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Viscoelastic dynamics of spherical composite vesicles
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(Received 6 October 2003; revised manuscript received 21 October 2004; published 11 Februpry 2005

A micromechanical model for the low-frequency dynamics of spherical composite ve@R\&ss is pro-

posed. Solidlike viscoelastic properties of the CVs are taken into account. The equations of motion of a CV
surrounded by a viscous liquid are derived. They have discrete solutions which describe linearly coupled
stretching and bending relaxation modes and an independent shear mode. The qualitative difference between
the bending modes excited in a spherical vesicle and that in a flat membrane is demonstrated. The shear
elasticity of the CVs gives an essential contribution to the relaxation rate of the bending mode at small wave
numbers. It is also shown that even in an incompressible spherical vesicle with a finite shear modulus, the
bending mode involves both radial and tangent displacements. These reasons make both in-plane and out-of-
plane low-frequency responses of the CV quite different with respect to those of the flat membrane. To
compare our theoretical results with published experimental data, the power spectra of the actin-coated CV are
calculated.

DOI: 10.1103/PhysReVvE.71.021905 PACS nun®)er87.16.Dg, 82.70.Uv, 46.352

I. INTRODUCTION Reynolds number for such a system is very small. Finally, in

The response of the living cell to external perturbations ighe equation of motiori10-12 the forces due to bending
closely related to the mechanical properties of its membranelasticity of the fluid vesicle are balanced by the viscous
The cell membrane consists of the phospholipid bilayer anforces of the liquid. Therefore, the solutions of this model
chored to the underlying cytoskeleton which is composed oform the single overdamped bending branch.
the cross-linked network of biopolymef§]. Both the spec- In contrast to the liquid shell, the pure bending deforma-
trin network (in red blood cells and the actin cortex interact tion of a solid shell without holes and with any nontrivial
strongly with the bilayer and ensure cell elastic propertieshape(including spherical and nearly spherical on&sim-
which prevent membrane failure during large deformationgossible. For geometrical reasons, bending of a spherical
[1-4]. Thanks to recent experimental progress, one can nowlastic shell is always accompanied by stretcHibg]. The
createin vitro composite systems which approach the cellcorresponding elastic energy of a thin solid shell differs
membrane dynamics, namely protein-coated phospholipidreatly with respect to that of a fluid vesicle and explains the
vesicles[5], or vesicles coated with stiff cytoskeletal fila- elastic instability of the shell14,15. Along the same line,
ments[6—8]. Both the traditional micropipette methdfb], = the geometrical coupling between the strain components of a
and reference thereif9]] and a new microrheology tech- CV leads to a series of peculiarities in its dynamical behavior
nique[6—8] have revealed striking differences in behavior ofin hydrodynamic flows. A recent studyi6] of a flat vis-
these bio-mimetic complexes with respect to that of bareoelastic membrane has already shown the importance of
vesicles. In lipid vesicles with attached biopolymer net-shear and compression modes in the dynamics of bio-
works, a dramatic reduction in the thermal fluctuation ampli-mimetic objects, emulsions, and Langmuir monolayers.
tudes is observe@5—8]. In addition, typical solidlike vis- However, Ref[16] does not consider the influence of curva-
coelastic properties of the composite vesicléSVs), ture on the membrane dynamics. Furthermore, its authors
including finite inplane shear and stretching moduli, havemention that the results obtained cannot be applied to the
been observefb—8]. Furthermore, a dynamical external load spherical viscoelastic membranes. The aim of the present
on a CV results in a buckling instabilify8]. article is to develop a linear dynamics theory for the spheri-

Conventional hydrodynamic theof0-12 describes the cal CV coupled hydrodynamically to the inner and outer vis-
dynamics of the nearly spherical vesicles with a fluid shell.cous liquid. The paper is organized as follows. Section Il is
The approach10-17 is based upon the explicit constraints mainly devoted to the calculation of viscoelastic forces in-
of constant vesicle volume and area during the shape flucduced by a small deformation of a thin spherical shell. For
tuations. The above constraints are usually justified by théhis purpose the linear dynamics method is applied. Section
principle of energy scale separation. According to this prin-lll deals with coupled dynamics of the spherical CV and
ciple, if the vesicle possesses some excess area with respesctrrounding liquid. The solutions of corresponding elastohy-
to the sphere of equivalent volume, then it is much easier tadrodynamic equations are derived. Section IV discusses the
bend the vesicle than to stretch it. The motion of the incom-practically important limit case of an incompressible spheri-
pressible surrounding liquid inside and outside the vesicle isal shell. Power spectra of the model are calculated in Sec. V.
described by the Navier-Stokes equation without the inertiaA numerical fitting of the actin-coated vesicle dynamics and
term. This simplification is possibl§1l0-12 because the a discussion are given in the last section.
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Il. EQUATIONS OF MOTION OF A THIN SPHERICAL on the equilibrium sphere surface with its final coordinates
VISCOELASTIC SHELL R’ in the deformed state. The final positions of all points
We limit the model to a simple two-dimension&D) given by the dependen@ef(e,qs_) determine the s_hape of the
description of the spherical CV with the energy depending Orgefqrmed Sh?”' Then, thg §|mplest way to mtroduce the
local shell density variation, local shear, and local bendingSt@in tensor is to express it in terms of the metric tensor of
Of course, such a description does not take into account &° surface. On the one hand, ’fzollowmg Landd] (see
possible relative motion of the bilayer with respect to the? 50[17])_' the squared distanadl’® between wo infinitely
protein cortex or one of the monolayers with respect to ang:lose points on the deformed shell surface is expressed as
other one. However, the elasticity of the lipid bilayer is much di’2=dI3+ 2¢€; 01,41}, (2)
smaller than that of the cortex. In such a case, the energy
scale separation principle allows a separate description o¥herediz=3;4l;dl; is the squared distance between the same
slow and fast modes. The present study deals only with thBoints in the initial stateg; is the strain tensor, andl,
fast modes related mainly to the cortex deformation. =dl4=Rsin6dd¢ and dl,=d,=Rd¢ are the distances along
The physical model considered in the paper is a thithe meridian(é direction and parallel(¢ direction of the
spherical viscoelastic shell. We will characterize the defor-SPhere. On the other hand, the squared distelfiéelefines a
mation of the shell by its strain tensor. According to themetric tensorg(6, ¢,u):dl'*=g;dv;dv;, wheredv;=d¢ and
principles of the mechanics of continuous media, such a dedv,=dé [18], tensorg being dependent on field). Finally,
formation is characterized by a three-component local disthe strain tensog; can be constructed from the normalized
placement fieldi=(u,,u,,u,) depending on two local angu- Metric tensor in the form
lar variables # and ¢. This displacement field can be 1
expressed in Cartesian coordinates as €= E(')’ikgkl'ylj - 9j), (3)
Ux = UrsSIN 6 COS¢+ U,C0S6 COSP — UgSin ¢, wherey=(g,) Y is the normalization{, is the metric tensor
of the undeformed sphere, a@j is the Kronecker symbol.
In the explicit form y;,=7,,=0,v;;=(Rsin )™t and y,,
(1) =(R)™*. In the linear dynamics approximatigstudied in the
present articlg the strain is considered to be small. Thus, the
EquationR’ =R%+u relates the initial Cartesian coordinates nonlinear terms of the strain tensor are neglected and its
(Rsin @ cos¢,Rsin@sin¢,Rcosh) of a material pointR®  linear part takes the following form:

Uy = U,Sin 6'sin ¢ + U,coS# sin ¢ + U,COS P,

U, = U,CcoSH— u,sin 6.

.1 dgUglSin 6+ u, +u,ctg 6 (dgug/sin O+ dgu, — U,Cty 6)/2
€=—

, 4
R| (dpug/sSin 6+ dgu,— u,Ctg 6)/2 AUy + U, @

whered,, andd, stand for the derivatives with respect to the term, A is the projection of the Laplaciah upon the sphere

angular variables. surface,
The geometrical meaning of the components of telépr
is similar to that of an ordinary 2D symmetrical tensor char- = _1 iaz ctgo
o i \ sT 2w 2.9 52% dp- (6)
acterizing the planar strain. In particulap’'/ps=—¢;= Rsifd ¢ R R?

—div u, wherep’ is the local density variation angl, is the
average density of the shell. Then the quadratith respect
to the fieldu componentgselastic energy per unit shell area
can be expressed as

CoefficientK stands for the bending rigidity. For small de-
formation, the linear part of the mean curvature deviation
from the equilibrium value 2R-1/R;-1/R, is 2u,R?
+AgU,, whereR; andR, are the principal curvature radii.
Ey=M2(€)?+ u 2+ K/2(2u,R 2+ A,)?, (5) Energy(5) is quite similar to that used in RefL6] but the
expressions of strain tensor and of the mean curvature devia-
where\ and u are the in-plane elastic moduli analogous totion in Ref.[16] are different since the equilibrium curvature
Lame coefficients in the 3D ca$@3]. The first two terms in  of the flat membrane is zero. Furthermore, inner and outer
energy(5) are constructed as the invariants of tenggrand  regions separated by the sphere surface are not equivalent.
have the form widely used in the mechanics of elastic solidShe local symmetnyC.., of a point on the sphere surface is
[13]. These two contributions can also be expressed in termgwer than the local symmetri..;, of a point on the plane
of two eigenvalues; and €, of tensor(4): (;)*=(e;+€)>  surface. Consequently, elastic energy of the spherical mem-
and eizj:ef+ . The last term in the energy expression takesbrane may contain additional terms forbidden by the symme-
into account the possibility of bending deformation. In thistry of the plane membrane. Here, for the sake of clarity, we
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consider the simplest form of the elastic energy which pro-p i, = u{Au,+ [u,(1 - 2 cod6) - 2 cosaa¢u¢]/(stin20)}
vides a description of the linear dynamics of CVs with sol-

idlike properties. _ _ + ();_Jr 2 (= Ctg 094U+ 75, Uy + COSOIU, = Uy/SIN 0
The quadratic part of the elastic energy determines com- Rsin 0 ’

pletely the linear dynamics but is not sufficient to describe

the spontaneous variation of the equilibrium shape. The sim-

plest energy valid for the shape transition description should .

include at least fourth-order terms. A model containing psUg = 1

+2 SiNGdgu, + Sin 655,U,) ,

{Aug +[uy(1 -2 cog6) + 2 cosd u,l/(RPsir?o) }

fourth-degree terms in local principal stretchgshas been N+ ) ) ]
proposed in Ref[19] to simulate numerically the shape tran- " Resin e(ctg 004y + 0 g+ 204U; + T4 SIN 6).
sitions in red blood cells. The local principal stretchef19]

are related to eigenvalues ande, of strain tensof4) in the 9)

following way: ei:(xf—l)/z. In the case of the small strain, To obtain the solution of syster), we use the usual
this relation takes the forra=\;—~1. The quadratic part of methods of linear dynamics. The complete description of
energy[19] coincides with energy5) up to the coefficient these methods can be found elsewH@@. Here we recall
notations. Namely, the coefficienks,K,, and u from Ref.  seyeral basic ideas only. In the linear approximation, each
[19] should be replaced bi,\, and u—\ from the present mode spans one irreducible representati® of the sym-
work. The analytical description of the shape transition ismetry group of the system. The corresponding solution of the
outside the framework of this paper. equation of motion is the basis function of this IR. For sev-
We divide the derivation of the equations of motion for era| mutually independent basis functions of the same IR, the
the viscoelastic CV coupled with the surrounding liquid into sojution (normal modg is their linear combination. In other
two steps. First, the equations of motion of an empty elastigyords, the modes of the same symmetry are linearly coupled.
shell are deduced in order to evaluate the elastic forces actir]go”owing this general procedure, we have to investigate the
in the system and to perform the symmetry analysis of theyymmetry properties of the displacement fiéile., to deter-
mOdeS. Second, these equationS are mOdIerd by taklng inmine the list of active IRs of the Sphere Symmetry gro@ O
account internal and external nonelastic forces induced bynd to deduce the explicit form of their basis functions span-
the internal viscosity of the shell and by the interaction be‘ning the displacement field The direct product(Do[1]
tween the shell and the surrounding quuidZ r(_aspectively. The D,[-1]+D,[1]--+) X V contains all possible irreducible dis-
first step can be completely performed within the frame ofyjacement fields. Corresponding basis functions result from
the action minimization approach. The action in the devely;g projection onto IRs. Her®,[Pr] are the IRs spanned by
oped model reads well-known spherical harmonic¥|,(6,¢) with parity Pr

A=R2 [[[[pd1)%2 - E4]sin 6déd g, (7) =(-1)!, wherel is the IR index(I=0). The basis function
. ] ) indexm changes from Fto I. The basis functions of the IR
whereu=qu is the velocity of the shell. V are three components of a conventional vectsD[

Formal minimization of the action with respect to the _j] The functions resulting from the projection procedure
function u(6,¢,t) gives three equations of motion corre- yatermine the direction and the amplitude of the irreducible

sponding to the three components of the field displacement field in the point specified by the angular coor-
oo 7Eq, d dEsine & sEsind) dm?-tes,(lg’(?' Gl dicol feld, (usuall .
Py == ——+ — - inally, the radial displacement field, (usually associ-
aur s 6d6 a(ul96) - sin 6de? (Pl o) ated with bending deformatiomf the shell can be presented
~ d_2 JI(Ey) as a linear combination of,,(6, ¢) functions,
de? a(Pulad?)’ I=ec mel
u, = X ALYim(6,d)e;, (10)
= — = N d J(Egsin6) . d  JEy 1=0 m=-1
Psto Uy sinBde d(duyd,)  dpa(dugdep)’ whereeg, is the radial unit vector in a spherical coordinate
system. A tangent displacement field can be expressed in
. JEg d J(Egsing d I(Ey terms of Z,,(0,¢) and W,,(0,¢) functions describing
psly == a0, " Sin odo a(au)a,) + Eb&(auq}/&(z;)' (8 stretching and shear fields, respectively,
=0 m=l
The right-h inE he elastic f
e right-hand terms in Eq§3) express the elastic forces UHZE D [A|Zmzlm(0:¢)+AYrvnW|m(9'¢)]- (11)

acting on the unit area of the shell. The structure of the first
equation in system8) differs from that of the two other
equations since enerd$) contains second-order derivatives HereZ(6, ¢) andW,(6, ¢) are vector spherical harmonics
of the u, component and does not contain terms wigy, ~ detailed in the Appendix. Note that functiods, and Y,

derivative. The explicit form of systert8) is given below,  with the samel span the same IR. Therefore, the bending
mode (with 1>1) conventionally associated with radial dis-

— Mdiv - K(E A >2u placements only always involves the local density variation,
PsUr = R2 s| Yrs ; ; i —1)(+D)
or stretching(see Fig. 1L The parity Pr£-1) of the

1=1 m=-I

021905-3
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'(z) ® Consequently, the normal mode with the inditend m
and the symmetry of coupled bending and stretching modes
is a linear combination of two functionsy,,,(6, $)e, and
Z,m(6,¢). To obtain the secular equation of the system and
the dispersion relation of the bending-stretching mode, we
substitute the components of vector

u=[eALYim(0,¢) +ALZin(6,¢) lexp—iwt)  (12)

with an unknown ratio between two amplituda$, and Af,
Oigto system(9). It results in a linear homogeneous system
with respect toA, and A, coefficients,

(L11 = psw?) Al + LA, =0,

FIG. 1. Radiala) and tangentb) distortions of a spherical shell
having the same symmetry. The corresponding displacement fiel
Y30 () andZzq (b) spanDy[—1] representation of the Osymmetry
group. The vertical direction coincides with tkeaxis.

“shear” functionsW,,, is different from that ofY,,, or Z,.

Thereforg, the stretching and bgnding modes do no_t interact LZlAIT‘n+ (Lzz_pst)Aﬁn =0, (13)
linearly with the shear one, making the shear mode indepen-
dent. where
|
4()\+,u)+K(I2+I—2)2 _2(>\+M)\f’|(|+1)
L= R R R (14)
- LA NI+ D) Ot I+ D)+ 41 =)
R? R
[

The matrixL is independent ofn value since solutions with _ In the following step, we take into account the dissipation

the samd and differentm are equivalent. The system has ain the system. The dissipation takes place both in the shell
solution if its determinant is equal to zero. For edcho,  and in the liquid. For giant fluid vesicles, the dominant dis-
this condition determines simultaneously two frequencies fopipation occurs in the surrounding fluid2]. Internal mem-
both coupled bending-stretching modéke frequency be- Prane friction and permeation through the membrane can be
comes single only in the case0; its value can be deduced neglected. Composite vesicles can still be considered as im-
from equationpsw?=L;;). The number of equivalent solu- Permeable for liquid but their internal friction becomes rel-
tions (with the same dispersion lavis equal to the dimen- evant. Taking into account internal friction forces modifies
sion of the corresponding IR. Though each resulting modéhe equations of motion obtained and the corresponding dis-
contains both radial and tangent components, the contribysersion relations. In the low-frequency limit, the shell dissi-
tion of the fields(given by the ratioA /A% is quite differ-  pation function has a form which coincides with enetgy

ent. One of the modes has a big tangent and a small radiaip to the substitutiom — d,u and up to the coefficients no-
contribution and can be conventionally called the “nearlytation. The same substitution converts the elastic terms in the
stretching mode?” The nearly stretching mode involves thequations of motion into the viscous ones. As a consequence,
displacements inducing the local-density variation. Anothethe contribution of the internal friction modifies Egd.3),
mode has a big radial and a smfa)’l,l tangent amplitude and i§4) and (16) as follows: A — A=\ —i&w, u— w=p—i 7w,
called the “nearly bending mode?” Its frequency in the case ndK —K=K~-iK o, where 7 is the ordinan{7] in-plane

=1 is equal to zero since the corresponding deformatio . ; . . ;
. s ; . : shear viscosity of the shell. In-plane viscosityis associated
field coincides with a simple shell translation. with the velocity of the relative area variation. Coefficiéiht
Analogously, the shear-type solution can be obtained b)é Y . " & .
- ] tands for the viscosity related to the velocity of bending
substitution of vectou’ components . : : S
deformation. In the higher-frequency region, the shell dissi-
u’:A}’r\T’1W|m(0,¢)exp(—iwt) (15 pation function will include the high-order time deriva-
tives of the displacement field. Consequently, the visco-
elastic moduli will have the forma=3"3G)(-iw)",
2 a4 5 =S GH(-iw)", and K===GK(-iw)" and will replace
ps” = pll = 1)1 + 2R, (1) N\, u, andK in matrix (14) and Eq.(16). The stability of the
The solution withl=1 andm=0 is the simple shell rotation shell and the energy dissipation during the time course im-
about thez axis. pose additional conditions to coefficier.

into system(9). The dispersion relation of the shear mode
has the form
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I1l. EXTERNAL FORCES DUE TO SURROUNDING Org= 77[5rU¢+ ((9¢>Ur)/(r sin 0) — v¢/r]. (19
LIQUID AND THEIR CONTRIBUTION TO THE . . . . . .
EQUATIONS OF MOTION Herer is the radial variable in the spherical coordinate sys-

tem. Besides, following Landau and Lifchif21], we as-
External forces due to dissipation in the surrounding vis-sume that both the inner and the outer velocities of the liquid
cous liquid influence strongly the modes of CVs. In theat the shell surface!, ; andv2", are equal to the velocity
frame of the proposed model, they lead to a further modifi-of the shell. These boundary conditions are the last contribu-
cation of the solutions of systerf®). The dynamics of an tions to the elastohydrodynamical model, which determines

incompressible liquid is described by the Navier-Stokeshe dynamics of a CV in the surrounding liquid. They relate

equation, Eq. (17), completed with mass conservation 1&vv=0 on
the one hand, and systd®) modified by taking into account
dV — V py+ 7Av, (17)  theinternal and external forces on the other hand.
are The relaxation limit of Eq(17) with the boundary condi-

tions defined on a sphere has been considered by [a&jb
The irreducible solution valid for the region inside the
'vesicle and compatible with the coupled bending and stretch-
ing modes reads

wherep,, is the hydrostatic pressure, apgl », andv denote
the density, shear viscosity, and the velocity of the liquid,
respectively. Due to the very small Reynolds number calcu-
lated for vesicles in water floyl1,12), the left part of Eq.

(17) is usually assumed to be negligible. For the same rea- P =B (r/R)'TY)m,
son, thep value in Eqs(9) can also be neglected. Neverthe-

less, it is obvious that the above assumptions are valid in the rl-1 in [ri+1
low-frequency region only. The relative contribution of the Alm'ﬁ Blmzn(ZI +3R Yim€

inertial term increases with frequency. For oscillation pro-
cesses, the inertial and viscous terms of ELy) can be D (I+3)r'™ 7 m
estimated agpw?us and nwus/ R?, respectively, wherei is m Rt M2l + 1)(21 + 3R I '
the vibration amplitude. For vesicles witr= 15-20m and (20)
an embedding liquid with »=10°Pas and py,
~10° kg/m®, the contribution of the inertial terms may be- The velocityv in Eq. (20) satisfies also the mass conserva-
come essential at frequencies higher that0 kHz. tion law. The solution for the outer liquid is obtained from
The solutions of Eq(17) allow us to calculate the viscous Eg. (20) by the substitutiod ——(1+1) performed in square
stress tensorgr; (see Ref.[21]) at both surfaces of the brackets only and by the change in constants notations. Ex-
vesicle. To determine the inner and outer external forces actept for notation, Eqs(20) coincide with those given by
ing upon a unit area of the vesicle, the corresponding tensolisenz and Nelson in the appendix to REZ3]. The constants
g;j are multiplied by the outer and inner normal vectors. in B]’%,Aﬁﬁ‘, and B are determined from the boundary
Then external forcedl; are added to the right parts of the conditions formulated above. At the shell surfdceR), the
corresponding equations of systéf), amplitudev,(r) of the liquid velocity in Eq.(20) is equal to
_ in  _out _ in _out out —-iwug, whereug is the amplitude of the shell displacement
M= op=og', Ty= o7y =051, = o7, = o7g', (18) field (12). The unknown coefficients in Eq20) can be ex-

where the relevant components of tensgrread pressed in terms of the shell displacement field amplitudes
Al and A% using this equality. External forcé48) bring in
Oy == Pp t+ 2900, an additional contribution which modifies systefd3).
Namely, the following matrixQ should be added to matrix
9= (g )t + dvg—v4r], [see Egs(13) and(14)]:

2|2+|+3 212+3+4 1+1 e
i * Nout [+1 = 3%in | = 3out | +1
I +1
= 37 = 37out l Nin(2 + 1) + 7o,(21 + 1)

O)

(21)

The matrixQ relates the amplitudes of the shell displacementsurrounding liquids are different. Matri®Q takes this fact

ATn andAﬁn to the corresponding amplitudes of external nor-into account. In some other cases, the inner and the outer
mal and tangential forced8). For living cells and in many region of the shell may contain the same liquid with the
cases for artificial vesicles and membrats=e, for example, viscosity 7= 7,,=7,. Then matrixQ is simplified to the
Ref.[16]), outside and inside viscositieg,; and 7, of the  form

021905-5
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iwn(2l +1)(21°+ 21 +3)  3iwn(2l +1) strictly constant, then only the shear mode is possible in the
A - 10+ 1R G0+ DR spherical vesicle dynamics. This geometrical understanding
Q= ) _ ) of the problem appears unsuitable for the viscoelastic shell
Siwn(2l +1) _2iwn(2 +1) from the physical point of view. Completely incompressible
V(L + DR R solids and liquids do not exist in nature. It is more conve-

(22) nient to assume that the compressibilitysee energy5)] is
much greater than the other elastic coefficients. Then, the
Final secular equations of the bending and stretching modg#nit A — o constitutes the incompressible shell approxima-

of the shell in the liquid become tion which satisfies the local incompressibility condition div
u=0.
(L+Q)ug=0, (23 To obtain the dispersion relation of the bending mode for

where up=(A[,A%) is the amplitude of the displacement

field (12) and IA_:IA_()\,E, K) is expressed in terms of vis-
coelastic moduli in order to take into account the internal
friction in the shell. Then, the dynamical equation

the incompressible shell, we come back to the analysis of Eq.
(24). Note that this equation is linear with respect)EoWe
divide Eqg. (24) by f(it is possible sincex # 0) and then
calculate thex — oo limit. Instead of two possible coupled
modes in a compressible shell, it gives the single mode with
deﬂIA_ + 62| -0 (24)  the dispersion relation

defines simultaneously two overdamped dispersion lai)s KI(I+1)(12+1 - 2) + 4R%
for both modes. 0= -27 2 +1)(22+2-1)
Similar considerations applied to the case of the shear 7

mode modify its dispersion relatiqi6). The irreducible so- wherel > 1. The casd=1 represents a simple shell transla-

lution of the Navier-Stokes equation with the approprlatetion. Here, for the sake of clarity, we consider inner and outer
symmetry reads

liquids identical; viscosityy denotesy, = 7i,= 7. The mode
n out o i r! obtained describes a bending deformation of the shell,
Pr=0; p, =0; vi'= Clmﬁ Wim; though it contains both radial and tangent contributions with
a fixed amplitudes ratio. The polarization of the mode can be

(27)

found from systen{23). With that aim, we divide the matrix

R|+1 o ) )
v°“‘=[ out |+1]W|m. (25)  of the system byx and take thex — oo limit. This simple
" calculation shows that the ratiy/, /A%, between the radial

With the contribution of external viscous forc¢s8), the —and tangent amplitudes of the displacement field is
modified shear mode dispersion relation takes the form  \I(I+1)/2. The mode with this ratio satisfies automatically
. the linear incompressibility condition div=0. Let us stress
wll = D)1 + /R —iw[ 75(1 = 1) + 70| + 2)/R=0. that the purely radial displacement field, extensively dis-
(26) cussed in the literature, always leads to a local shell density
) ] o _variation or stretching. Furthermore, this effect is linear in
Hydrodynamic flow fields arising around the sphericalihe gisplacement field amplitude. Though a purely radial dis-
vesicle and associated with modes of different types arg|acement withl >0 does not give a linear contribution to
shown in Fig. 2. _ _ the total area variation, the local area changes are of the first
As an additional remark, let us note that the dispersionyyqer iny,. For the whole shell, the extension in regions with
relations of the flat membranesee [16] and references u,>0 is compensated by the compression in regions with
therein can be reproduce_d as a S|mp_I|f_|ed pa_rt_lcular case o{]r<0' To satisfy the diw=0 condition, the displacement
Egs. (24) and (26). For this purpose, it is sufficient to sub- fie|q should possess both radial and tangent components.
stitute |=qR, whereq is the mode wave vector and then to nte also that the linear incompressibility condition does not
take theR— o limit. More details of the spherical vesicle mnean that the total shell area is strictly constant. It means
dynamics(compared to that of the flat membrarege given  {hat the local area change is of second order in the displace-
in Sec. V. In this section, the case of the incompressiblgyen field amplitude. Therefore, the real spherical shell with
shell is _con5|dered for two reasons. First, it simplifies th?an extremely big\ value can undergo a total area change.
description and makes the comparison easy. Second, the iy this variation cannot contain terms linear in the displace-
compressible shell approximation is extensively used for theent field amplitude. Finally, the linear dynamics of a
fitting of microrheological experimental data on actin—coatedspherica| incompressible shell is characterized by two
vesicles[6-8]. modes: one in-plane shear mode with dispersion rel#g6n
and bending modé27) involving both radial and tangent
IV. BENDING MODE IN THE INCOMPRESSIBLE displacements. - . .
SPHERICAL SHELL ConS|dera.t|on.9f the |Im|t. case of an incompressible
membrane simplifies the basic formulas of the model and
Let us first clarify the concept of the incompressible clearly demonstrates the qualitative difference between the
spherical shell. If this concept means that the shell area ibending mode excited in the spherical vesicle and that in the
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FIG. 2. Hydrodynamic flow fields around a spherical vesicle. 2D sections by the plane containingutiseare shown. The three
different modes presented are characterized by the same indiBemndm=0. Sincem=0, the hydrodynamic flow&)—(c) have rotational
symmetry about the direction. According to the conventional boundary condition, the velocity of the membrane surfaegual to the
velocity v of liquid at the vesicle surface. Due to the overdamped character of the possible umdas where the mode frequenay is
related to its relaxation time as 7=-i/w. (@) Bending mode. The current vesicle shape shown by the solid line is different from the
equilibrium spherical one. The ratio between the radial and tangent components of the hydrodynamic flow corresponds to the case of an
incompressible membrargsee in the tejt (b) Stretching mode. The deviation from the spherical shape of the vesicle induced by this mode
is not significant since the ratio between radial and tangent components of the shell displacementisfisiahall. Consequently, the
hydrodynamic flow at the vesicle surface is almost tangent to it. For the sake of clarity, the solid line of the shell surface iSonStiedr
mode leads only to in-plane deformation of the spherical membrane. Spherical vesicle shape is shown by the solid line. Hydrodynamic flow
is perpendicular to the plane of the figure. Two opposite directions of the flow are shown by crosses and full circles. Their size is proportional
to the flow velocity.

flat membrandFM). First, the bending mode of the spherical the following substitution should be made=0 andrg/rg
vesicle always involves the in-plane displacement. Second; 1, wherey is the Langrange multiplier,, is an equivalent-
the shear modulug contributes to its relaxation rate. Both volume sphere radius, ang is the spontaneous curvature
effects are greater in the region of smiallalue, where the radius.
spherical geometry strongly influences the dispersion laws
(24), (26), and(27). V. POWER SPECTRA OF THE PROBE PARTICLES

As an additional remark, let us note that the classical re-
sult [11,17 for the bending mode dynamics in a nearly To compare the model with published experimental data
spherical fluid vesicle can be obtained as a particular cadé—8l, we calculate in-plane and out-of-plane power spectra
=0 of the simplified incompressible shell dynami@&y.  (<{()) of the spherical viscoelastic vesicle, wheye) is the
(27)]. More precisely, in the Milner and Safran formu[dd]  probe particlgPP position in time x;(w) is its Fourier trans-
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form, andi=|l, L. The PP is embedded in the vesicle and the
frequency dependence of the viscoelastic moduli can be cal-
culated from direct optical observation of in-plane and out- (32)
of-plane thermal fluctuations of the PP. Let us stress that
current microrheological analyses use the results obtained fdlere M;=L;+Q; for i,j<3 and Mgs=u(l-1)(1+2)/R?
flat membranes to calculate the elastic constantsfbreri-  —iw[ 7,(1— 1)+ 7ol +2)]/R.
cal CVs (see, for exampld6,7)). The amplitudesA,Af,, and A obtained from system

By the fluctuation-dissipation theorem,tbé(w)) spectra  (32) determine the displacement amplitu@g()) for all
can be easily expressed in terms of the response functionmints located on the sphere surface. Namely, the amplitude
a(w) anda (w) [16], of the PP displacement is

M1 Al + MopAZ = FINZ,(Q0) [IR?,

MasAm = FIINW, (Q9) [/R2.

1=l may M=

((w)) =2 Im[ e(o) [ke T/ . (28)

) ) A(Qg) = 2 E [Al\:nYIm(QO)er"'Aﬁnzlm(Qo)
Let us recall that the responge determines the amplitude =1 m=-
A of the PP displacement when the external excitin
) P g + AW, ()], (39

force F;=F? expliwt) is applied to the PPa;=A/F°. Radial
response to the in-plane force or in-plane response to thBue to the finite PP radiuR,, the modes with =27R/R,
radial force in the point of force application are forbidden by cannot contribute to the PP motion. Therefore, a cutoff of

the symmetry of the system. To calculate the respaensthe
tangent and normal forces acting on the PP locate@%t
=(6°, ¢° should be presented in terms &, Z;m, andY,n,

functions. The force applied to the point is equivalent to the

pressure of as-function character. The pressuregg(}) and
P,(Q) on the CV surface have the fornmP (Q)
=F% 8(Q, 0% and Py(Q)=F5,(Q,0Q9, whereN is the unit

in-plane vector parallel to the tangent component of the ap:

high-order harmonics has been carried out.

To calculate the radial response functian, we put Fﬁ)
=0 in system(32). Then, using the relation
m=|

> Yin(QO)Y(Q0) = (21 + 1)/(4m)

m=-1

(34)

(which is invariant with respect to the PP posifioone can
take a sum over equivalent modes and obtain

plied force,
|
* @2+ 1M
HLQY = D, Vi QY QR (29 o => At DMz (35
Im o1 47RD
and whereD is the determinant of matriﬁ+@.
000 = 7 (OINZ" (OO + WO Analogously, to calculate the tangent response funetjon
N0 %{ im(DINZ i Q]+ Win(€2) we substitute in Eq(32) F9=0. To take a sum over the
© o ) modes, we use the following property of vector spherical
X[NW;(QO)]}/R2. (300 harmonics:

m=I

2 [Vin(@N][Vin(@°N] = @ + Di(8m), (36

Functiond(€2,Q0) is quite similar to the ordinary function,

ie., [8(Q,0%9dS=R?[8(Q,0%d0Q=1, wheredSis an ele-
ment of the sphere area. Functigg(2,Q°) is normalized in
a slightly different way; 5y(Q,Q°dS=N. Besides, it is use-

whereV,,, is Z,,, or W,,. Finally, the in-plane response func-
ful to note that

tion reads
|max
R2 f AQOOWOQAO=NW'(Q0), (3] - 2TDMy
Il 2
1=1 87R°D
whereW(()) is an arbitrary in-plane vector function. I max
Thanks to the explicit form of delta function&(,°) T .2| *+1 _
and 6y(Q,09), the pressuré®, can be expanded in scalar = 8m{u(l - (1 +2) —iwR[ 7(1 = 1) + 70,1 + 2) ]}

spherical harmonic¥),, and the pressur@, in vector spheri- (37)
cal harmonicsZ,,, and W,,,. Then for the new balance of

forces, the amplitudes of the exciting pressure harmonicghe first sum in Eq(37) expresses the contribution from the
should be equilibrated by the amplitudes of harmonics ofoupled bending and stretching modes. The second one cor-
internal viscoelastic and external viscous forces acting on theesponds to the contribution induced by the shear mode.
unit shell area. This relation is taken into account in theSince the bending mode in the spherical geomeétontrary
secular linear equations obtained in Sec[siistem(23) and  to the planar oneinvolves the inplane displacements, the
Eq. (26)]. The resulting(inhomogeneoyslinear system re- first sum in Eq.(37) does not disappear even in the-

lates the exciting force and the displacement field ampliimit of an incompressible membrane.

tudes, Let us stress that the known response functions of the flat
v S, membrand16] can be easily reproduced from Eg85) and
M11Am + M1A, = F Y (Q5)/RS, (37). For that goal, it is sufficient to replace the sums in Egs.
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(35 and (37) by integrals over the wave 'vgctoq(l ’ Imax [ @+ My,
=0R; Omax=max’ R) and then to take th&®—o limit. For a/ = (-1 e D
practical comparison, we present here the known out-of- I=1 ™
plane and in-plane response functi¢as] for the FM in the 21 +1
following form: - — . .
J 8r{jall - (1 + 2 + iR 7(1 = 1) + 70| + 2]}
(43)

Omax d
M= f : (39)

40 Zw(Eq3— %S 70) ' Different signs of the terms in the square brackets are related

to the different parity of functionZ,,, and W/,
Experimental power spectra usually being discussed in
terms of an incompressible shell, we consider in the last part

oM = f fmax _ dq of this section response functiori85) and (37) in the A
: a=0 Am((\ +2u)q - 2i X, 7o) — o0 limit. Besides, the viscosities of the ir_mer_ gnd_ outer
liquids are taken equaly,=7,=7%. These simplifications
. Amax dq 39 permit easier comparison of the response functions of the
- — ' (39) spherical shell with those of the flat membrane. The compari-
¢=0 dm(ug =i 2 7o)

son is done for the low-frequency region of the spectrum. In
this region, the contribution of modes with small wave num-
where X 7= 7+ 7, and the first and second parts of Eq. ber becomes more important. At small wave numbers, the
(39) represent the contributions of the stretching and sheagperical geometry influences strongly the dynamics of the
modes, respectively. shell and consequently its response.

Along the same lines, one can obtain the two-particle cor- The incompressibility condition leads to the following
relation function. It is usually calculated to fit microrheologi- simplification of Eqs.(35), (37), and(39). (i) The first term
cal data in one of the more important cases when two PP’sf Eq. (39) (related to the stretching mopends to zeroii)
are embedded in the opposite points of the spherical vesicleut-of-plane response functidB5) takes the form
and time dependencies of both particle displacements are |
registered simultaneously. Due to the symmetry of the prob- LXR%(21+ D1+ 1)
lem, the radial motion of the first PP cannot correlate with L= 2 4mX :
the tangent motion of the second PP. In addition, the mutu- =
ally perpendicular tangent motions of the PP’s are not correghere X=4RZu(I1-1)(I +2)+K(1+2)2(1+ 1) (1-1)2

lated. Therefore, as in the previous case, the two—particleiw,]Rs(Z+1)(2|2+2|_1)_ As one can expect, the equation

correlation function has only two nonzero components.y— g equivalent to dispersion relatid@?). (iii) The first

Through Fhe f_Iuctuation-dissi_patio_n theorem, this functi_onterm in Eq.(37) is simplified and the in-plane response trans-
can be written in terms of the imaginary part of the two-point;y < into the form

response functiomy (w),

(44)

| |
~ max R2(2| + 1) max 21+ 1
(S(w)=21m e/ () [keT/ . 4o N IEl 2mX ,21 8a{u(l - 1)(1 +2) —iwpR(2l + 1)]

(45)
The responsey determines the amplitud& (w) of the first . _ . _
PP displacement when the exciting forEg= Foexp(iwt) is The two-point response functions for the incompressible

applied to the second PR/ =A/ /F?. Using the known parity shell (42) and(43) are calculated analogously. _
of Y, functions, one can easily modify relatid84), In the limit case under consideration, the stretching mode

is impossible and the first term in E¢45) represents the
bending mode contribution only. Let us stress that there exist
two main points of difference between the responses of the
FM and those of the spherical shell. Both of them are much
more pronounced in the low-frequency region. First, since

) ) the bending mode in the spherical shell always possesses an
where ° and Q! are two opposite points on the sphere.n_plane polarization component, the in-plane response of the
Then summing over equivalent modes, we obtain the radiadpherical shell is greater than that of the FM. Second, due to

m=l

> Y QOY(QY = (-2 + D/(4m), (41

m=-|

two-point response function, the shear elasticity of the spherical shell, its out-of-plane
response is essentially smaller than that of the FM. The con-
Imax 2+ )M tribution of the shear modulys [see the denominator in Eq.
r | 22 ) i — )
a) = > (1 (42) (44)] renormalizes the effective value ®f, especially for

2
I=1 4mRD small numbers.

One can make the following estimation of the frequency
Similar calculation gives the form of the tangent two-pointregion where the response functions of the spherical shell
response function, can be well approximated by those of the FM. Let us analyze
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first the radial responsé&4). We are looking for the fre- 6
quency region where sufd4) can be approximated by inte-
gral (38). For this purpose, one should first replace the wave
vectorq in Eqg. (38) by I/R, wherel is the wave number and

R is the radius, and then transform E&8) into a sum,

W
|

o
N

w
N

Imax
FM _ 1
a =

N
L

Response ( 106m/N)

— . (46)
=1 277R[K(I/R)3— 4 nw]

At big wave numbergl> 1), the terms of sunt46) are very
close to the corresponding terms in s(#d) and do not limit 0 1
the region of the FM model validity. At small wave numbers

(I~1), the terms in Eq(46) become close to those in Eq. @

(44) in the region where

23 4 56 7
Frequency (Hz)

R +K|
L

e (47

Along the same lines, the analogous consideration of in-
plane response@b) and(39) shows that in addition to con-
dition (47), the frequency should also satisfy

|

w>—. (48)

7R e

. . . . 2 3 4 5

Figure 3 is devoted to a comparison of response functions Frequency (Hz)

discussed in this section. Let us stress that the order of mag- (b)
nitude of material constants used to plot this figure is one of
possible orders for viscoelastic biological membranes. It is
possible to increase significantly the difference between the
curves corresponding to the FM and to the spherical shell

6 7

w

[
wn

using other material constants. Unfortunately, because of the % 2

trapping of the PP’s attached at the opposite sides of the CV “’gl 5]

[6], the low-frequency limit of the experimental power spec- g

tra cannot be related to the theoretical power spectra of the % 1
&

free CV. Correct comparison with available experimental
data on actin-coated vesicles is possible only for the region
of w where the trapping influence on the CV dynamics is
negligible. This will be the aim of the following section.

(=
W
1

<
—

2 Frgquen‘t‘:y (Hg) 6 7 8
()
VI. FITTING OF THE EXPERIMENTAL DATA . .
AND DISCUSSION FIG. 3. Imaginary parts of the response functions calculated for
the incompressible flat and spherical membranes. Péaeisid (b)

In this section, we estimate the material constants of théhow radial responses and paitel shows tangent ones. Curves
actin-coated CVs using their known experimental power@-(c) represent the responses of spherical shells with increasing
spectrd 6,7]. Two different fits of the spectra are compared: fadius for the fixed size of PP. The response of the flat membrane is
(i) using the response functions of the FM model which ne-given by curve(d). Westake77=1(T3 Pas. The radiR for curves
glects the curvature of CVsee Eqs(38) and(39)] and(ii) @) are R;=2x107m,R,=4x107m, and R;=8x10"m.
in the frame of the proposed approach which takes into ac>"ce the PP sizBp is constant, the cutoff numbégay is propor-
count the spherical geometry of the vesicle. For numericaﬁ'on‘"‘lI EO tlhoeo mzeonabran(jz Zgg'us' For:url“@':(c)'ﬂ:maﬁ 'f takerllj
fitting of the power spectra, we consider the shell response iﬁquai 0 ’ > an » respectively. or the flal membrane
the h—s oo limit Omax=!max/ R- The values of the material constants used to plot the

. : . i - K=108

Following [6,7,16, and references therein, we assumeCUrves in panels(@ and (c) are as follows: K=10"

—i 20 T—106—i 9
that in thew> 1 s°* region the viscoelastic moduli scale as ~'(¢/©0107"J and u=10"~i(w/wo) 107 N/m, where w
=1 s+ For plots in panelb), the shear modulug is taken two

Gj(a)) = G{)(— il wo) i, (49 times greater. This increases the difference between radial responses
1 . N of spherical and flat membranésee in the tejt At small wave
where wy=1 s and Gy, is a real positive constant. Let us numbers, the spherical geometry influences strongly the membrane

stress that the above equation can be a good approximati@ynamics, therefore the difference between the response functions
to the frequency dependence of the elastic moduli only foincreases in the low-frequency region.
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in terms of functions (44) and (45 vyields K,=18
10' [ ] X 10719 J,a=0.66 uq=0.70x 10 N/m, and 8=0.79. Fit-
ting in the frame of the FM modélsing functiong38) and
(39] gives Ko=30Xx101°J,a=0.63;uy=0.65
X 108 N/m,B=0.79. One can roughly estimate the uncer-
tainty of « and 8 determination(related to the uncertainty in
the experimental dataas a few percent. The uncertainty in
Ko and u determination is one order of magnitude greater.
As far as we know, no experimental data on the two-
particle correlation functions in actin-coated vesicles are
1000 2000 3000 available at present. Nevertheless, it seems useful to compute
Frequency (Hz) these functions using material constants obtained above by
fitting the spectra in terms of functiori44) and(45). In the
FIG. 4. In-plane(a) and out-of-plangb) power spectra of the frequency region 60-4000 Hz, the resulting functiGhs)
actin-coated vesicle. ‘Solid lines approximate the average expergnd S (w) are well approximated by expressions
mental spectral density from R€i6]. Error bars show the uncer- —2KT1.10X 106(w/w0)_1.gg{mzs] and ~KT1.60

tainty in the experimental power spectra. Circles and squares rep- D OO a2 . . .
resent theoretically calculated power spectra for the flat membran%< 106(w/w0) ‘{m s], respectively. It is interesting to note

and spherical shell models, respectively. The accuracy of the fits i&at both functions Sc_ale with frequency'asz like the
high enough and the difference between experimental and theordpOWer spectrum of a simple Brownian motion.
ical curves in both cases is much smaller than the width of the solid L€t us discuss what happens to the one-point response
lines. Nevertheless, the values of material constants extracted frofginctions and to the fits of the spectra when the PP radius is
the power spectra in the frame of the spherical shell model aréhanged. In the theory under consideration, this variation
different from those obtained in the frame of the flat membranechangesl ., (Or gnay) Vvalue. For PP size larger than that
model(see in the tejt taken earlier in this section and corresponding, for example,
to Ima=100, the above&K, and « values are preserved and
the shear modulus change is very small. For the spherical
and planar geometry, we have calculated,=0.71
X108 N/m and up=0.66x108N/m, respectively,
hereasB=0.78 in both cases. In the constant extraction

Power Spectra (nm2 s)

b

real w, for example for the case of stationary oscillation of a
viscoelastic solid under the influence of a periodic excitin
force. As it is easy to check for both FM and spherical shell

del lati d lead hvsicall bl procedure, the shear modulus value is more sensitive to the
models, relation(49) does not lead to physically reasonable pp 4 jys variation since the corresponding response func-

eigenrelaxation frequencies. To make this fact obvious, it igjgp diverges in thd ., — = limit. The 8 value obtained is
sufficient to substituté49) into equations of motion of Ref.  ¢jose to the earlier experimental results for a bulk solution of
[16] or of the present worksee, for example, the simplest gctine filamentg24] confirmed by a theoretical calculation
case of the shear mode given by Eg6)]. Note that the of g=0.75[25] but differs from that given in Ref6]. Also
eigenrelaxation frequencies are imaginary negative valueigt us note that the widely cited statement that the in-plane
and the imaginary part ¢ moduli for the stationary oscil- spectrum scales with the frequency (@s wo) ! is rather
lating system has a negative sigvoth of these facts follow approximate.

from the time dependence of expressi¢h®) and(15)]. Oth- The fits of power spectra presented in this section concern
erwise, the vibration amplitude would grow infinitely with only the intermediate-frequency regié0—4000 Hz. In the
time. Fortunately, the computation of the power spectra orhigher-frequency region, from an experimental point of view,
the basis of the fluctuation-dissipation theorem does not imthe modes cannot be thermally activated, and from a model
ply an explicit knowledge of the eigenrelaxation frequenciespoint of view, the inertial term in the Navier-Stokes equation
Besides, the variable in all response functiongeeded for ~cannot be omitted. In the lower-frequency region, which is
the power spectra computatioand in Eq.(28) has a real the most interesting for the studies of biological and bio-
value making assumptiof9) acceptable. Therefore, we fit Mimetic matter, one experimental problem arises. The trap-

experimental data using E¢49) in the following explicit ping of PPs attached at opposite sides of the CVs modifies
— — strongly the intrinsic spectra of the shell. To get the informa-

form [6]1'3 K=Ko(w/wp)*[1-itan(mal2)] —and u  on anout low-frequency dynamics of CVs, another experi-
= po(w! wo)"[1-i tan(7p12)], respectively. mental technique is needed. By contrast, the fit of the spectra
In the frequency range frorf=60 Hz tof=4000 Hz, one  in this region is simpler since E¢49) is not applicable, real
can approximate the experimental in-plane and out-of-plangarts of elastic moduli are practically constant, and imagi-
power spectra of the actin-coated @3€e Fig. 2 and Fig. 3 nary parts are linear im. Let us finally note that in the
in Ref. [6]) by the equations RzT0.185 |ow-frequency region, the FM model is no longer reliable for
X 10%(w/ wp) 18 m?s] and KT0.44% 10" (w/ wo) 18I m?s],  the material constants extraction since at small wave num-
respectively(see Fig. 4. For the vesicle radius equal to 2 bers the spherical geometry strongly influences the mem-
X 10°m and for the PP one equal to £an, we estimate brane dynamicgsee the end of Sec.)V Though in the
the cutoff |, @as 120. The numerical fitting of the power intermediate-frequency region the difference between the
spectra calculated using the fluctuation-dissipation theorermonstants values obtained from the FM and spherical shell
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models does not exceed 50%, in the low-frequency region ibio-mimetic objects, the model can take into account chemi-
can be significantly greater. cal heterogeneity of the vesicles material. In the linear dy-
namics, the relative motion of the parts can then lead to

Vil. SUMMARY additional types of modes. Another development of the

In conclusion, let us briefly enumerate the main resultgPresent work can concern the influence of the shell perme-
and features of the proposed approach. We develop tpbility (ln phospholipid vesicles and in living _ce)lsm the
theory of the overdamped linear dynamics of the compositéelaxat'on rat_e of the modes. These issues will be addre;sed
spherical vesicle embedded in a viscous Newtonian fluid an#! & forthcoming paper. Both effects will not change qualita-
discuss its relation to microrheological measurements. Théve conclusions of the model but can be useful for practical
elastic energy of the vesicle is characterized by in-plandluantitative fits of microrheological data.
shear and stretching moduli and by bending rigidity. Finite
nonzero shear elasticity of the CVs makes the dynamics of
the viscoelastic spherical shell considered in this paper quite We thank B. Zeks, A. Neveu, and R. Podgornik for stimu-
different with respect to the linear dynamics of nearly spheriqating discussions. S.B.R. is grateful to the LPMT for the
cal fluid vesicles developed ifll0-12. We argue that a hospitality and to the CNRS for financial support. S.B.R.
purely geometrical understanding of the shell incompressalso acknowledges financial support from the RFBR, Grant
ibility adopted in fluid vesicles studies should be replaced inNo. 02—-02-17871.
this case by the physical incompressibility condition which
consists in local mass density conservation. APPENDIX

We pay particular attention to the influence of spontane-
T o L e e oS 1) neduchle rpresetatofits of n spers Sy
permits linear coupling between bending and stretching reMetY group Q. For the set ok, functions, this normaliza-
laxation modes. We show that in the limit case of an incom{I0N means thaMﬂﬁdﬁdgﬁ: dipdmg The normalized
pressible vesicle, the bending mode contains both radial antio function is (21 +1)/(4m)P|(cos6), whereP, is the Leg-
tangent components with amplitude ratio dependent on thendre polynomial of théth order.
wave number. To relate the spherical shell model to mi- Vector spherical harmonicg,, andW, spanning the in-
crorheological data, we calculate the fluctuation spectrum oplane displacement field of the spherical shell are less
a rigid PP embedded in the CV. The role of curvature beknown. They are two-dimensional vector functions with
comes important in the physical processes, with the mai@nd ¢ components. Functions,, describe the shell stretch-
contributions coming from small wave numbers. We showing and span the same sequeig-1)'] of the IRs as func-
that planar geometry can be used instead of a spherical orions Y|, do. They are normalized in the following way:
only in the region where the effective wave numlbegR ffZ.mZI)qsin 6d6dé= 6, 5mg FunctionsW,,, which are nor-
satisfies to the conditiogR> 1. In particular, the response malized analogously describe the shear deformation of the
functions of the incompressible FM can replace those of thehell. They sparD|[(-1)!*V] IRs of the sphere symmetry
incompressible spherical vesicle in the frequency regiorgroup. The functionsV,q and Z,, preserve the rotational
where both condition§47) and (48) are satisfied. symmetry around the direction likeY,;, does and, with re-

The response functions which determine the fluctuatiorspect to the functions witim+ 0, have a simpler form. Two
spectrum are compared with those of the FM model. Sinceomponentg6 and ¢) of the normalized vector functiof,y
the bending mode in the spherical shell always has the inare d,Y,o/ I(1+1) and O, respectively. Analogously, the nor-
plane component, the in-plane response of the spherical sheflalized W, function is equal to(0,d,Y,o/\I(1+1)). Func-
is greater than that of the FM. On the contrary, due to thejonsW,,, andZ,,, with m>0 can be obtained from the func-
shear elasticity of the spherical shell, its out-of-plane retions with m=0 using the elevating operatdf0]. It is
sponse is smaller than that of the FM. To complete the analysimpler to perform this procedure for the displacement field
sis, we compute also the correlated fluctuation spectrum afescribed in the Cartesian coordinate system. In such
two particles embedded in the vesicle in two opposite pointsa case,z,, and W, functions take the fornz,,={e;sin(6)

In the same spirit of comparison, we estimate materialcog 9)[e,cod ¢) +e,sin($)]}d,Y o/ \m and W,
constants for. actm—cqatgad vesicles from known experlmentai[elsin( $)—e,c08 b)) 19,10 /\’,m, whereg, are the Carte-
data[6-8] using the fits(i) by the spherical shell model and g5y pasis vectors. The corresponding elevating operator
(i) by the FM model. In the frequency range 60-4000 Hz, g
the difference between the values obtained by two fits does
not exceed 50%. However, in the low-frequency region the L, =expig)[d,+ictg(6)d,] +es(e; +iey) — (e +iey)e;.
reliable material constants can be obtained only in the model (A1)
with nonzero spontaneous curvature.

The extension of this work can be done in several direcOperator action consists if,Z,=[(I+m+1)(1-m)]*?
tions. Our results can be applied to the vesicles coated with ;. Triple productseeyg, resulting from the operator ac-
crystallized proteines or biological filaments, to giant poly-tion are equal taed,,, The operatolL, also elevatedV,,
merosomes and, to a certain extent, to living cell. To befunctions. Functions with negativen are obtained by the
closer to the complex dynamical behavior of biological andcomplex conjugation of those with positive.
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