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Non-Markovian diffusion over a saddle with a

Generalized Langevin equation

David Boilley∗ and Yoann Lallouet
GANIL, BP 55076, Caen cedex 5, France

July 4, 2006

Abstract

The diffusion over a simple parabolic barrier is exactly solved
with a non-Markovian Generalized Langevin Equation. For a short
relaxation time, the problem is shown to be similar to a Markovian
one, with a smaller effective friction. But for longer relaxation time,
the average trajectory starts to oscillate and the system can have
a very fast first passage over the barrier. For very long relaxation
times, the solution tends to a zero-friction limit.

PACS: 02.50.EY, 05.40.-a, 25.70.Jj

1 Introduction

The phenomenological Langevin equation [1], or its Klein-Kramers equiv-
alent [2, 3], has been applied to most fields of physics when thermal fluc-
tuations are to be taken into account. But such an equation is Markovian,
which is, in many cases, a very poor approximation. When it is derived
from a microscopic model [4, 5, 6, 7, 8, 9, 10], one gets a so-called Gener-
alized Langevin equation (GLE) for which the dissipation and fluctuation
parts have a memory. When the relaxation time of the heat bath is very
short compared to the brownian particle’s characteristic time scale, one
recovers the phenomenological Langevin equation.

The diffusion over a potential barrier is a typical case for which the
fluctuations play a crucial role. Since the pioneering work of Kramers [3],
who derived an analytical expression for the stationary escape rate from
a metastable potential well, this problematic has been widely used and
studied. For a review, see Ref. [11]. In particular, the influence of the
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memory on this rate was already studied in Refs. [12, 13]. The reverse
problem of the entrance into the well after passing over a potential barrier
has been studied more recently [14, 15] and applied to fusion reactions with
heavy ions [16, 17]. Assuming a parabolic potential barrier, the diffusion
problem was solved exactly, but with a Markovian approximation. The
aim of this paper is to study the influence of the memory kernel on the
diffusion over a parabolic barrier with a Generalized Langevin Equation
(GLE), generalizing what was done in Refs. [14, 15].

A GLE can be obtained from simple statistical models. It is the case
for the motion of a particle coupled to a heat bath as in Refs. [4, 5],
assuming a hamiltonian of the form H = H0 + Hb + Hint, with the heat
bath, Hb(s1, ..., sn), made of an assembly of coupled harmonic oscillators
and the brownian particle, H0 = mq̇2/2 + V (q), coupled harmonically to
the bath and by an arbritary force to a fixed center,

Hint = −Σicisiq(t). (1)

Here the ci’s are coupling constants. Assuming, that the degrees of freedom
of the heat bath have a smaller inertia than the brownian particle, they
can be averaged out, leading to a GLE. The time scale of the memory
kernel represents the relaxation time of the heat bath. Such results were
extended to non-linear systems in Refs. [6, 7]. For a review of these so-
called adiabatic elimination procedures, see Ref. [8].

The Generalized Langevin Equation obtained from these models reads,
for small amplitude motion,

q̈ +
∫ t

t0

dt′ Γ(t− t′)q̇(t′) +
1
m

∂V

∂q
= ρ(t), (2)

where the memory kernel reads,

Γ(t) =
β

τ
exp(− t

τ
). (3)

In these equations, β is the reduced friction coefficient, m the mass, τ the
relaxation time and ρ(t) comes from a Gaussian random force characterized
by

〈ρ(t)〉 = 0 and 〈ρ(t)ρ(t′)〉 =
T

m
[Γ(|t− t′|)− Γ(t + t′ − 2t0)], (4)

in agreement with the dissipation-fluctuation theorem [18]. In this paper,
we set the Boltzmann constant kB = 1 and 〈.〉 denotes an average over a
statistical ensemble. More complicated kernels and especially anomalous
diffusion studied in Refs [19, 20], will be ruled out of this paper.
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In some problems, it is assumed that the brownian particle has initially
thermalized some of its degrees of freedom and the fluctuation-dissipation
theorem is simply reduced to

〈ρ(t)ρ(t′)〉 =
T

m
Γ(|t− t′|). (5)

In this paper, we will also consider this case. When the arbitrary initial
time t0 → −∞, the physics differs from this hypothesis by an additionnal
force that is always acting [18]:

m

∫ t0

−∞
dt′ Γ(t− t′)q̇(t′). (6)

When the relaxation time of the heat bath, τ , is small compared to
the characteristic time of the macroscopic variable, q(t), which could be
mathematically written as τ → 0, we can do a two-step approximation:

1.
∫ t

t0
dt′ Γ(t− t′)q̇(t′) ' q̇(t)

∫ t

t0
dt′ Γ(t− t′);

2. t−t0
τ � 1, which is a kind of Stoßzahlanzatz (molecular chaos assump-

tion) equivalent to t0 → −∞; in this limit
∫ t

t0
dt′Γ(t− t′) → β.

Then the Langevin equation becomes Markovian:

q̈ + βq̇ +
1
m

∂V

∂q
= rm(t), (7)

where the random force satisfies

〈rm(t)〉 = 0 and 〈rm(t)rm(t′)〉 =
2Tβ

m
δ(t− t′), (8)

in agreement with the dissipation-fluctuation theorem.
In nuclear physics, specific derivations of the GLE for heavy ion reac-

tions were done, starting from a semi-classical transport equation with a
collision term [9, 10, 21]. Then, the relaxation time comes from the lin-
earization of the Boltzmann collision integral and connects the distorsion
of the Fermi surface with the real space motion. The equation of motion is
generally non-linear, but we will restrict our study to small amplitude mo-
tions with a linear equation, in order to focus our attention on the effects of
the memory kernel. For resonant oscillations of the nuclei, the relaxation
time has the same order of magnitude as the inverse of the frequency and
thus, the memory kernel must be taken into account to reproduce exper-
imental observations [10, 21]. But for a slow nuclear fission reaction, the
Markovian approximation appears to be sufficient [22]. In the case of fusion
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reactions, the time scale is short enough to consider that the memory kernel
might be relevant. Finally, a recent calculation shows up that the descent
time from saddle to scission point is also sensitive to the relaxation time
[21]. In this paper, we will consider these two problems as an illustration.

In all these microscopic models, β and τ are correlated, but we will
treat them as independent in order to study their influence.

2 Diffusion over a parabolic barrier

The problem of the diffusion over a 1-D parabolic potential barrier, V (q) =
−mω2q2/2, with a sharp given initial condition, q0 < 0 and p0 = q̇0 > 0,
can be solved exactly, following what was done in Ref. [14] or using Laplace
transforms, which is faster.

To evaluate the probability of passing over the potential barrier, we
only need the reduced distribution obtained when all degrees of freedom
but q are integrated out. It is also a Gaussian distribution,

w(t, q; q0, p0) =
1√

2πσq(t)
exp

(
− (q − 〈q(t)〉)2

2σ2
q (t)

)
, (9)

where σ2
q (t) is the variance and 〈q(t)〉 the average trajectory. Then, the

probability is,

P (t; q0, p0) =
∫ +∞

0

w(t, q; q0, p0)dq (10)

=
1
2
erfc

(
− 〈q(t)〉√

2σq(t)

)
. (11)

The problem can be extended to more general cases with a Gaussian dis-
tribution of the initial conditions and also be solved exactly, see Ref. [15].

2.1 The Markovian approximation

In this subsection, we will briefly recall the main results of the Markovian
diffusion in order to have a better understanding of the influence of the
memory kernel. Details can be found in Ref. [14].

The Markovian Langevin equation, written in the following way,

d

dt

[
q
p

]
= D.

[
q
p

]
+
[

0
rm(t)

]
, (12)

where the drift matrix reads

D =
[

0 1
ω2 −β

]
, (13)
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can be formally integrated into[
q
p

]
= e(t−t0)D.

[
q0

p0

]
+
∫ t

t0

dt e(t−t′)D.

[
0

r(t′)

]
, (14)

where the first term of the r.h.s. corresponds to the average trajectory and
the second one to the diffusion.

The eigenvalues of the drift matrix, D, satisfying the following equation,

λ2 + βλ− ω2 = (λ− a)(λ− b) = 0, (15)

are {
a = 1

2 (
√

β2 + 4ω2 − β)
b = − 1

2 (
√

β2 + 4ω2 + β).
(16)

Note that a > 0 and b < 0. The average trajectory and the variance can
easily be obtained, see Refs. [14, 23, 24, 25], and the probability of passing
over the barrier is then known at any time. See Eq. (11).

For large times, at � 1, the probability to pass over the barrier con-
verges to a finite value,

P (t →∞; q0, p0) →
1
2
erfc

[
ω√
βa

(√
B

T
− a

ω

√
K

T

)]
, (17)

where K = mp2
0/2 denotes the initial kinetic energy and B = mω2q2

0/2
the barrier height that has to be overcome by the particle. In the case of
Kramers’ problem, the temperature is solely responsible for the diffusion,
because of the initial equilibrium in the metastable well. Here, there is an
interplay between dynamics and diffusion: the initial kinetic energy should
also be taken into account. In contrast to Kramers’ problem, the reverse
process is transitive, the flux over the barrier being appreciable only during
a given period [15].

To have half of the particles to pass over the barrier, the initial kinetic
energy should be,

K =
(ω

a

)2

B = Beff . (18)

In the weak friction limit, the previous condition becomes K ' B, which
is a trivial result. Taking usual values of nuclear physics, h̄ω = 1MeV
and β = 5× 1021s−1, we have β

2ω = 1.5 and therefore the effective barrier
Beff ' 10B. This shows the important role played by dissipation.

As it is already discussed in Ref. [15], there are then three regimes, de-
pending on the initial kinetic energy. When K < Beff , the average trajec-
tory never reaches the top of the barrier located at q = 0. The probability
of passing over the barrier is mainly due to the thermal diffusion, which is
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a slow process. When K > Beff , the average trajectory crosses the barrier
and the thermal diffusion does not play an important role anymore. In the
critical case where K = Beff , the average trajectory converges to the top
of the barrier and the probability tends to 1/2, whatever the temperature.

2.2 Non-Markovian diffusion

2.2.1 Exact solution

In the non-Markovian case we can show that the GLE, Eq. (2), can be
transformed into a system of three first-order differential equations,

q̇ = p
ṗ = ω2q + f

ḟ = 1
τ [−βp− f ] + r(t),

(19)

where the random term

r(t) =
1
τ

√
2βT

m
ν(t), (20)

depends on a Gaussian random number, ν(t), characterized by 〈ν(t)〉 = 0
and 〈ν(t)ν(t′)〉 = δ(t− t′). In Eq. (19), f is a new variable which has the
dimension of an acceleration. To get back to the original equation, Eq.(2),
one should set its initial value to zero, f0 = 0. Such a choice leads to a
correlation function of the noise that depends on the initial time t0, see
Eq. (4). When f0 is prepared at its Gaussian equilibrium, 〈f2

0 〉 = βT
mτ ,

with a zero mean value [8], it leads to the reduced correlation function of
the noise, Eq. (5). In such a case, one should also average the final result
on the initial distribution. In order to study both of these cases, we will
explicitly keep f0 in the following derivation.

The eigenvalues of the drift matrix can be obtained by taking the
Laplace transform of the GLE and satisfy the characteristic equation

λ3 +
1
τ

λ2 + (
β

τ
− ω2)λ− ω2

τ
= 0, (21)

which can be rewritten in the following form,

(λ− a)(λ− b) = τλ(ω − λ)(ω + λ). (22)

Here the l.h.s. corresponds to the Markovian case with the eigenvalues a
and b given in Eq. (16), and the r.h.s. to the contribution of the memory
kernel. When τ → 0, one recovers the Markovian problem. The eigen-
values, λ1, λ2, and λ3, can be explicitly written, but the formulas are
somewhat heavy to handle, see Appendix A. Plotting on the same graph
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the l.h.s. and the r.h.s. of Eq. (22), it easy to see that one of the eigenval-
ues, λ1, is always positive. More precisely, a < λ1 < ω. The other two are
either negative or complex conjugates. In the latter case, their real part,
(λ2 + λ3)/2 = −(λ1 + 1

τ )/2, is always negative. It can be checked that

lim
τ→0

λ1 = a, lim
τ→0

λ2 = b and lim
τ→0

λ3 = −∞, (23)

which means that we recover the Markovian case when τ → 0.
The fact that two eigenvalues become complex when τ ∈]τ1, τ2[, is due

to the memory kernel. The critical values of the relaxation time, for which
the nature of the eigenvalues changes, are approximatively evaluated in
Appendix A:

ωτ1 ' 1
8

2ω

β

1 +
(

β
2ω

)2

5
4 +

(
β
2ω

)2 , (24)

ωτ2 '
√

3 + 3
β

2ω
. (25)

For example, with β
2ω = 1.5, we have ωτ1 ' 0.08 and ωτ2 ' 6.23.

Once the eigenvalues are known, the Laplace transform of q(t) can be
calculated from Eqs. (19),

q̃(s) =
(s2τ + s + β)q0 + (1 + sτ)p0 + τf0 + τ r̃(s)

τ(s− λ1)(s− λ2)(s− λ3)
, (26)

where r̃(s) is the Laplace transform of r(t). Taking the inverse Laplace
transform, one gets the average trajectory

〈q(t)〉 = u(t)q0 + v(t)p0 + w(t)f0, (27)

with

u(t) =
3∑

i=1

λ2
i τ + λi + β

τ
∏

n 6=i(λi − λn)
eλit, (28)

v(t) =
3∑

i=1

1 + τλi

τ
∏

n 6=i(λi − λn)
eλit, (29)

w(t) =
3∑

i=1

1∏
n 6=i(λi − λn)

eλit, (30)

and the variance

σ2
q (t) =

2Tβ

mτ2

3∑
i=1

3∑
j=1

e(λi+λj)t − 1
(λi + λj)

∏
n 6=i(λi − λn)

∏
m6=j(λj − λm)

, (31)
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that enter the Gaussian distribution. Then the probability of passing over
the barrier is explicitely known at any time. See Eq. (11).

When there is a Gaussian dispersion of the initial conditions,

W0(q̄0, σq0 ; p̄0, σp0 ; f̄0, σf0) =
1

(2π)3/2σq0σp0σf0

× exp
[
− (q0 − q̄0)2

2σ2
q0

]
exp

[
− (p0 − p̄0)2

2σ2
p0

]
exp

[
− (f0 − f̄0)2

2σ2
f0

]
, (32)

one can easily evaluate the overpassing probability as in Ref. [15],

P̄ (t; q̄0, σq0 , p̄0, σp0 , f̄0, σf0) =
∫ +∞

−∞
dq0

∫ +∞

−∞
dp0

∫ +∞

−∞
df0 P (t; q0, p0, f0)

× W0(q̄0, σq0 ; p̄0, σp0 ; f̄0, σf0)

=
1
2
erfc

(
− 〈q̄(t)〉√

2σ′(t)

)
, (33)

where 〈q(t)〉 is the same as in Eq. (27) provided that q0, p0 and f0 are
replaced by q̄0, p̄0 and f̄0 respectively. The variance is larger,

σ′2(t) = σ2(t) + u2(t)σ2
q0

+ v2(t)σ2
p0

+ w2(t)σ2
f0

, (34)

with u(t), v(t) and w(t) given in Eqs. (28,29,30).

2.2.2 Asymptotic behavior

For long times, only the eλ1t terms remain and the overpassing probability
converges to a finite value. For the first case corresponding to f0 = 0,

P (t → +∞; q0, p0, f0 = 0) =
1
2
erfc

[
(1 + λ1τ)ω√

λ1β

(√
B

T
− λ1

ω

√
K

T

)]
,

(35)
where K and B are respectively the initial kinetic energy and barrier height
previously defined in section 2.1. With an initial distribution in f0,

P̄ (t → +∞; q0, p0, σf0 =

√
Tβ

mτ
) =

1
2
erfc

[
ω

√
1 + λ1τ

βλ1

(√
B

T
− λ1

ω

√
K

T

)]
.

(36)
These two expressions only differ by the factor

√
1 + λ1τ inside the com-

plementary error function. Therefore, for short relaxation times τ , the
probabilities are very close as it can be seen in Fig. 1. For long relaxation
times, this is not true anymore.
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Figure 1: Asymptotic overpassing probabilities as a function of the initial
kinetic energy. The dashed line corresponds to a sharp initial condition
f0 = 0 and the solid one to an initial distribution for f0 (see text). Here,
β
2ω = 1.5 and T

B = 0.2. For the left figure, ωτ = 1 and for the right one,
ωτ = 10.

In both cases, to have half of the particles to pass over the barrier, the
initial kinetic energy should be,

K =
(

ω

λ1

)2

B = Beff . (37)

This result is very similar to the Markovian case, see Eq. (18). Since
a < λ1 < ω, the effective barrier that has to be overcome by the particle
is smaller when the relaxation time is larger. The memory kernel tends
to decrease the influence of the dissipative process, leading to a reduced
effective friction, see Fig. 2 left. For a given relaxation time, such an effect
is larger when β

2ω ' 1, as shown in Fig. 2 right.

Figure 2: Left: Beff

B as a function of ωτ , for several values of β
2ω ; β

2ω = 1
(long dashed line), β

2ω = 2 (short dashed line), β
2ω = 3 (solid line).

Right : Beff

Beff (τ=0) is represented as a function of β
2ω for several values of

ωτ (ωτ = 0.07: short dashed line, ωτ = 0.4: long dashed line and ωτ = 1:
solid line).

The average trajectory has to overcome the effective barrier, Beff which
takes into account the viscosity and the memory effects. For example, with
usual values of nuclear physics, h̄ω = 1MeV , h̄/τ ' 1MeV and ωτ ' 1, one
gets Beff ' 6.5B which is about 40% smaller than in the Markovian case.
This shows the important role played by memory effects on the effective
barrier.

As we already discussed in the Markovian case, there are still three dif-
ferent regimes, depending on the initial kinetic energy: a thermal diffusion
regime when K < Beff and a dynamical crossing when K > Beff . In the
critical case, K = Beff , the average trajectory also converges to the top of
the barrier.

Having an initial distribution of f0 means a larger variance, as shown in
Eq. (34), and then a smoother evolution of the probability with the initial
kinetic energy. When K < Beff , a larger variance means more particules
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passing over the barrier. But, when K > Beff , a larger variance means
more particles staying on the initial side of the barrier and then a smaller
probability. Such a behavior is more obvious for large τ , see Fig. 1.

2.2.3 Dynamics

The transient regime to the asymptotic behavior depends on the nature
of the eigenvalues. For a small relaxation time, τ < τ1, the eigenvalues
are real and the situation is very similar to the Markovian case with a
slightly reduced friction. When the relaxation time is very large, τ > τ2 the
eigenvalues are also real and the situation is again similar to the Markovian
case with almost no friction.

The transient regime changes drastically when the relaxation time τ ∈
]τ1, τ2[. Two eigenvalues are then complex and the average trajectory, the
over-passing probability and the current at the top of the barrier, j = dP (t)

dt ,
start to oscillate. See Fig. 3. This would never happen in a Markovian
approach.

Figure 3: Average trajectory, over-passing probability and current at the
top of the barrier as a function of time for the four regimes, K = 0, (first
column) K = Beff/2 (second column), K = Beff (third column) and
K = 2Beff (last column). For each graphic, three different curves are
plotted : the Markovian case (ωτ = 0 : solid line), the non-oscillating case
(ωτ = 0.07 : short dashed line) and the oscillating case (ωτ = 0.4 : long
dashed line). These are non-dimensional plots. Here, β

2ω = 1.5, T = B
2 ,

f0 = 0 and σf0 = 0. Note that each column has a different time scale.

In Fig. 3, the oscillating behavior of the dashed curves is damped
because these are average observables. For a single trajectory, the situation
is drastically different because the random force excites the oscillations that
remain at all times.

In nuclear physics, the oscillations of the average trajectory corresponds
to the giant quadrupole resonance [10, 26].

2.2.4 Dispersion of the initial conditions

Up to now, the problem was considered with sharp initial conditions in q
and p, and we may wonder whether a dispersion of the initial conditions
might affect the results. We will consider the analytically tractable prob-
lem of a Gaussian distribution, as in Eq. (32). As previously, one takes
q̄0 < 0 and p̄0 = ˙̄q0 > 0. As for the variances, it is more complicated be-
cause the system is not necessarily equilibrated. It depends on the physical
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situation. In the case of heavy ion fusion, dissipation already occurs in the
approaching phase, generating a dispersion of the initial conditions, q0 and
p0 [16, 27]. Later, once the nuclei have collided, dissipation is known to be
very strong and the internal degrees of freedom are supposed to be quickly
equilibrated at temperature T . Not the collective ones, of course. They
are coupled to the intrinsic ones through the dissipation-fluctuation terms.
As a consequence, in such a situation, a dispersion of the initial conditions
should be considered with a different width caracterized by T0:

σ2
p0

=
T0

m
and σ2

f0
=

βT0

mτ
. (38)

Since there is no potential pocket in this problem, it is not possible to link
σ2

q0
with the initial temperature. We will therefore drop it in Fig. 4.
The result is given in Eq. (33). It should be noticed that the average

trajectory is not affected by the dispersion of the initial conditions and that
the oscillations that might occur are not washed out. In Fig. 4, we plot
again the over-passing probability as a function of time with various initial
widths. Naturally, the diffusion process starts earlier when the initial width
is larger. Then, when K < Beff , i.e. when the process is dominated by
the diffusion, the overpassing probability is also always larger. But when
K ≥ Beff , the transition is smoother and more particles come backward
once the average trajectory has passed the saddle. The probability 1/2
corresponds to 〈q(t)〉 = 0 and then does not depend on the variance.

Figure 4: Oscillating over-passing probability (ωτ = 0.4) as a function of
time for three regimes: K̄ = B̄eff/2 (first column), K̄ = B̄eff (second
column) and K̄ = 2B̄eff (third column). For each graphic three differents
curves are plotted: T0 = T (long dashed line), T0 = T/2 (short dashed
line) and T0 = 0 (solid line). Here, β

2ω = 1.5, T = B
2 and σq0 = 0.

For large times, (λ1t � 1), the probability to pass over the barrier
converges to a finite value,

P̄ (t →∞; q̄0, σq0 , p̄0, T0, f̄0 = 0, T0) →
1
2
erfc

[√
B̄

T ′
− λ1

ω

√
K̄

T ′

]
, (39)

with

T ′ =
βλ1T

ω2(1 + λ1τ)2
+ mω2σ2

q0
+
(

λ1

ω

)2(
1 +

βτ

(1 + λ1τ)2

)
T0. (40)

11



Here, K̄ = mp̄2
0/2 denotes the average initial kinetic energy, B̄ = mω2q̄2

0/2
the average barrier height and T ′ a generalised dynamical temperature,
including memory effects.

The condition to have half of the particles passing over the barrier is
not changed

K̄c =
(

ω

λ1

)2

B̄ = B̄eff . (41)

When K̄ � B̄eff , and moreover if T ′ < B̄/10, the over-passing proba-
bility is extremely low and it can be expanded

P̄ (t → +∞; q̄0, σq0 , p̄0, T0) '
√

T ′

4πB̄
exp

(
− B̄

T ′

)
. (42)

The result has an Arrhenius type factor [28] similar to the one obtained in
the Markovian case and could be called “inverse Kramers formula”, as in
Ref. [15].

3 Application to heavy ion reactions

Reaction dynamics of heavy ion collisions is often studied in terms of
a few relevant variables which evolve according to a Langevin equation
or its Klein-Kramers equivalent [29]. Most of the studies are based on
phenomenological equations, which are Markovian, although microscopic
derivations lead to memory dependent equations that have seldomly been
used in this domain.

3.1 Fusion probability

For the synthesis of super-heavy elements by the means of heavy-ion fusion
at near-barrier energies, the formation probabilities are so low that some
simple toy-models are also developed to appreciate the results based on
huge numerical statistics. In the fusion problem, one has to consider the
potential pocket that is beyond the barrier. If we call PCN the probability
to have a compound nucleus, i.e. that the particle is inside the pocket
limited by the saddle, one has,

dPCN

dt
= −ΓKPCN + j(t), (43)

where ΓK is Kramers’ escape rate and j the entrance current over the bar-
rier evaluated with the parabolic approximation. Assuming that PCN (0) =
0, this equation can be easily integrated into,

PCN (t) =
∫ t

0

e−ΓK(t−t′)j(t′)dt′ ' e−ΓKt

∫ t

0

j(t′)dt′ = e−ΓKt P (t), (44)
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because 1/ΓK is very large compared to the time range where the fusion
current j(t) is not vanishing. See Fig. 3. Then, the passing probability
over a simple parabolic barrier P (t) is a useful tool to study the entrance
behavior into a potential pocket and has been widely used [14, 15, 16, 17,
19, 30, 31, 32, 33].

As we already mentioned, in the nuclear context, the memory effects
are linked to the relaxation of the Fermi sphere and τ comes from the
linearization of the collision integral of the Boltzmann equation. Using the
result of Ref. [34] for a quadrupolar distorsion and usual values of nuclear
physics, one gets that h̄/τ ' 1MeV , which is similar to h̄ω ' 1MeV .
Memory effects should then play a crucial role in the fusion probability.

In Ref. [19], the passage over the parabolic barrier is studied with non-
Ohmic noise. The dynamics also exhibit some oscillations that are not
explained. From this study, it appears that they are rather linked to the
non-Markovian character of the noise.

When we consider the case of the quantum diffusion over the barrier
[30, 31, 32, 33], the noise is always non-Markovian, but the memory ker-
nel is more complicated than the one that is used here. The comparison
can only be qualitative. The correlation time evaluated in [33] is about
h̄/τ ' 10MeV , the other parameters being unchanged. This is beyond the
oscillation interval. The average trajectory should then have a Markovian
behavior with a vanishing friction. Noticing that

lim
τ→∞

λ1 = ω, lim
τ→∞

λ2 = 0 and lim
τ→∞

λ3 = −ω, (45)

it appears that the diffusion tends to a zero-friction limit, as in the quantum
cases for low temperatures [31].

3.2 Saddle to scission time

The reverse process, starting from the top of the barrier down to a so-called
scission point is also of interest in nuclear physics. In Ref. [21], the authors
claim that, due to the memory effects, the saddle-to-scission time grows by
a factor of about 3. Such a result could appear in contradiction with the
fact that the memory kernel tends to decrease the friction coefficient.

For a mestable state in a thermal environment, the saddle-to-scission
time is defined as the average time to reach the scission point beyond the
barrier minus the average time to reach the saddle point [35]. Therefore,
we cannot calculate directly this time with our model, but we can guess
how it is affected by the memory effects.

For another set of initial conditions q0 = 0 and p0 > 0, we plot in Fig.
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5 the average trajectory as a function of time,

〈q(t)〉
qs

= v(t)ω
√

K

Bs
. (46)

Here Bs = mω2q2
s/2 is the barrier from the top of the saddle (q = 0) to qs,

the scission point, and v(t) is given in Eq. (29). As expected, for a given
friction parameter the non-Markovian dynamics leads to a weaker viscosity
and then to a shorter saddle-to-scission time.

But, when the friction parameter is derived from a microscopic model
[9, 10, 21], it depends then on the relaxation time chosen for the memory
kernel. In Refs. [9, 10], β is proportional to this relaxation time. Then, a
larger relaxation time means a larger viscosity with a net effect of a longer
saddle-to-scission time as shown in Fig. 5.

Figure 5: <q(t)>
qs

is represented as a function of ωτ with K = B/10. Three
regimes are plotted: β

2ω = 1.5, ωτ = 0 (solid line), β
2ω = 1.5, ωτ = 1 (short

dashed line) and β
2ω = 3, ωτ = 2 (long dashed line).

4 Conclusion

In this paper, we have studied the role played by the memory kernel on the
diffusion over a parabolic barrier. It leads to a reduction of the dissipation.
The larger the relaxation time the larger the effect. For a specific range of
relaxation times, some oscillations appear that change drastically the fate
of the average trajectory and the time dependent over-passing probability.
In the context of heavy ion reactions, these oscillations are at the frequency
of the giant quadrupole resonance and are rarely taken into account in the
dynamics.

These properties also interest the quantum diffusion over a parabolic
barrier which has some applications in matter sciences [36, 37]. These mod-
els, together with the models developed in the nuclear context [30, 31, 32,
33] have a non-Markovian noise. Some features observed in the quantum
approaches could be explained classically by the non-Markovian properties
of the noise.
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A Eigenvalues

The eigenvalues of the non-Markovian problem can be calculated from Eq.
(21), see e.g. [38], and one gets

λ1 = − 1
3τ

− 1
3τ

−1 + 3βτ − 3(ωτ)2[
−1 + 9

2βτ + 9(ωτ)2 +
[
(−1 + 9

2βτ + 9(ωτ)2)2 + (−1 + 3βτ − 3(ωτ)2)3
]1/2

]1/3

+
1
3τ

[
−1 +

9
2
βτ + 9(ωτ)2 +

[
(−1 +

9
2
βτ + 9(ωτ)2)2 + (−1 + 3βτ − 3(ωτ)2)3

]1/2
]1/3

,

λ2 = −1
2
(
1
τ

+ λ1) + iv,

λ3 = −1
2
(
1
τ

+ λ1)− iv, (47)

with i2 = −1 and v2 = 1
τ2 (− 1

4 (1 + λ1τ)2 + ω2

λ1
τ).

If λ2 and λ3 are real, v2 < 0 therefore v = − i
τ

√
1
4 (1 + λ1τ)2 − ω2

λ1
τ .

On the contrary, if λ2 and λ3 are complex conjugate, v2 > 0 and v =
1
τ

√
− 1

4 (1 + λ1τ)2 + ω2

λ1
τ .

The first eigenvalue λ1 is always real and positive. The nature of λ2

and λ3 can be determined with the help of the generalized discriminant ∆
given by

∆τ4 =
1
τ2

[
4
(
−1

3
+ βτ − (ωτ)2

)3

+ 3
(

2
9
− βτ − 2(ωτ)2

)2
]

. (48)

If ∆ > 0 λ2 and λ3 are complex conjugate. If ∆ < 0 they are real.
For very small τ , ∆ < 0, up to τ1 that can be approximately be esti-

mated by expending ∆τ4 to the first order in ωτ . The result is given in
Eq. (24).

The determination of τ2, when λ2 and λ3 become again real, is more
tricky. Graphically, it could be seen that it approximately corresponds to
the negative minimum of the r.h.s. of Eq. (22) being tangent to the l.h.s..
This is how we got ωτ2 in Eq. (25).
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