Skip to Main content Skip to Navigation
Preprints, Working Papers, ...

A simple model for the quenching of pairing correlations effects in rigidly deformed rotational bands

Abstract : Using Chandrasekhar's S-type coupling between rotational and intrinsic vortical modes one may simply reproduce the HFB dynamical properties of rotating nuclei within Routhian HF calculations free of pairing correlations yet constrained on the relevant so-called Kelvin circulation operator. From the analogy between magnetic and rotating systems, one derives a model for the quenching of pairing correlations with rotation, introducing a critical angular velocity -- analogous to the critical field in supraconductors -- above which pairing vanishes. Taking stock of this usual model, it is then shown that the characteristic behavior of the vortical mode angular velocity as a function of the global rotation angular velocity can be modelised by a simple two parameter formula, both parameters being completely determined from properties of the band-head (zero-spin) HFB solution. From calculation in five nuclei, the validity of this modelised Routhian approach is assessed. It is clearly shown to be very good in cases where the evolution of rotational properties is only governed by the coupling between the global rotation and the pairing-induced intrinsic vortical currents. It therefore provides a sound ground base for evaluating the importance of coupling of rotation with other modes (shape distortions, quasiparticle degrees of freedom).
Document type :
Preprints, Working Papers, ...
Complete list of metadata

http://hal.in2p3.fr/in2p3-00084917
Contributor : Sylvie Flores Connect in order to contact the contributor
Submitted on : Monday, July 10, 2006 - 11:01:52 PM
Last modification on : Monday, March 28, 2022 - 10:44:05 AM

Links full text

Identifiers

Collections

Citation

P. Quentin, H. Laftchiev, D. Samsoen, I. N. Mikhailov. A simple model for the quenching of pairing correlations effects in rigidly deformed rotational bands. 2003. ⟨in2p3-00084917⟩

Share

Metrics

Record views

7