg are the IRs spanned by
well-known spherical harmonicsYlmsu ,fd with parity Pr
=s−1dl, where l is the IR indexsl ù0d. The basis function
index m changes from −l to l. The basis functions of the IR
V are three components of a conventional vector:V=D1f
−1g. The functions resulting from the projection procedure
determine the direction and the amplitude of the irreducible
displacement field in the point specified by the angular coor-
dinatessu ,fd.

Finally, the radial displacement fieldu' susually associ-
ated with bending deformationd of the shell can be presented
as a linear combination ofYlmsu ,fd functions,

u' = o
l=0

l=`

o
m=−l

m=l

Alm
Y Ylmsu,fder , s10d

whereer is the radial unit vector in a spherical coordinate
system. A tangent displacement field can be expressed in
terms of Z lmsu ,fd and W lmsu ,fd functions describing
stretching and shear fields, respectively,

ui = o
l=1

l=`

o
m=−l

m=l

fAlm
Z Z lmsu,fd + Alm

WW lmsu,fdg. s11d

HereZ lmsu ,fd andW lmsu ,fd are vector spherical harmonics
detailed in the Appendix. Note that functionsZ lm and Ylm
with the samel span the same IR. Therefore, the bending
modeswith l .1d conventionally associated with radial dis-
placements only always involves the local density variation,
or stretchingssee Fig. 1d. The parity Pr=s−1dsl+1d of the
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“shear” functionsW lm is different from that ofYlm or Z lm.
Therefore, the stretching and bending modes do not interact
linearly with the shear one, making the shear mode indepen-
dent.

Consequently, the normal mode with the indicesl andm
and the symmetry of coupled bending and stretching modes
is a linear combination of two functions:Ylmsu ,fder and
Z lmsu ,fd. To obtain the secular equation of the system and
the dispersion relation of the bending-stretching mode, we
substitute the components of vector

u = ferAlm
Y Ylmsu,fd + Alm

Z Z lmsu,fdgexps− ivtd s12d

with an unknown ratio between two amplitudesAlm
Y andAlm

Z

into systems9d. It results in a linear homogeneous system
with respect toAlm

Y andAlm
Z coefficients,

sL11 − rsv
2dAlm

Y + L12Alm
Z = 0,

L21Alm
Y + sL22 − rsv

2dAlm
Z = 0, s13d

where

L̂ = *4
sl + md

R2 +
Ksl2 + l − 2d2

R4 − 2
sl + mdÎlsl + 1d

R2

− 2
sl + mdÎlsl + 1d

R2

sl + mdlsl + 1d + msl2 + l − 2d
R2

* . s14d

The matrixL̂ is independent ofm value since solutions with
the samel and differentm are equivalent. The system has a
solution if its determinant is equal to zero. For eachl .0,
this condition determines simultaneously two frequencies for
both coupled bending-stretching modessthe frequency be-
comes single only in the casel =0; its value can be deduced
from equationrsv

2=L11d. The number of equivalent solu-
tions swith the same dispersion lawd is equal to the dimen-
sion of the corresponding IR. Though each resulting mode
contains both radial and tangent components, the contribu-
tion of the fieldssgiven by the ratioAlm

Y /Alm
Z d is quite differ-

ent. One of the modes has a big tangent and a small radial
contribution and can be conventionally called the “nearly
stretching mode?” The nearly stretching mode involves the
displacements inducing the local-density variation. Another
mode has a big radial and a small tangent amplitude and is
called the “nearly bending mode?” Its frequency in the case
l =1 is equal to zero since the corresponding deformation
field coincides with a simple shell translation.

Analogously, the shear-type solution can be obtained by
substitution of vectoru8 components

u8 = Alm
WW lmsu,fdexps− ivtd s15d

into systems9d. The dispersion relation of the shear mode
has the form

rsv
2 = msl − 1dsl + 2d/R2. s16d

The solution withl =1 andm=0 is the simple shell rotation
about thez axis.

In the following step, we take into account the dissipation
in the system. The dissipation takes place both in the shell
and in the liquid. For giant fluid vesicles, the dominant dis-
sipation occurs in the surrounding fluidf12g. Internal mem-
brane friction and permeation through the membrane can be
neglected. Composite vesicles can still be considered as im-
permeable for liquid but their internal friction becomes rel-
evant. Taking into account internal friction forces modifies
the equations of motion obtained and the corresponding dis-
persion relations. In the low-frequency limit, the shell dissi-
pation function has a form which coincides with energys5d
up to the substitutionu→]tu and up to the coefficients no-
tation. The same substitution converts the elastic terms in the
equations of motion into the viscous ones. As a consequence,
the contribution of the internal friction modifies Eqs.s13d,
s14d, and s16d as follows:l→ l̄=l− ijsv ,m→ m̄=m− ihsv,

and K→ K̄=K− iK fv, wherehs is the ordinaryf7g in-plane
shear viscosity of the shell. In-plane viscosityjs is associated
with the velocity of the relative area variation. CoefficientKf
stands for the viscosity related to the velocity of bending
deformation. In the higher-frequency region, the shell dissi-
pation function will include the high-order time deriva-
tives of the displacement field. Consequently, the visco-

elastic moduli will have the forml̄=on=0
n=`Gn

ls−ivdn,m̄

=on=0
n=`Gn

ms−ivdn, and K̄=on=0
n=`Gn

Ks−ivdn and will replace
l ,m, andK in matrix s14d and Eq.s16d. The stability of the
shell and the energy dissipation during the time course im-
pose additional conditions to coefficientsGn

j .

FIG. 1. Radialsad and tangentsbd distortions of a spherical shell
having the same symmetry. The corresponding displacement fields
Y30 sad andZ30 sbd spanD3f−1g representation of the O3 symmetry
group. The vertical direction coincides with thez axis.
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III. EXTERNAL FORCES DUE TO SURROUNDING
LIQUID AND THEIR CONTRIBUTION TO THE

EQUATIONS OF MOTION

External forces due to dissipation in the surrounding vis-
cous liquid influence strongly the modes of CVs. In the
frame of the proposed model, they lead to a further modifi-
cation of the solutions of systems9d. The dynamics of an
incompressible liquid is described by the Navier-Stokes
equation,

rh
dv

dt
= − ¹ ph + hDv, s17d

whereph is the hydrostatic pressure, andrh,h, andv denote
the density, shear viscosity, and the velocity of the liquid,
respectively. Due to the very small Reynolds number calcu-
lated for vesicles in water flowf11,12g, the left part of Eq.
s17d is usually assumed to be negligible. For the same rea-
son, thers value in Eqs.s9d can also be neglected. Neverthe-
less, it is obvious that the above assumptions are valid in the
low-frequency region only. The relative contribution of the
inertial term increases with frequency. For oscillation pro-
cesses, the inertial and viscous terms of Eq.s17d can be
estimated asrhv2us and hvus/R

2, respectively, whereus is
the vibration amplitude. For vesicles withR<15–20mm and
an embedding liquid with h<10−3 Pa s and rh
<103 kg/m3, the contribution of the inertial terms may be-
come essential at frequencies higher than<10 kHz.

The solutions of Eq.s17d allow us to calculate the viscous
stress tensorssi j ssee Ref.f21gd at both surfaces of the
vesicle. To determine the inner and outer external forces act-
ing upon a unit area of the vesicle, the corresponding tensors
si j are multiplied by the outer and inner normal vectors.
Then external forcesPi are added to the right parts of the
corresponding equations of systems9d,

Pr = srr
in − srr

out, Pu = sru
in − sru

out,Pf = srf
in − srf

out, s18d

where the relevant components of tensorsi j read

srr = − ph + 2h]rvr ,

sru = hfs]uvrd/r + ]rvu − vu/rg,

sru = hf]rvf + s]fvrd/sr sinud − vf/rg. s19d

Here r is the radial variable in the spherical coordinate sys-
tem. Besides, following Landau and Lifchitzf21g, we as-
sume that both the inner and the outer velocities of the liquid
at the shell surfacevsurf

in andvsurf
out are equal to the velocityu̇

of the shell. These boundary conditions are the last contribu-
tions to the elastohydrodynamical model, which determines
the dynamics of a CV in the surrounding liquid. They relate
Eq. s17d, completed with mass conservation law= ·v=0 on
the one hand, and systems9d modified by taking into account
the internal and external forces on the other hand.

The relaxation limit of Eq.s17d with the boundary condi-
tions defined on a sphere has been considered by Lambf22g.
The irreducible solution valid for the region inside the
vesicle and compatible with the coupled bending and stretch-
ing modes reads

ph = Blm
in fsr/RdlgYlm,

v = FAlm
in l

r l−1

Rl + Blm
in lr l+1

2hs2l + 3dRlGYlmer

+ FAlm
in r l−1

Rl + Blm
in sl + 3dr l+1

2hsl + 1ds2l + 3dRlGZ lm
Îlsl + 1d.

s20d

The velocityv in Eq. s20d satisfies also the mass conserva-
tion law. The solution for the outer liquid is obtained from
Eq. s20d by the substitutionl →−sl +1d performed in square
brackets only and by the change in constants notations. Ex-
cept for notation, Eqs.s20d coincide with those given by
Lenz and Nelson in the appendix to Ref.f23g. The constants
Alm

in ,Blm
in ,Alm

out, and Blm
out are determined from the boundary

conditions formulated above. At the shell surfacesr =Rd, the
amplitudev0srd of the liquid velocity in Eq.s20d is equal to
−ivu0, whereu0 is the amplitude of the shell displacement
field s12d. The unknown coefficients in Eq.s20d can be ex-
pressed in terms of the shell displacement field amplitudes
Alm

Y andAlm
Z using this equality. External forcess18d bring in

an additional contribution which modifies systems13d.
Namely, the following matrixQ̂ should be added to matrixL̂
fsee Eqs.s13d and s14dg:

Q̂ =
− iv

R *hin
2l2 + l + 3

l
+ hout

2l2 + 3l + 4

l + 1
− 3hinÎ l + 1

l
− 3houtÎ l

l + 1

− 3hinÎ l + 1

l
− 3houtÎ l

l + 1
hins2l + 1d + houts2l + 1d * . s21d

The matrixQ̂ relates the amplitudes of the shell displacement
Alm

Y andAlm
Z to the corresponding amplitudes of external nor-

mal and tangential forcess18d. For living cells and in many
cases for artificial vesicles and membranesssee, for example,
Ref. f16gd, outside and inside viscositieshout and hin of the

surrounding liquids are different. MatrixQ̂ takes this fact
into account. In some other cases, the inner and the outer
region of the shell may contain the same liquid with the
viscosity h=hout=hin. Then matrix Q̂ is simplified to the
form

VISCOELASTIC DYNAMICS OF SPHERICAL… PHYSICAL REVIEW E 71, 021905s2005d

021905-5



Q̂8 = *−
ivhs2l + 1ds2l2 + 2l + 3d

lsl + 1dR
3ivhs2l + 1d
Îlsl + 1dR

3ivhs2l + 1d
Îlsl + 1dR

−
2ivhs2l + 1d

R
* .

s22d

Final secular equations of the bending and stretching modes
of the shell in the liquid become

sL̂ + Q̂du0 = 0, s23d

where u0=sAlm
Y ,Alm

Z d is the amplitude of the displacement

field s12d and L̂= L̂sl̄ ,m̄ ,K̄d is expressed in terms of vis-
coelastic moduli in order to take into account the internal
friction in the shell. Then, the dynamical equation

detuL̂ + Q̂u = 0 s24d

defines simultaneously two overdamped dispersion lawsvsld
for both modes.

Similar considerations applied to the case of the shear
mode modify its dispersion relations16d. The irreducible so-
lution of the Navier-Stokes equation with the appropriate
symmetry reads

ph
in = 0; ph

out = 0; vin = FClm
in r l

RlGW lm;

vout = FClm
outR

l+1

r l+1GW lm. s25d

With the contribution of external viscous forcess18d, the
modified shear mode dispersion relation takes the form

m̄sl − 1dsl + 2d/R2 − ivfhinsl − 1d + houtsl + 2dg/R= 0.

s26d

Hydrodynamic flow fields arising around the spherical
vesicle and associated with modes of different types are
shown in Fig. 2.

As an additional remark, let us note that the dispersion
relations of the flat membranessee f16g and references
thereind can be reproduced as a simplified particular case of
Eqs. s24d and s26d. For this purpose, it is sufficient to sub-
stitute l =qR, whereq is the mode wave vector and then to
take theR→` limit. More details of the spherical vesicle
dynamicsscompared to that of the flat membraned are given
in Sec. IV. In this section, the case of the incompressible
shell is considered for two reasons. First, it simplifies the
description and makes the comparison easy. Second, the in-
compressible shell approximation is extensively used for the
fitting of microrheological experimental data on actin-coated
vesiclesf6–8g.

IV. BENDING MODE IN THE INCOMPRESSIBLE
SPHERICAL SHELL

Let us first clarify the concept of the incompressible
spherical shell. If this concept means that the shell area is

strictly constant, then only the shear mode is possible in the
spherical vesicle dynamics. This geometrical understanding
of the problem appears unsuitable for the viscoelastic shell
from the physical point of view. Completely incompressible
solids and liquids do not exist in nature. It is more conve-
nient to assume that the compressibilityl fsee energys5dg is
much greater than the other elastic coefficients. Then, the
limit l→` constitutes the incompressible shell approxima-
tion which satisfies the local incompressibility condition div
u=0.

To obtain the dispersion relation of the bending mode for
the incompressible shell, we come back to the analysis of Eq.

s24d. Note that this equation is linear with respect tol̄. We

divide Eq. s24d by l̄ sit is possible sincel̄Þ0d and then
calculate thel→` limit. Instead of two possible coupled
modes in a compressible shell, it gives the single mode with
the dispersion relation

v = − isl2 + l − 2d
K̄lsl + 1dsl2 + l − 2d + 4R2m̄

R3hs2l + 1ds2l2 + 2l − 1d
, s27d

where l .1. The casel =1 represents a simple shell transla-
tion. Here, for the sake of clarity, we consider inner and outer
liquids identical; viscosityh denoteshout=hin=h. The mode
obtained describes a bending deformation of the shell,
though it contains both radial and tangent contributions with
a fixed amplitudes ratio. The polarization of the mode can be
found from systems23d. With that aim, we divide the matrix

of the system byl̄ and take thel→` limit. This simple
calculation shows that the ratioAlm

Y /Alm
Z between the radial

and tangent amplitudes of the displacement field is
Îlsl +1d /2. The mode with this ratio satisfies automatically
the linear incompressibility condition divu=0. Let us stress
that the purely radial displacement field, extensively dis-
cussed in the literature, always leads to a local shell density
variation or stretching. Furthermore, this effect is linear in
the displacement field amplitude. Though a purely radial dis-
placement withl .0 does not give a linear contribution to
the total area variation, the local area changes are of the first
order inur. For the whole shell, the extension in regions with
ur .0 is compensated by the compression in regions with
ur ,0. To satisfy the divu=0 condition, the displacement
field should possess both radial and tangent components.
Note also that the linear incompressibility condition does not
mean that the total shell area is strictly constant. It means
that the local area change is of second order in the displace-
ment field amplitude. Therefore, the real spherical shell with
an extremely bigl value can undergo a total area change.
But this variation cannot contain terms linear in the displace-
ment field amplitude. Finally, the linear dynamics of a
spherical incompressible shell is characterized by two
modes: one in-plane shear mode with dispersion relations26d
and bending modes27d involving both radial and tangent
displacements.

Consideration of the limit case of an incompressible
membrane simplifies the basic formulas of the model and
clearly demonstrates the qualitative difference between the
bending mode excited in the spherical vesicle and that in the
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flat membranesFMd. First, the bending mode of the spherical
vesicle always involves the in-plane displacement. Second,
the shear modulusm̄ contributes to its relaxation rate. Both
effects are greater in the region of smalll value, where the
spherical geometry strongly influences the dispersion laws
s24d, s26d, ands27d.

As an additional remark, let us note that the classical re-
sult f11,12g for the bending mode dynamics in a nearly
spherical fluid vesicle can be obtained as a particular case
m̄=0 of the simplified incompressible shell dynamicsfEq.
s27dg. More precisely, in the Milner and Safran formulasf11g

the following substitution should be made:g=0 and r0/ rs
=1, whereg is the Langrange multiplier,r0 is an equivalent-
volume sphere radius, andrs is the spontaneous curvature
radius.

V. POWER SPECTRA OF THE PROBE PARTICLES

To compare the model with published experimental data
f6–8g, we calculate in-plane and out-of-plane power spectra
kxi

2svdl of the spherical viscoelastic vesicle, wherexistd is the
probe particlesPPd position in time,xisvd is its Fourier trans-

FIG. 2. Hydrodynamic flow fields around a spherical vesicle. 2D sections by the plane containing thez axis are shown. The three
different modes presented are characterized by the same indicesl =3 andm=0. Sincem=0, the hydrodynamic flowssad–scd have rotational
symmetry about thez direction. According to the conventional boundary condition, the velocity of the membrane surfaceu̇ is equal to the
velocity v of liquid at the vesicle surface. Due to the overdamped character of the possible modesu=−tv, where the mode frequencyv is
related to its relaxation timet as t=−i /v. sad Bending mode. The current vesicle shape shown by the solid line is different from the
equilibrium spherical one. The ratio between the radial and tangent components of the hydrodynamic flow corresponds to the case of an
incompressible membranessee in the textd. sbd Stretching mode. The deviation from the spherical shape of the vesicle induced by this mode
is not significant since the ratio between radial and tangent components of the shell displacement fieldu is small. Consequently, the
hydrodynamic flow at the vesicle surface is almost tangent to it. For the sake of clarity, the solid line of the shell surface is omitted.scd Shear
mode leads only to in-plane deformation of the spherical membrane. Spherical vesicle shape is shown by the solid line. Hydrodynamic flow
is perpendicular to the plane of the figure. Two opposite directions of the flow are shown by crosses and full circles. Their size is proportional
to the flow velocity.
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form, andi = i ,'. The PP is embedded in the vesicle and the
frequency dependence of the viscoelastic moduli can be cal-
culated from direct optical observation of in-plane and out-
of-plane thermal fluctuations of the PP. Let us stress that
current microrheological analyses use the results obtained for
flat membranes to calculate the elastic constants forspheri-
cal CVs ssee, for example,f6,7gd.

By the fluctuation-dissipation theorem, thekxi
2svdl spectra

can be easily expressed in terms of the response functions
aisvd anda'svd f16g,

kxi
2svdl = 2 ImfaisvdgkBT/v. s28d

Let us recall that the responseai determines the amplitude
Aisvd of the PP displacement when the external exciting
force Fi =Fi

0 expsivtd is applied to the PP:ai =Ai /Fi
0. Radial

response to the in-plane force or in-plane response to the
radial force in the point of force application are forbidden by
the symmetry of the system. To calculate the responseai, the
tangent and normal forces acting on the PP located atV0

=su0,f0d should be presented in terms ofW lm,Z lm, andYlm

functions. The force applied to the point is equivalent to the
pressure of ad-function character. The pressuresPisVd and
P'sVd on the CV surface have the formP'sVd
=F'

0 dsV ,V0d andPisVd=Fi
0dNsV ,V0d, whereN is the unit

in-plane vector parallel to the tangent component of the ap-
plied force,

dsV,V0d = o
l,m

YlmsVdYlm
* sV0d/R2 s29d

and

dNsV,V0d = o
l,m

hZ lmsVdfNZ lm
* sV0dg + W lmsVd

3fNW lm
* sV0dgj/R2. s30d

FunctiondsV ,V0d is quite similar to the ordinaryd function,
i.e., edsV ,V0ddS=R2edsV ,V0ddV=1, wheredS is an ele-
ment of the sphere area. FunctiondNsV ,V0d is normalized in
a slightly different way:edNsV ,V0ddS=N. Besides, it is use-
ful to note that

R2E dNsV,V0dCsVddV = NC*sV0d, s31d

whereCsVd is an arbitrary in-plane vector function.
Thanks to the explicit form of delta functionsdsV ,V0d

and dNsV ,V0d, the pressureP' can be expanded in scalar
spherical harmonicsYlm and the pressurePi in vector spheri-
cal harmonicsZ lm and W lm. Then for the new balance of
forces, the amplitudes of the exciting pressure harmonics
should be equilibrated by the amplitudes of harmonics of
internal viscoelastic and external viscous forces acting on the
unit shell area. This relation is taken into account in the
secular linear equations obtained in Sec. IIIfsystems23d and
Eq. s26dg. The resultingsinhomogeneousd linear system re-
lates the exciting force and the displacement field ampli-
tudes,

M11Alm
Y + M12Alm

Z = F'
0 Ylm

* sV0d/R2,

M21Alm
Y + M22Alm

Z = Fi
0fNZ lm

* sV0dg/R2,

M33Alm
W = Fi

0fNW lm
* sV0dg/R2. s32d

Here Mij =Lij +Qij for i , j ,3 and M33=msl −1dsl +2d /R2

− ivfhinsl −1d+houtsl +2dg /R.
The amplitudesAlm

Y ,Alm
Z , and Alm

W obtained from system
s32d determine the displacement amplitudeAsVd for all
points located on the sphere surface. Namely, the amplitude
of the PP displacement is

AsV0d = o
l=1

l=lmax

o
m=−l

m=l

fAlm
Y YlmsV0der + Alm

Z Z lmsV0d

+ Alm
WW lmsV0dg. s33d

Due to the finite PP radiusRp, the modes withl ù2pR/Rp
cannot contribute to the PP motion. Therefore, a cutoff of
high-order harmonics has been carried out.

To calculate the radial response functiona', we put Fi
0

=0 in systems32d. Then, using the relation

o
m=−l

m=l

YlmsV0dYlm
* sV0d = s2l + 1d/s4pd s34d

swhich is invariant with respect to the PP positiond, one can
take a sum over equivalent modes and obtain

a' = o
l=1

lmax s2l + 1dM22

4pR2D
, s35d

whereD is the determinant of matrixL̂+Q̂.
Analogously, to calculate the tangent response functionai

we substitute in Eq.s32d F'
0 =0. To take a sum over the

modes, we use the following property of vector spherical
harmonics:

o
m=−l

m=l

fV lmsV0dNgfV lm
* sV0dNg = s2l + 1d/s8pd, s36d

whereV lm is Z lm or W lm. Finally, the in-plane response func-
tion reads

ai = o
l=1

lmax s2l + 1dM11

8pR2D

+ o
l=1

lmax 2l + 1

8phm̄sl − 1dsl + 2d − ivRfhinsl − 1d + houtsl + 2dgj .

s37d

The first sum in Eq.s37d expresses the contribution from the
coupled bending and stretching modes. The second one cor-
responds to the contribution induced by the shear mode.
Since the bending mode in the spherical geometryscontrary
to the planar oned involves the inplane displacements, the
first sum in Eq.s37d does not disappear even in thel→`
limit of an incompressible membrane.

Let us stress that the known response functions of the flat
membranef16g can be easily reproduced from Eqs.s35d and
s37d. For that goal, it is sufficient to replace the sums in Eqs.
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s35d and s37d by integrals over the wave vectorqsl
=qR;qmax= lmax/Rd and then to take theR→` limit. For
practical comparison, we present here the known out-of-
plane and in-plane response functionsf16g for the FM in the
following form:

a'
FM =E

q=0

qmax dq

2psK̄q3 − 2i o hvd
, s38d

ai
FM =E

q=0

qmax dq

4pssl̄ + 2m̄dq − 2i o hvd

+E
q=0

qmax dq

4psm̄q − i o hvd
, s39d

where oh=hin+hout and the first and second parts of Eq.
s39d represent the contributions of the stretching and shear
modes, respectively.

Along the same lines, one can obtain the two-particle cor-
relation function. It is usually calculated to fit microrheologi-
cal data in one of the more important cases when two PP’s
are embedded in the opposite points of the spherical vesicle
and time dependencies of both particle displacements are
registered simultaneously. Due to the symmetry of the prob-
lem, the radial motion of the first PP cannot correlate with
the tangent motion of the second PP. In addition, the mutu-
ally perpendicular tangent motions of the PP’s are not corre-
lated. Therefore, as in the previous case, the two-particle
correlation function has only two nonzero components.
Through the fluctuation-dissipation theorem, this function
can be written in terms of the imaginary part of the two-point
response functionai8svd,

kSisvdl = 2 Imfai8svdgkBT/v. s40d

The responseai8 determines the amplitudeAi8svd of the first
PP displacement when the exciting forceFi =Fi

0expsivtd is
applied to the second PP:ai8=Ai8 /Fi

0. Using the known parity
of Ylm functions, one can easily modify relations34d,

o
m=−l

m=l

YlmsV0dYlm
* sV1d = s− 1dls2l + 1d/s4pd, s41d

where V0 and V1 are two opposite points on the sphere.
Then summing over equivalent modes, we obtain the radial
two-point response function,

a'8 = o
l=1

lmax

s− 1dl s2l + 1dM22

4pR2D
. s42d

Similar calculation gives the form of the tangent two-point
response function,

ai8 = o
l=1

lmax

s− 1dlF s2l + 1dM11

8pR2D

−
2l + 1

8phm̄sl − 1dsl + 2d + ivRfhinsl − 1d + houtsl + 2dgjG .

s43d

Different signs of the terms in the square brackets are related
to the different parity of functionsZ lm andW lm.

Experimental power spectra usually being discussed in
terms of an incompressible shell, we consider in the last part
of this section response functionss35d and s37d in the l
→` limit. Besides, the viscosities of the inner and outer
liquids are taken equal:hin=hin=h. These simplifications
permit easier comparison of the response functions of the
spherical shell with those of the flat membrane. The compari-
son is done for the low-frequency region of the spectrum. In
this region, the contribution of modes with small wave num-
ber becomes more important. At small wave numbers, the
sperical geometry influences strongly the dynamics of the
shell and consequently its response.

The incompressibility condition leads to the following
simplification of Eqs.s35d, s37d, ands39d. sid The first term
of Eq. s39d srelated to the stretching moded tends to zero.sii d
Out-of-plane response functions35d takes the form

a' = o
l=1

lmax R2s2l + 1dlsl + 1d
4pX

, s44d

where X=4R2m̄sl −1dsl +2d+K̄sl +2d2sl +1dlsl −1d2

− ivhR3s2l +1ds2l2+2l −1d. As one can expect, the equation
X=0 is equivalent to dispersion relations27d. siii d The first
term in Eq.s37d is simplified and the in-plane response trans-
forms into the form

ai = o
l=1

lmax R2s2l + 1d
2pX

+ o
l=1

lmax 2l + 1

8pfm̄sl − 1dsl + 2d − ivhRs2l + 1dg
.

s45d

The two-point response functions for the incompressible
shell s42d and s43d are calculated analogously.

In the limit case under consideration, the stretching mode
is impossible and the first term in Eq.s45d represents the
bending mode contribution only. Let us stress that there exist
two main points of difference between the responses of the
FM and those of the spherical shell. Both of them are much
more pronounced in the low-frequency region. First, since
the bending mode in the spherical shell always possesses an
in-plane polarization component, the in-plane response of the
spherical shell is greater than that of the FM. Second, due to
the shear elasticity of the spherical shell, its out-of-plane
response is essentially smaller than that of the FM. The con-
tribution of the shear modulusm̄ fsee the denominator in Eq.

s44dg renormalizes the effective value ofK̄, especially for
small numbersl.

One can make the following estimation of the frequency
region where the response functions of the spherical shell
can be well approximated by those of the FM. Let us analyze
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first the radial responses44d. We are looking for the fre-
quency region where sums44d can be approximated by inte-
gral s38d. For this purpose, one should first replace the wave
vectorq in Eq. s38d by l /R, wherel is the wave number and
R is the radius, and then transform Eq.s38d into a sum,

a'
FM = o

l=1

lmax 1

2pRfK̄sl/Rd3 − 4ihvg . s46d

At big wave numberssl @1d, the terms of sums46d are very
close to the corresponding terms in sums44d and do not limit
the region of the FM model validity. At small wave numbers
sl ,1d, the terms in Eq.s46d become close to those in Eq.
s44d in the region where

v @
uR2m̄ + K̄u

hR3 . s47d

Along the same lines, the analogous consideration of in-
plane responsess45d ands39d shows that in addition to con-
dition s47d, the frequency should also satisfy

v @
um̄u
hR

. s48d

Figure 3 is devoted to a comparison of response functions
discussed in this section. Let us stress that the order of mag-
nitude of material constants used to plot this figure is one of
possible orders for viscoelastic biological membranes. It is
possible to increase significantly the difference between the
curves corresponding to the FM and to the spherical shell
using other material constants. Unfortunately, because of the
trapping of the PP’s attached at the opposite sides of the CV
f6g, the low-frequency limit of the experimental power spec-
tra cannot be related to the theoretical power spectra of the
free CV. Correct comparison with available experimental
data on actin-coated vesicles is possible only for the region
of v where the trapping influence on the CV dynamics is
negligible. This will be the aim of the following section.

VI. FITTING OF THE EXPERIMENTAL DATA
AND DISCUSSION

In this section, we estimate the material constants of the
actin-coated CVs using their known experimental power
spectraf6,7g. Two different fits of the spectra are compared:
sid using the response functions of the FM model which ne-
glects the curvature of CVsfsee Eqs.s38d ands39dg andsii d
in the frame of the proposed approach which takes into ac-
count the spherical geometry of the vesicle. For numerical
fitting of the power spectra, we consider the shell response in
the l→` limit.

Following f6,7,16g, and references therein, we assume
that in thev@1 s−1 region the viscoelastic moduli scale as

Gjsvd = G0
j s− iv/v0dg j , s49d

where v0=1 s−1 and G0
j is a real positive constant. Let us

stress that the above equation can be a good approximation
to the frequency dependence of the elastic moduli only for

FIG. 3. Imaginary parts of the response functions calculated for
the incompressible flat and spherical membranes. Panelssad andsbd
show radial responses and panelscd shows tangent ones. Curves
sad–scd represent the responses of spherical shells with increasing
radius for the fixed size of PP. The response of the flat membrane is
given by curvesdd. We takeh=10−3 Pa s. The radiiR for curves
sad–scd are Ra=2310−5 m,Rb=4310−5 m, and Rc=8310−5 m.
Since the PP sizeRP is constant, the cutoff numberlmax is propor-
tional to the membrane radius. For curvessad–scd, lmax is taken
equal to 100, 200, and 400, respectively. For the flat membrane
qmax= lmax/R. The values of the material constants used to plot the

curves in panels sad and scd are as follows: K̄=10−18

− isv /v0d10−20 J and m̄=10−6− isv /v0d10−9 N/m, where v0

=1 s−1. For plots in panelsbd, the shear modulusm̄ is taken two
times greater. This increases the difference between radial responses
of spherical and flat membranesssee in the textd. At small wave
numbers, the spherical geometry influences strongly the membrane
dynamics, therefore the difference between the response functions
increases in the low-frequency region.
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realv, for example for the case of stationary oscillation of a
viscoelastic solid under the influence of a periodic exciting
force. As it is easy to check for both FM and spherical shell
models, relations49d does not lead to physically reasonable
eigenrelaxation frequencies. To make this fact obvious, it is
sufficient to substitutes49d into equations of motion of Ref.
f16g or of the present workfsee, for example, the simplest
case of the shear mode given by Eq.s26dg. Note that the
eigenrelaxation frequencies are imaginary negative values
and the imaginary part ofGj moduli for the stationary oscil-
lating system has a negative signfboth of these facts follow
from the time dependence of expressionss12d ands15dg. Oth-
erwise, the vibration amplitude would grow infinitely with
time. Fortunately, the computation of the power spectra on
the basis of the fluctuation-dissipation theorem does not im-
ply an explicit knowledge of the eigenrelaxation frequencies.
Besides, the variablev in all response functionssneeded for
the power spectra computationd and in Eq.s28d has a real
value making assumptions49d acceptable. Therefore, we fit
experimental data using Eq.s49d in the following explicit

form f6g: K̄=K0sv /v0daf1−i tanspa /2dg and m̄
=m0sv /v0dbf1−i tanspb /2dg, respectively.

In the frequency range fromf =60 Hz to f =4000 Hz, one
can approximate the experimental in-plane and out-of-plane
power spectra of the actin-coated CVssee Fig. 2 and Fig. 3
in Ref. f6gd by the equations 2KBT0.185
3108sv /v0d−1.87fm2sg and 2KBT0.443107sv /v0d−1.88fm2sg,
respectivelyssee Fig. 4d. For the vesicle radius equal to 2
310−5 m and for the PP one equal to 10−6 m, we estimate
the cutoff lmax as 120. The numerical fitting of the power
spectra calculated using the fluctuation-dissipation theorem

in terms of functions s44d and s45d yields K0=18
310−19 J,a=0.66,m0=0.70310−8 N/m, and b=0.79. Fit-
ting in the frame of the FM modelfusing functionss38d and
s39dg gives K0=30310−19 J,a=0.63;m0=0.65
310−8 N/m,b=0.79. One can roughly estimate the uncer-
tainty of a andb determinationsrelated to the uncertainty in
the experimental datad as a few percent. The uncertainty in
K0 andm0 determination is one order of magnitude greater.

As far as we know, no experimental data on the two-
particle correlation functions in actin-coated vesicles are
available at present. Nevertheless, it seems useful to compute
these functions using material constants obtained above by
fitting the spectra in terms of functionss44d ands45d. In the
frequency region 60–4000 Hz, the resulting functionsSisvd
and S'svd are well approximated by expressions
−2KBT1.103106sv /v0d−1.99fm2sg and −2KBT1.60
3106sv /v0d−2.00fm2sg, respectively. It is interesting to note
that both functions scale with frequency asv−2 like the
power spectrum of a simple Brownian motion.

Let us discuss what happens to the one-point response
functions and to the fits of the spectra when the PP radius is
changed. In the theory under consideration, this variation
changeslmax sor qmaxd value. For PP size larger than that
taken earlier in this section and corresponding, for example,
to lmax=100, the aboveK0 and a values are preserved and
the shear modulus change is very small. For the spherical
and planar geometry, we have calculatedm0=0.71
310−8 N/m and m0=0.66310−8 N/m, respectively,
whereasb=0.78 in both cases. In the constant extraction
procedure, the shear modulus value is more sensitive to the
PP radius variation since the corresponding response func-
tion diverges in thelmax→` limit. The b value obtained is
close to the earlier experimental results for a bulk solution of
actine filamentsf24g confirmed by a theoretical calculation
of b=0.75 f25g but differs from that given in Ref.f6g. Also
let us note that the widely cited statement that the in-plane
spectrum scales with the frequency assv /v0d−b−1 is rather
approximate.

The fits of power spectra presented in this section concern
only the intermediate-frequency regions60–4000 Hzd. In the
higher-frequency region, from an experimental point of view,
the modes cannot be thermally activated, and from a model
point of view, the inertial term in the Navier-Stokes equation
cannot be omitted. In the lower-frequency region, which is
the most interesting for the studies of biological and bio-
mimetic matter, one experimental problem arises. The trap-
ping of PPs attached at opposite sides of the CVs modifies
strongly the intrinsic spectra of the shell. To get the informa-
tion about low-frequency dynamics of CVs, another experi-
mental technique is needed. By contrast, the fit of the spectra
in this region is simpler since Eq.s49d is not applicable, real
parts of elastic moduli are practically constant, and imagi-
nary parts are linear inv. Let us finally note that in the
low-frequency region, the FM model is no longer reliable for
the material constants extraction since at small wave num-
bers the spherical geometry strongly influences the mem-
brane dynamicsssee the end of Sec. Vd. Though in the
intermediate-frequency region the difference between the
constants values obtained from the FM and spherical shell

FIG. 4. In-planesad and out-of-planesbd power spectra of the
actin-coated vesicle. Solid lines approximate the average experi-
mental spectral density from Ref.f6g. Error bars show the uncer-
tainty in the experimental power spectra. Circles and squares rep-
resent theoretically calculated power spectra for the flat membrane
and spherical shell models, respectively. The accuracy of the fits is
high enough and the difference between experimental and theoret-
ical curves in both cases is much smaller than the width of the solid
lines. Nevertheless, the values of material constants extracted from
the power spectra in the frame of the spherical shell model are
different from those obtained in the frame of the flat membrane
model ssee in the textd.
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models does not exceed 50%, in the low-frequency region it
can be significantly greater.

VII. SUMMARY

In conclusion, let us briefly enumerate the main results
and features of the proposed approach. We develop the
theory of the overdamped linear dynamics of the composite
spherical vesicle embedded in a viscous Newtonian fluid and
discuss its relation to microrheological measurements. The
elastic energy of the vesicle is characterized by in-plane
shear and stretching moduli and by bending rigidity. Finite
nonzero shear elasticity of the CVs makes the dynamics of
the viscoelastic spherical shell considered in this paper quite
different with respect to the linear dynamics of nearly spheri-
cal fluid vesicles developed inf10–12g. We argue that a
purely geometrical understanding of the shell incompress-
ibility adopted in fluid vesicles studies should be replaced in
this case by the physical incompressibility condition which
consists in local mass density conservation.

We pay particular attention to the influence of spontane-
ous curvature on the viscoelastic vesicle dynamics. Contrary
to case of the FM modelf16g, spherical geometry of the shell
permits linear coupling between bending and stretching re-
laxation modes. We show that in the limit case of an incom-
pressible vesicle, the bending mode contains both radial and
tangent components with amplitude ratio dependent on the
wave number. To relate the spherical shell model to mi-
crorheological data, we calculate the fluctuation spectrum of
a rigid PP embedded in the CV. The role of curvature be-
comes important in the physical processes, with the main
contributions coming from small wave numbers. We show
that planar geometry can be used instead of a spherical one
only in the region where the effective wave numberl =qR
satisfies to the conditionqR@1. In particular, the response
functions of the incompressible FM can replace those of the
incompressible spherical vesicle in the frequency region
where both conditionss47d and s48d are satisfied.

The response functions which determine the fluctuation
spectrum are compared with those of the FM model. Since
the bending mode in the spherical shell always has the in-
plane component, the in-plane response of the spherical shell
is greater than that of the FM. On the contrary, due to the
shear elasticity of the spherical shell, its out-of-plane re-
sponse is smaller than that of the FM. To complete the analy-
sis, we compute also the correlated fluctuation spectrum of
two particles embedded in the vesicle in two opposite points.

In the same spirit of comparison, we estimate material
constants for actin-coated vesicles from known experimental
dataf6–8g using the fitssid by the spherical shell model and
sii d by the FM model. In the frequency range 60–4000 Hz,
the difference between the values obtained by two fits does
not exceed 50%. However, in the low-frequency region the
reliable material constants can be obtained only in the model
with nonzero spontaneous curvature.

The extension of this work can be done in several direc-
tions. Our results can be applied to the vesicles coated with
crystallized proteines or biological filaments, to giant poly-
merosomes and, to a certain extent, to living cell. To be
closer to the complex dynamical behavior of biological and

bio-mimetic objects, the model can take into account chemi-
cal heterogeneity of the vesicles material. In the linear dy-
namics, the relative motion of the parts can then lead to
additional types of modes. Another development of the
present work can concern the influence of the shell perme-
ability sin phospholipid vesicles and in living cellsd on the
relaxation rate of the modes. These issues will be addressed
in a forthcoming paper. Both effects will not change qualita-
tive conclusions of the model but can be useful for practical
quantitative fits of microrheological data.
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APPENDIX

Normalized scalar spherical harmonicsYlm span
Dlfs−1dlg irreducible representationssIRsd of the sphere sym-
metry group O3. For the set ofYlm functions, this normaliza-
tion means thateeYlmYpq

* sinududf=dlpdmq. The normalized
Yl0 function isÎs2l +1d / s4pdPlscosud, wherePl is the Leg-
endre polynomial of thelth order.

Vector spherical harmonicsZ lm andW lm spanning the in-
plane displacement field of the spherical shell are less
known. They are two-dimensional vector functions withu
andf components. FunctionsZ lm describe the shell stretch-
ing and span the same sequenceDlfs−1dlg of the IRs as func-
tions Ylm do. They are normalized in the following way:
eeZ lmZpq

* sinududf=dlpdmq. FunctionsW lm which are nor-
malized analogously describe the shear deformation of the
shell. They spanDlfs−1dsl+1dg IRs of the sphere symmetry
group. The functionsW l0 and Z l0 preserve the rotational
symmetry around thez direction likeYl0 does and, with re-
spect to the functions withmÞ0, have a simpler form. Two
componentssu andfd of the normalized vector functionZ l0
are]uYl0/Îlsl +1d and 0, respectively. Analogously, the nor-
malizedW l0 function is equal to(0,]uYl0/Îlsl +1d). Func-
tionsW lm andZ lm with m.0 can be obtained from the func-
tions with m=0 using the elevating operatorf20g. It is
simpler to perform this procedure for the displacement field
described in the Cartesian coordinate system. In such
a case,Z l0 and W l0 functions take the formZ l0=he3sinsud
−cossudfe1cossfd+e2sinsfdgj]uYl0/Îlsl +1d and W l0

=fe1sinsfd−e2cossfdg]uYl0/Îlsl +1d, whereej are the Carte-
sian basis vectors. The corresponding elevating operator
reads

L+ = expsifdf]u + ictgsud]fg + e3se1 + ie2d − se1 + ie2de3.

sA1d

Operator action consists inL+Z lm=fsl +m+1dsl −mdgs1/2d

Z l,m+1. Triple productselemen resulting from the operator ac-
tion are equal toeldmn. The operatorL+ also elevatesW lm
functions. Functions with negativem are obtained by the
complex conjugation of those with positivem.
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