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Abstract

A Time to Digital Converter was designed (CMOS 0.35 um) to perform coincidence detection in a Liquid Xenon PET
prototype. This circuit proved to be able to operate at 150 K, while showing a resolution better than 250 ps. The circuit
enables a low readout dead time (<90 ns) and provides a fully synchronous digital interface for easy data retrieval.
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1. Introduction ’
APDa Liquid Xenon & Light Guide APDb
A R&D project based on the use of Liquid Xenon ﬂ o] [moa] m\ﬁ
(LXe) for small animal Positron Emission x
Tomography (PET) was initiated in 2001 [1]. The ¥
LXe combines high light efficiency and fast response. z

Prototype modules dedicated to y photons detection Fig. 1. LXe prototype module
are under study (fig.1).
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On the contrary of crystal based detectors, these
modules are aimed to be distributed axially of the
field of view allowing the Depth Of Interaction (DOI)
measurement. The self triggered front end electronics
has to be located close to the photo detectors (multi
anodes photomultiplier tube or avalanche photodiode
array) and to operate at 165 K. This electronics
performs charge measurement for each pixel (QDCn)
and time tagging for each event (TDCn). The module
is controlled by a FPGA that performs (X, y, z)
coordinates on line calculation and serial link
management.

2. Design of the TDC

2.1. Background

The aim of this project was not to design a very
high resolution TDC (see [2] for the different kinds
of TDC), but a functional one for a LXe PET
application. This implies that the chip must operate at
165 K with a resolution better than 1 ns. The power
consumption, and the dead time have to be kept at
minimum values. All these criteria lead to the choice
of a TDC based on a Delay Locked Loop (Fig. 2).
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Fig. 2. TDC block diagram

The TDC comprises a 128 delay cell chain that is fed
by a reference clock (CLK32). On a HIT signal
occurrence the state of the chain is registered. The
HIT signal delay within the present CLK32 cycle can
be deduced from the CLK32 rising edge location in
the delay chain. This position is then encoded to
provide the delay fine value. Only one CLK32 rising
edge must be propagated in the chain to ensure
proper encoding. The chain is included in a Delay

Locked Loop (DLL) which enables continuous self
calibration of the TDC and ensures the long term
stability by reducing the process and temperature
dependencies. The delay coarse measurement is
provided by an 8 bit counter and allows the event to
be associated to the right CLK32 cycle. The Data
Available signal ensures synchronous data retrieval.
The state of the delay chain can also be outputted
(SCAN output) in test mode.

2.2. Delay Locked Loop

As shown in Fig.2, the DLL is composed of 128
elementary delays, a phase detector, a charge pump
and a level shifter.

2.2.1. Elementary delay cell

This cell comprises 2 starved inverters controlled
by Vcp and Ven signals and ensures a 244 ps
resolution (128 cells fed by a 32 MHz clock) over the
process best and worst cases.

Fig. 3. Voltage controlled delay element

This architecture is not the best one for fine
resolution point of view, but since this cell is highly
symmetric a very good clock duty cycle conservation
is achieved allowing long delay chain implementation
without additional constraint on Vcp and Ven signals.
Other configurations have been used [3] [4] requiring
special cares to match the delay of the rising and
falling edges.

2.2.2. Phase detector

The phase detector provides a phase difference
information for performing the delay line regulation
(Fig. 4.). With such an implementation (so-called
bang-bang configuration), the line full scale delay is
oscillating around the value of the one clock period.
This leads to the intrinsic jitter of the DLL. Other
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kinds of phase detector have been designed but they
exhibit other drawbacks [5]. The implementation of
this block has to be symmetrical otherwise an offset
phase is induced.
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Fig. 4. Bang-bang phase detector

2.2.3. Charge pump and level shifter

The charge pump is fed with the signal provided
by the phase detector for charging/discharging an
external capacitor during one clock cycle (Fig.5).
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Fig. 5. Charge pump and level

The voltage increment/decrement has to be as small
as possible to limit the DLL jitter. The capacitor
voltage is processed by the level shifter that generates
the control voltages Vep and Ven. This shifter also
performs the linearization of the function
delay=f(Vcp,Ven) [2].

2.3. Line memorization

A buffer is inserted between the delay line and the
D register in order to restore the signal slew rate. The
probability to observe a metastable cell is leveled
down and a proper line memorization can be
achieved. This function was implemented as a part of
the delay cell itself and duplicated 128 times to
ensure a good differential non linearity (Fig. 6.). The
clock tree distributed to the memorization cells has to
be perfectly balanced as well.
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Fig. 6. Delay line memorization

2.4. Digital part architecture

The HIT signal is gated by a latch which does not
allow a new trigger as long as the previous data has
not been treated (Fig.7).
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Fig. 7. Digital part overview

The accepted trigger is resynchronized through two
consecutive latches for generating a data available
flag and thus providing an easy readout interface.
This induces a dead time lower than 3 CLK32 cycles.

2.4.1. Position encoding methodology

Two steps are needed to generate an encoded
value of the delay line state. At first, the clock rising
edge must be localized in the memorized delay line,
and then the corresponding code must be provided.
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Fig. 8. Eight cell delay line timing
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If a close look is taken at the state of an eight element
delay line (Fig.8), we can see that the fine delay is
determined by the number of the last bit at 1 before
the 1 to O transition in the memorized line state. For
instance when hit #1 occurs, the only delay element
having its signal rising is Dly5, and the
corresponding code (01111000) yields bit 5. The
digital system that allows detecting this edge in a line
is given below Fig.9 (duplicated 128 times), it also
provides a safety against defect in the memorized line
due to metastability.
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Fig. 9. Edge detection logic

Once the edge is located (only one bit at a time in the
line), the position has to be encoded. It can be easily
done with OR gates. Below is given the methodology
for an 8§ bit line.

Pos X Bit2 Bit 1 Bit 0
0 0 0 0
1 0 0 1
2 0 1 0
3 0 1 1
4 1 0 0
5 1 0 1
6 1 1 0
7 1 1 1

One can notice the following:
- Bit0 = Posl1 or Pos3 or Pos 5or Pos 7;
- Bitl = Pos2 or Pos3 or Pos6 or Pos7;
- Bit2 = Pos4 or Pos5 or Pos6 or Pos7;
This can be easily extended for a 128 bit line.

2.4.2. Coarse counting

Once the HIT has been encoded at a resolution of
244 ps, it must still be associated with the proper
clock cycle. For doing that the architecture proposed
by C. Lujslin [3] was used, where 2 counters are
counting, one on the rising edge of the clock and the
other one on the falling edge (Fig.10). Then, when a
HIT occurs, both counter values are registered and
the relevant one (stable at the sampling time) is
multiplexed to the output. The multiplexer is
controlled by the MSB of the fine value. A carry
output is provided for counter range extension.

Clk32
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Fig. 10. Coarse counting architecture

3. Chip test results

5 chips were packaged and tested.
- Resolution: 244 ps with a clock at 32 MHz
- DLL lock range: from 20 MHz to 40 MHz
- Differential non linearity: +/-20% (0.2 LSB)
(excepted for channel 126 and 127, due to a
layout problem)
- Integral non linearity: <1%
- Jitter: <35 ps (at the output of the 128"
delay cell)
- Line state serial monitoring is functional
- Consumption: 14mW
Testing in the cryostat showed that the TDC can
operate least to 150 K.
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