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Abstract

We establish the interrelation between the QCD scalar response of the nuclear

medium and its response to a scalar probe coupled to nucleons, such as the scalar

meson responsible for the nuclear binding. The relation that we derive applies

at the nucleonic as well as at the nuclear levels. Non trivial consequences follow.

One concerns the scalar QCD susceptibility of the nucleon. The other opens the

possibility of relating medium effects in the scalar meson exchange of nuclear physics

to QCD lattice studies of the nucleon mass.

Pacs: 24.85.+p 11.30.Rd 12.40.Yx 13.75.Cs 21.30.-x

1 Introduction

The spectrum of scalar-isoscalar excitations is quite different in the vacuum and in the
nuclear medium. In the second case it includes low lying nuclear excitations and also
two quasi-pion states i.e. pions dressed by particle-hole excitations. All these lie at
lower energies than the vacuum scalar excitations which start at 2 mπ. We have shown
in previous works [1, 2, 3, 4] that this produces a large increase of the magnitude of the
scalar QCD susceptibility over its vacuum value. We have expressed the origin of this
increase as arising from the mixing of the nuclear response to a scalar probe coupled to
nucleonic scalar density fluctuations into the QCD scalar response.

It is natural to investigate also the reciprocal problem of the influence of the QCD
scalar response to a probe which couples to the quark density fluctuations on the ordinary
nuclear scalar response of nuclear physics, which is the object of the present work. We
will study this influence not only for what concerns the nuclear excitations but also for a
single nucleon for which only nucleonic excitations are involved. If this influence indeed
exists, does it lead to non-trivial observable consequences ? We will show that this is the
case, with two main applications. One concerns the QCD scalar susceptibility of a single
nucleon. The second is the possibility to infer medium effects in the propagation of the
scalar meson which binds the nucleus from QCD results, such as the lattice ones on the
evolution of the nucleon mass with the pion mass.

Our article is organized as follows. In section 2 we remind the mechanisms responsible
for the mixing of the nuclear response into the QCD scalar susceptibility. We illustrate it
in the framework of a nuclear chiral model with a scalar and vector meson exchange. We
show that this mutual influence also exists at the nucleonic level. In section 3 we discuss
the influence of the quark structure of the nucleon on the scalar response of nuclear physics
in a general framework which is able to incorporate also confinement effects.
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2 Mutual influence of the scalar QCD response and

nuclear physics response

2.1 Study in a nuclear chiral model

We first remind how the usual nuclear physics response to a scalar field enters in the QCD
susceptibility. For this, following ref. [2], we start from the expression of the modification
of the quark condensate in the nuclear medium, ∆〈q̄q〉(ρ) = 〈q̄q〉(ρ) − 〈q̄q〉vac. We first
use, as in [2], its expression for a collection of independent nucleons :

∆〈q̄q〉(ρ) = QS ρS. (1)

where ρS is the scalar density of nucleons related to the chemical potential µ by :

ρS = 4

∫

d3p

(2π)3

M

Ep

Θ(µ − Ep). (2)

We have introduced the scalar charge of the nucleon, QS, proportional to the volume inte-
gral of the nucleon scalar density of quarks. It is related to the nucleon sigma commutator
σN and the current quark mass, mq, by :

QS =
σN

2mq

=

∫

d3r N |q̄q(~r) − 〈q̄q〉vac|N〉. (3)

The susceptibility of the nuclear medium, χA
S , is the derivative of the quark scalar density

with respect to the quark mass. We define it in such a way that it represents a purely
nuclear contribution with the vacuum susceptibility substracted off :

χA
S =

(

∂∆〈q̄q(ρ)

∂mq

)

µ

=

(

∂(QS ρS)

∂mq

)

µ

. (4)

It contains two terms. One arises from the derivative of QS, which by definition is the
free nucleon QCD scalar susceptibility, χN

S = ∂QS/∂mq. The second one involves the
derivative of the nucleon density. This term itself is built of two pieces, one involves
antinucleon excitations and is small [2]. The other one, which is larger, involves the
nuclear response Π0 = −2MNpF /π2. In this case it is the free Fermi gas one since no
interactions between nucleons have been introduced. The result of this derivation is
contained in the following equation:

χA
S = ρS χS

N + 2 Q2

S Π0 . (5)

The nuclear susceptibility is thus the sum of a one-body term and of a term due the
nuclear excited states, the p-h excitations. This decomposition survives the introduction
of the interaction, as will be shown next. In this case the free p-h polarization propagator
is replaced by the full RPA one, while the free nucleon susceptibility can undergo medium
modifications and become dependent on the density.
The previous result has been generalized in ref. [3] to an assembly of nucleons interacting
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through a scalar and a vector meson exchanges, working at the mean field level as in
relativistic mean field theories. In this work the condensate was obtained as the derivative
of the grand potential with respect to the quark mass (Feynman-Hellman theorem) and the
susceptibility as the derivative of the condensate, both being taken at constant chemical
potential. The result is [3] :

χS =

(

∂〈q̄q〉

∂mq

)

µ

≃ −2
〈q̄q〉2vac

f 2
π

(

∂S̄

∂c

)

µ

. (6)

S̄ ≡ fπ + s̄ is the expectation value of the chiral invariant scalar field and c = fπ m2

π is
the symmetry breaking parameter of the model used in [3]. The quantity

(

∂S̄/∂c
)

µ
is

related to the in-medium sigma propagator :

(

∂S̄

∂c

)

µ

= −D∗

σ =
1

m∗2
σ

−
g2

S

m∗2
σ

ΠS(0)
1

m∗2
σ

(7)

where ΠS(0) is the full scalar polarization propagator, related to the bare one, Π0 by :

ΠS(0) =
M∗

N

E∗
F

Π0(0)

[

1 −

(

g2

ω

m2
ω

E∗
F

M∗
N

−
g∗2

S

m∗2
σ

M∗
N

E∗
F

)

Π0(0)

]−1

. (8)

In the equations above, m∗
σ is the in-medium sigma mass, which is obtained from the

second derivative of the energy density with respect to the order parameter :

m∗2

σ =
∂2ε

∂s̄2
= V ′′(s̄) +

∂ (gS ρS)

∂s̄
= m2

σ

(

1 +
3s̄

fπ

+
3

2

(

s̄

fπ

)2
)

(9)

where the potential V responsible for the spontaneous symmetry breaking is the standard
quartic one of the linear sigma model. In the very last expression of eq. (9) we have
omitted, as in ref.[3], the small antinucleon contribution embedded in the factor ∂ρS/∂s̄.
Moreover since for the moment we do not consider, contrary to ref.[3], the scalar response
of the nucleon due to confinement, we also ignore the medium renormalization of gS.
The mean scalar field s̄ being negative, the term linear in s̄ lowers the sigma mass by an
appreciable amount (≃ 30 % at ρ0). This is the chiral dropping associated with chiral
restoration [5] and arising from the 3σ interaction as depicted in fig 1.

Since we are interested only in the medium effects the vacuum value of the quantity
(

∂S̄/∂c
)

µ
= 1/mσ

2 has to be subtracted off in eq. (7) and the purely nuclear suceptibility,

χA
S , writes :

χA
S = 2

〈q̄q〉2vac

f 2
π

[

3 s̄/fπ + 3

2
(s̄/fπ)2

m∗2
σ

+
g2

S

m∗2
σ

ΠS(0)
1

m∗2
σ

]

. (10)

We see that χA
S receives two types of contributions, the second being proportionnal to

the full RPA scalar response ΠS. The corresponding proportionality factor r between
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this second contribution and ΠS writes, to leading order, i.e., neglecting the medium
modification of the sigma mass :

r = 2 g2

S

〈q̄q〉2vac

f 2
π m4

σ

≃ 2 (Qs
S)2 (11)

where we have introduced the nucleon scalar charge Qs
S from the scalar field, defined below.

In the sigma model the free nucleon sigma commutator is the sum of two contributions,
one arising from the pion cloud, which depends on the mean value of the squared pion field,
i.e., on the scalar number of pions in the nucleonic cloud. In the mean field approximation
where pion loops are ignored this term does not appear. The other one, Qs

S, arises from
the scalar meson [6, 7, 8] and is linear in the σ field :

Qs
S =

σs
N

2mq

= −
〈q̄q〉vac

fπ

∫

d3r 〈N |σ(~r)|N〉 = −
〈q̄q〉vac

fπ

gS

m2
σ

(12)

which establishes relation (11) if we ignore the in-medium modification of Qs
S, i.e., the

difference beween m∗
σ and mσ.

We now turn to the first part of χA
S which depends on the average scalar field s̄. In

the low density limit, s̄ reduces to s̄ = −gS ρS/m2

σ, and we can ignore the term in s̄2 as
well as the difference beween m∗

σ and mσ. In this limit the first term in the expression
(10) of χA

S is linear in the density. If we classify it in the decomposition of eq. (5) for
χA

S , it obviously belongs to the individual nucleon contribution, ρS χN
S , to the nuclear

susceptibility. Writing the linear term explicitly in eq. (10) we deduce the free nucleon
scalar susceptibility from the scalar field, (χN

S )s :

(χN
S )s = −2

〈q̄q〉2vac

f 3
π

3 gS

m4
σ

, (13)

which is negative (i.e, it favors an increase in magnitude of the field, similar to paramag-
netism). It has been obtained here from the low density expression of χA

S . In fact it can
also be obtained directly as the derivative with respect to the quark mass of Qs

S, the part
of the nucleon scalar charge originating in the scalar field written in eq. (12) :

(χN
S )s =

∂Qs
S

∂mq

=
∂

∂mq

(

−
〈q̄q〉vac

fπ

gS

m2
σ

)

. (14)

Using the fact that, in the model, 〈q̄q〉vac/fπ does not depend on mq, only the derivative
of the sigma mass with respect to mq enters which, according to the Feynman-Hellmann
theorem, is linked to the sigma commutator, σσ, of the σ. In the linear sigma model the
derivative with respect to the quark mass is replaced by the derivative with respect to the
symmetry breaking parameter, c = fπ m2

π, keeping the other original parameters of the
model, λ and v, constant. The result is :

σσ = mq

∂mσ

∂mq

=
3

2

m2

π

mσ

. (15)

When inserted in eq. (14), it leads for (χN
S )s to the expression of eq. (13).
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Figure 1: Contribution to the sigma-nucleon scattering amplitude responsible for the
lowering of the sigma mass in the medium.

We now turn to the scattering amplitude for the sigma meson on the nuclear system.
In the same framework we will first show that the amplitude for the scattering of the scalar
meson on the nucleon has the same relation to the nucleonic susceptibility as the case for
the nuclear excitation part. Indeed in the expression (9) of m∗2

σ the term linear in density
is obtained from the low density expression : 3 s̄m∗2

σ ≃ −(3 gS/fπ) ρS. It represents an
optical potential for the sigma propagation. The corresponding σN scattering amplitude,
TσN

, which can also be evaluated directly from the graph of fig. 1, is equal to :

TσN = −3 gS/fπ. (16)

We are now in a situation to relate the nucleon scalar susceptibility (eq. (13)) to the
sigma-nucleon amplitude of eq. (16), with the result :

(χN
S )s =

2 (Qs
S)2

g2

S

TσN . (17)

The proportionality factor, 2 (Qs
S)2/g2

S, is the same as for the purely nuclear excitations.
The quantity gS which appears in this factor factor is due to the σNN coupling constant.
Adding the two effects from the nucleonic and nuclear excitations the total QCD scalar
susceptibility of the nuclear medium (vacuum value substracted) can therefore be related
to the total response, TA, to the scalar field through :

χA
S =

2 (Qs
S)2

g2

S

TA (18)

where the two members include both the individual nucleon contribution and the one
arising from the nuclear excitations,with :

TA = ρS TσN + g2

S ΠSS. (19)
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The last term on the r.h.s. represents the (in-medium corrected) Born part of the σN
amplitude while the first piece represents the non-Born part linked to nucleonic excita-
tions.

Thus there exists a universal scaling factor between the responses of a nuclear or nucle-
onic system to probes which couple either to the nucleon scalar density fluctuations or to
the quark ones. This relation has allowed us to infer the existence of a contribution to the
QCD nucleon scalar susceptibility linked to the scalar meson. To the best of our knowl-
edge this contribution to the nucleon susceptibility has not been discussed previously. It
has a link, through the relation (17), to the optical potential for the σ propagation, which
reduces the sigma mass in the medium.

2.2 Effect of the two pion propagator

In order to illustrate the coherence of this approach we will now extend the previous
description to incorporate the effect of the two-pion propagator, G, which affects the
nucleon susceptibility in the following way. The sigma propagator is renormalized by the
σ coupling to two-pion states, as discussed in [4]. At zero four-momentum we have :

−Dσ =
1

m2
σ + 3 λ (m2

σ − m2
π) G

1− 3λG

=
1 − 3 λ G

m2
σ − 3λ m2

π G
≃

1

m2
σ

−
3 G

2 f 2
π

(20)

where λ = (m2

σ − m2

π)/2 f 2

π and both Dσ and G are taken at zero four-momentum. In
the last term we have restricted to the one pion loop level. We stress that this expression
only holds for the sigma, chiral partner of the pion, which is not a chiral invariant field.
It does not apply to the scalar field responsible for the nuclear binding which has to be a
scalar invariant (that we have denoted s) and which is weakly coupled to two-pion states,
while the σ is strongly coupled. Therefore this treatment is done for illustration purpose
and not for an application to nuclear physics.

The medium correction to Dσ from the coupling of the σ to 2π states is :

∆Dσ =
3 ∆G

2 f 2
π

, (21)

where ∆G is the in-medium modification of the two-pion propagator. In ∆G, to lowest
order, one and only one of the two pions of the two-pion propagator has to be dressed
by one p-h bubble. It is again possible to interpret the corresponding modification of the
sigma propagator as representing a σN scattering amplitude, T π

σN , in which the sigma
interacts with the nucleon pion cloud :

T π
σN =

3 m4

σ

2 f 2
π

∆G

ρS

. (22)

This is to be compared to the nucleon scalar susceptibility from the pion cloud, which is
[4] :

χN
S =

3 ∆G

ρS

〈q̄q〉2vac

f 4
π

. (23)
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The proportionality factor between the susceptibility (23) and the σN scattering ampli-
tude (22) is the same as previously, 2 Qs2

S /g2

S. We find again that this relation holds not
only at the level of p-h excitations but also for a single nucleon, at the level of the nucle-
onic excitations which in this specific case are of the pionic type.
In summary we have seen that the mixing between the quark density fluctuations and the
nucleon ones implies that the response of a probe which couples to the nucleonic density
fluctuation is proportional to the QCD scalar response. This includes also the nucleonic
contribution to these responses. As an example we have shown that the chiral dropping
of the sigma mass in the medium has a counterpart in the form of a contribution of the
scalar meson to the QCD scalar susceptibility of the nucleon.

3 Connection with lattice data

It is now interesting to connect our results to the available lattice simulations of the
evolution of the nucleon mass with the pion mass, equivalently the quark mass. At
present they do not cover the physical region but only the region beyond mπ ≃ 400 MeV .
The derivative ∂MN/∂m2

π = σN/m2

π provides the nucleon sigma commutator. In turn the
derivative of σN leads to the susceptibility. Both quantities are strongly influenced by the
pion cloud contribution which has a non-analytic behavior in the quark mass, preventing
a polynomial expansion in this quantity. However the pionic self-energy contribution to
the nucleon mass, Σπ, has been separated out in ref. [9] in a model dependent way with
different cut-off forms for the pion loops (gaussian, dipole, monopole) with an adjustable
parameter Λ. The remaining part is expanded in terms of m2

π as follows:

MN (m2

π) = a0 + a2 m2

π + a4 m4

π + Σπ(mπ). (24)

The best fit value of the parameter a4 which fixes the susceptibility shows little sensitivity
to the shape of the form factor, with a value a4 ≃ − 0.5 GeV −3 while a2 ≃ 1.5 GeV −1

(in a previous work [10] smaller values of a2 and a4 were given : a2 ≃ 1 GeV −1 and
a4 ≃ − 0.23 GeV −3). We can infer the non-pionic pieces of the sigma commutator and of
the susceptibility from the expansion (24) :

σnon−pion
N = m2

π

∂M

∂m2
π

= a2 m2

π + 2 a4 m4

π ≃ 29 MeV . (25)

It is largely dominated by the a2 term. The corresponding value for a2 ≃ 1 GeV −1 is
σnon−pion

N = 20 MeV .
In turn the nucleon susceptibility is :

χN,non−pion
S = 2

〈q̄q〉2vac

f 4
π

∂

∂m2
π

(

σnon−pion
N

m2
π

)

=
〈q̄q〉2vac

f 4
π

4 a4 ≃ −5.4 GeV −1 (26)

The non-pionic susceptibility is found with a negative sign, as expected from the scalar
meson term. In ref. [9] however, the negative sign is interpreted differently. It is attributed
to possible deviations from the Gellman-Oakes-Renner (GOR) relation which links quark
and pion masses.
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It is then interesting to test if the empirical values from the lattice are compatible with
a pure scalar meson contribution. We thus tentatively make the following identifications :

Qs
S =

〈q̄q〉vac

fπ

gS

m2
σ

=
σnon−pion

N

(2 mq)
≃ 2.4, (27)

with 2 mq = 12 MeV (taking a2 ≃ 1 GeV −1 one would get Qs
S = 1.66). It is interesting

to translate this number into the value of the mean scalar field in the nuclear medium
which, to leading order in density, is :

−s̄ =
gs ρS

m2
σ

=
Qs

S fπ ρS

〈q̄q〉vac

=
σnon−pion

N

(2 mq)

fπ ρS

〈q̄q〉vac

=
a2 + a4 m2

π

fπ

ρS . (28)

At normal density the value |s̄(ρ0)| ≃ 21 MeV , quite compatible with nuclear phenomenol-
ogy. The second identification concerns the susceptibility. If the non pionic susceptibility
would arise entirely from the scalar field, we should have :

χN,non−pion
S = −

2 (Qs
S)2

g2

S

3 gS

fπ

=
〈q̄q〉2vac

f 4
π

4 a4 (29)

which would give, using the GOR relation :

−a4 =
3

2

(σnon−pion
N )2

gS fπ mπ
4

= 3.1 GeV −3, (30)

much larger than the lattice value, −a4 = 0.5 GeV−3. Again, taking a2 ≃ 1 GeV −1 one
would get −a4 ≃ 1.2 GeV −3, still larger in magnitude than the corresponding lattice
value (−0.23 GeV −3). Thus the linear σ model which fails to account for the saturation
properties, due to the excess attraction produced by the chiral softening of the sigma
mass, also leads to too large a susceptibility from the scalar meson. In fact in this
work we show that the two problems are linked. Some mechanism suppresses the chiral
softening of the σ mass as well as the large nucleonic susceptibility from the scalar meson,
incompatible with lattice data. It is indeed likely that the scalar meson is not the only
non-pionic contribution. In a previous work [3] we have invoked confinement and the
quark meson coupling model (QMC) [11, 12] as a source of cancellation for the chiral
softening of the sigma mass. It turns out that it has also a cancelling effect in the nucleon
scalar susceptibility. Indeed, for 3 valence quarks confined in a bag of radius R, Guichon
[13] derived χN,bag

S ≃ + 0.25 R ≃ 1 GeV −1, for a value R = 0.8 fm. Translated into the
parameter a4, one has abag

4
≃ + 0.1 GeV −3. Contrary to the other components which

are negative (of paramagnetic nature), it has a positive sign (of the diamagnetic type,
linked to quark-antiquark excitations). The bag susceptibility indeed produces a mild
cancellation effect.

It is then natural to try to extend the linear sigma model description so as to incor-
porate other effects than the scalar meson ones (or chiral symmetry breaking effects), for
instance those arising from confined valence quarks.
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4 Generalization and implications for nuclear physics

4.1 General relation

In view of the limitations of the linear sigma model discussed previously, a more general
approach is desirable. The aim is to link the response of the nuclear medium to the scalar
nuclear field and the QCD responses, in such a way that both quantitites include all the
components of the individual nucleon contribution whatever their origin. Of course it is
not possible to achieve this goal without some assumptions on the nature of the probe.
We keep the basic assumption that the scalar field which couples to the nucleons, couples
to the quarks of the nucleon condensate, as is the case in the linear sigma model. Thus
its presence can induce a readjustement of the quark structure of the nucleon, that we
evaluate in the way described below.

Consider a nuclear medium with a scalar nucleon density ρS. By definition the response
of this medium to a scalar field which couples to the nucleon scalar density fluctuations
(with a unit coupling constant) is the change in the nucleon scalar density for a small
change of the nucleon mass. It is ΠS = (∂ρS/∂MN )µ, the derivative being taken at
constant chemical potential. With a coupling constant gS this result should be multiplied
by g2

S. In the free Fermi gas case this derivative leads the the quantity −2 MpF /π2, the
free Fermi gas response. For nucleons interacting via σ and ω exchange, the expression
of the scalar nucleon density is :

ρS =

∫

4 d3p

(2π)3

M∗
N

E∗
p

Θ

(

µ − E∗

p −
g2

ω

m2
ω

ρ

)

. (31)

where M∗
N = MN (1+ s̄/fπ) is the nucleon effective mass, linked to the mean scalar field

s̄ and E∗
p =

√

p2 + M∗2
N . The mean field s̄ is obtained from the minimization equation

of the energy density ǫ :
∂ε

∂s̄
= gS ρS + V ′(s̄) = 0 . (32)

It is then possible to check that the derivative of the scalar nucleon density with respect
to the nucleon mass leads to the full RPA scalar polarization propagator, ΠS, as defined
in eq. (8). In this expression of the response as the derivative of the nucleon density the
nucleon structure is not incorporated. It only includes the effect of the nuclear excitations
and not that of the nucleonic ones. In order to include them we have to account for the
internal nucleon structure, i.e., the quark structure. It is the quark medium, and not
only the nucleon one, which responds to the same excitation, i.e., to the modification of
the nucleon mass δMN . Accordingly we make the following conjecture, writing the full
response RA

S as :

RA

S =
1

2 QS

(

∂ρq
S

∂MN

)

µ

(33)

where ρq
S is the quark scalar density and the factor 1/2 QS in front of the derivative

is put for normalization purpose. Each nucleon containing a scalar number of quarks
2 QS = σN/mq, the scalar density of quarks is ρq

S = 2 QS ρS. The derivative involves two
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terms :

RA

S =
1

QS

(

∂

∂MN

(QS ρS)

)

µ

=

(

∂ρS

∂MN

)

µ

+
ρS

2 Q2

S

∂QS

∂mq

. (34)

In the last term we have replaced the derivative with respect to the nucleon mass by the
one with respect to the quark mass, with ∂MN/∂mq = 2 QS, which introduces the nucleon
susceptibility χN

S . The overall result writes :

RA

S =
χN

S

2 Q2

S

ρS + ΠS. (35)

The interpretation of this equation is clear. This decomposition is obvious and analogous
to the one of eq. (5). The term linear indensity represents the individual nucleon response
from the nucleonic excitations, while the term in ΠS embodies nuclear excitations. The
new information is that the single nucleon response is proportional to the QCD one, χN

S ,
with the same proportionality factor 1/(2Q2

S), as was found previously for the nuclear
excitations. All in all, the eq. (35) writes :

RA

S =
1

2 Q2

S

χA
S (36)

where χA
S represents the total scalar QCD susceptibility of the nuclear medium (vacuum

value substracted) and both members incorporate the individual nucleon contribution.
This results holds for a unit coupling constant. For a coupling constant gS (as is the
case for the nuclear scalar field) the r.h.s should be multiplied by g2

S. Accordingly the
corresponding σN amplitude is :

TσN =
χN

S g2

S

2 Q2

S

. (37)

We will now comment this result and we then will apply it to the problem of the
propagation of the scalar field which mediates the nuclear attraction. Our relation (36)
has a close resemblance to the previous one, (18), derived in the linear sigma model but
here we do not inquire about the origin of the terms, χN

S and QS. With the values of the
linear sigma model for these quantities we recover the previous result of this model.

Our relation (37) is also very similar to the one of the quark-meson coupling model
[11]. In QMC, the bag positive susceptibility manifests itself in the form of a repulsive
interaction in the propagation of the scalar nuclear field. The corresponnding scattering
amplitude is related to the bag suceptibility by a relation identical to our eq. (37), but
only bag quantities appear and the scalar charge entering this relation is that of the bag,
which is Qbag

S ≃ 0.7. As QMC does not incorporate the chiral potential which implies the
three-scalar coupling, only the repulsive three-body interaction from the bag structure
enters. Our expression (37) thus covers the two extreme situations, when the nucleon
mass originates totally from the condensate as is the case in the σ model, or when it is
only due to confinement. It is legitimate to believe that it is able to describe a more
general situation with a mixed origin.
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4.2 Illustration in a hybrid model of the nucleon

In the following we will illustrate the relation (37) in a model of the nucleon proposed by
Shen and Toki [14], where the nucleon mass originates in part from its coupling to the
condensate and in part from confinement. It consists in the following: three constituant
quarks, described in the Nambu-Jona-Lasinio model (NJL), are kept together by a central
harmonic force so as to mimick confinement. We have chosen for simplicity the form:
((K/4)(1 + γ0) r2 which leads to analytical results. Although oversimplified the model
gives an intuitive picture of the role played by confinement. Denoting M the mass of a
free constituant quark and E that of the bound one, the nucleon mass is given :

MN = 3 E = 3

(

M +
3

2

√

K

E + M

)

. (38)

It is increased as compared to the value, 3M , for three independent constituant quarks..
The nucleon scalar charge, QS, is :

QS =
3

2

∂E

∂mq

=
3

2

∂E

∂M

∂M

∂mq

(39)

with :
∂E

∂M
= cS =

E + 3M

3E + M
. (40)

As E > M , cS < 1, the nucleon scalar charge is reduced as compared to a collection
of three independent constituant quarks. The nucleon scalar susceptibility, χN

S , given by
the next derivative, is composed of two terms arising respectively from the derivative of
cS and from that of ∂M/∂m. The second part leads to the susceptibility, χq

S, of a free
constituant quark,

χN
S =

∂QS

∂mq

=
3

2

[

∂cS

∂M

(

∂M

∂mq

)2

+ cS

∂2M

∂2m2
q

]

(41)

=
3

2

∂cS

∂M

(

∂M

∂mq

)2

+ 3 cS χq
S

with:
∂cS

∂M
=

24 (E2 − M2)

(3E + M)3
. (42)

Notice that this last derivative is positive since E > M and that it vanishes in the absence
of confining force, when E = M . Therefore the first part of the expression of χN

S represents
the part of the susceptibility originating in confinement and, as in QMC, it is positive.

The scalar coupling constant gS is linked to the derivative of the nucleon mass with
respect to the mean scalar field s̄:

gS = 3
∂E

∂s̄
= 3

∂E

∂M

∂M

∂s̄
= 3 cS gq (43)

where gq is the corresponding coupling constant for a constituant quark.
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The nucleon response to the scalar field originating in confinement, κNS, is linked to
the second derivative of the nucleon mass with respect to the scalar field :

κNS = 3
∂2E

∂s̄2
= 3

∂cS

∂M

(

∂M

∂s̄

)2

. (44)

The ratio between the part of the nucleon scalar susceptibility which is due to confinement
and κNS is

r =
1

2

( ∂M
∂mq

)2

(∂M
∂s

)2
= 2

Q2

S

g2

S

, (45)

the same ratio as was previously found.
As for the scalar σN amplitude from the tadpole term, TσN = 3 gS/fπ, it should be

compared to the other part of the susceptibility. We define r′ as the corresponding ratio
through :

3

2
cS

∂2M

∂m2
q

= r′
3 gS

fπ

. (46)

In the semi-bosonized version of the NJL model we have :

∂M

∂mq

= −2
gq 〈q̄q〉vac

fπ m2
σ

(47)

and
∂2M

∂m2
q

= 2 χq
S =

2 gq 〈q̄q〉
2

vac

f 3
π m4

σ

(48)

in such a way that the ratio r′ becomes :

r′ =
2 〈q̄q〉2vac

f 2
π m4

σ

=
2 Q2

S

g2

S

≡ r. (49)

Since the same ratio applies to the two parts, r′ ≡ r, it can be factorized so as to obtaIn
the relation (37), which is thus confirmed in this hybrid model.
Numerically a value of the ratio E/M ≃ 2.1, which gives cS ≃ 0.7, leads to a reasonable
value for gA. It results in a value of the dimensionless parameter C = (f 2

π/2M) κNS ≃ 0.1,
while the value needed to account for the saturation properties in the framework of chiral
models is C ≃ 1 [15]. Even if it fails to account for the numerical value this model has the
merit to confirm the validity of the relation between the QCD response and the one to
the nuclear scalar field in a situation where confinement enters and to illustrate the role
played by confinement, with the introduction of a positive component in the susceptibility
which opposes an increase of the nuclear scalar field.

We can now turn to the quantitative applications of the relation (37). Since both the
total (non-pionic) nucleonic susceptibility and scalar charge enter in the expression of the
(chiral invariant) scalar-nucleon scattering amplitude, it is legitimate to use for these two
quantities the phenomenological values obtained from the lattice data. We can therefore
infer the medium effects in the propagation of the s field from the lattice results of eq.
(25) and (26) as :

−D−1

s = m2

σ +
g2

S

2 Q2

S

χN
S ρS = m2

σ + g2

S

2 a4

(a2 + 2 a4 m2
π)2

ρS (50)
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where in the first equation only non-pionic quantities enter, hence the introduction of
the parameters a2 and a4 which have been defined in the lattice expansion. Numerically,
at normal nuclear density, and for a value of the coupling constant gS = 10, the second
term on the rhs of the second equation takes the value 0.06 GeV 2 (a similar value is found
for the other set of parameters a2 and a4). For a sigma mass of mσ = 0.75 GeV , this
represents at ρ0 only a 6% decrease of the mass, much less that the chiral dropping alone
and in much better agreement with the nuclear phenomenology [3, 15].

5 Conclusion

In summary we have studied in this work the interplay between the nuclear responses to
probes which couple either to nucleon or to quark scalar density fluctuations. We have
found that the two responses are closely related, being proportional to each other. The
scaling coefficient involves the scalar charge of the nucleon QS. Our result holds not
only at the level of the nuclear excitations but also at the nucleonic ones such that both
responses incorporate the individual nucleon contributions to the nuclear response. Thus
the scalar response of a nucleon to the nuclear scalar field is proportional to its QCD
scalar susceptibility. We have confirmed this relation in the Shen and Toki model of the
nucleon where its mass arises in part from the coupling to the condensate and in part
from confinement.

One application of this relation concerns a free nucleon. The σN amplitude from the
tadpole term has a counterpart in the QCD scalar susceptibility in the form of a negative
contribution beyond the pionic one. We have tested its existence in the lattice results on
the nucleon mass evolution with the pion mass, as analyzed in ref. [9]. The expansion of
ref. [9] is indeed compatible with a negative component for the non-pionic susceptibility.
However the magnitude does not fit, indicating the existence of other components, with
a cancelling effect. In fact a similar cancellation has to occur in the saturation problem
of nuclear matter. The 3σ coupling is responsible for a lowering of the σ mass, which
produces too much attraction at large densities and destroys saturation. It has to be
compensated. In the optics of the present work, the two effects are related. The full σN
scattering amplitude being proportional to the susceptibility, a cancelling effect in the
amplitude is automatically reflected in the susceptibility. Confinement may be invoked
as a natural mechanism for cancellation.

The existence of a link between QCD and nuclear physics quantities allows the deriva-
tion of parameters of the σω model from the lattice results on the nucleon mass dependence
on the quark mass. This procedure leads to a mean scalar field |s̄(ρ0)| ≃ 20 MeV . In
our approach the nucleon response to this field can also be derived from the lattice data.
Altogether this method leads to a satisfactory description of the nuclear matter saturation
properties.
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