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Abstract 

In the field of the immobilization of tri- and tetravalent minor actinides, apatites and 

especially britholites were already proposed as good candidates. In order to simulate 

tetravalent minor actinides, the incorporation of thorium, through dry chemical routes, was 

studied in britholite samples of general formula Ca9Nd1-xThx(PO4)5-x(SiO4)1+xF2. The study 

showed that the incorporation of thorium was effective whatever the thorium reagent used or 

the grinding conditions considered. Nevertheless, it appeared necessary to use mechanical 

grinding (30 Hz, 15 minutes) before heating treatment (T = 1400°C, 6 hours) to improve the 

reactivity of powders and the sample homogeneity. In these conditions, the incorporation of 

thorium in the britholite structure occurred above 1100°C. The heating treatment at 1400°C 

led to single phase and homogeneous compounds. This work also underlined the necessity to 

prefer the coupled substitution (Nd3+, PO4
3-) ⇔ (Th4+, SiO4

4-) instead of (Nd3+, F-) ⇔ (Th4+, 

O2-), in order to prepare pure and single phase samples in all the range of composition 

examined.  
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1. Introduction 

In the frame of long-term storage of nuclear wastes, several ceramic matrices were 

already proposed as good candidates for the immobilization of minor actinides such as Np, 

Am or Cm [1]. Zirconolite Ca1-xNdxZrTi2-xAl xO7, solid solutions monazite/brabantite 

4
IVIII

2-1
POAnCaLn

xxx
, Thorium Phosphate-Diphosphate (β-TPD), associated solid solutions 

β- 7244
IV

-4 OP)(POAnTh xx  and β-TPD/monazite composites and finally apatites (with general 

formula Me10(XO4)6Y2 with Me = Ca2+, Ln3+, An3+ or An4+, X = Si or P and Y = F or O) were 

considered for the simultaneous incorporation of An(III) and An(IV) [2]. Indeed, in natural 

apatites, particularly those coming from the Oklo fossil nuclear reactors (Gabon), the structure 

was able to immobilize over the lanthanides, a large variety of cationic substitution (as 

example by U, Th, Pu) [3,4]. Silicate based apatite samples (britholites) of In Ouzzal site 

(Algeria) contain up to 50 wt.% of trivalent lanthanides (La, Ce, Nd) and tetravalent actinides 

(U, Th) [5]. Moreover, the apatitic structure seems to be able to anneal the defects generated 

by self-irradiation, even at low temperature [6]. But it has been also proved that the 

metamictization (destruction of the crystal lattice consequently to radiation damage) depends 

on the chemical composition of the apatites [6]. 

The formation of Ce(III)-bearing apatite was observed in natural media. So, the 

preparation of full-silicated apatites bearing large amounts of Ce (up to 10 atoms per unit 

formula in the calcium sites) has been reported [7-11]. The chemical compositions were 

determined from the substitution of Ce3+ in the Ca2+ site. More recently, in some natural 

apatites, the cerium was found to be tetravalent depending on the oxidizing conditions 

considered but not homogeneously distributed in the structure [12,13]. Although a lot of 

natural Th-bearing apatites were considered for the Th-U thermochronology [14-16], no study 
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was published on synthetic Th-apatites except the preparation of the full-silicated apatite 

Ca6Th4(SiO4)6O2 reported by Engel [17]. 

Only few papers were dedicated to the incorporation of uranium in britholites. Among 

them, that published by El Ouerzenfi et al. reported the incorporation of uranium at a limit of 

0.48 atom per formula in britholite with general composition Ca5La5(PO4)3(SiO4)3O2 [18]. 

The authors showed that for upper values the excess of uranium was present in the oxide form 

UO2 and/or U3O8. Vance et al. reported the preparation of full-silicated apatite with formula 

Ca2Gd7U0.33(SiO4)6O2 after calcination under inert or in reducing atmosphere [19]. 

The incorporation of Pu(IV) was recently obtained in a full-silicated apatite, leading to 

the formation of Ca2.1Gd7.3Pu0.6(SiO4)6O2. Under reducing conditions, Pu(III) was 

incorporated in Ca2Pu8(SiO4)6O2 [19]. 

In the aim to study Cm-doped nuclear waste glasses, crystallites of  

Ca3(Gd,Cm)7(SiO4)5(PO4)O2 were systematically prepared [20]. An extensive study of single 

phase 244Cm-doped Ca2Nd8(SiO4)6O2 was carried out to understand the self-radiation damage 

from α-decay [21,22]. In these samples, 2.3 mol.% of Cm2O3 (containing 62 % of 244Cm, T1/2 

= 19 years) was substituted to Nd2O3. No information was given on the structural insertion of 

actinides issued from the α-decay of 244Cm. These radiation damages induced the 

transformation of the crystallized apatite to amorphous solid. But, geochemical observations 

on natural apatites showed that silicated apatites are always found in the metamict state 

although the mono-silicated fluorapatite is always found to be crystallized despite they 

received thermal events and severe irradiation environment [6]. For this reason, the mono-

silicated britholite Ca9Nd(PO4)5(SiO4)F2 (in which Nd is used as a surrogate of trivalent 

actinides) was first considered in the aim to immobilize actinides [23]. 

On the basis of the natural analogues and external irradiation studies [24] which clearly 

identified the mono-silicated fluorapatite as a potential host matrix and on the basis of the 
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synthesis [23,25] and the sintering [26,27] studies developed on Nd-bearing britholites, the 

incorporation of tetravalent actinides (Th, U) in britholites was examined. 

The limit of incorporation was first fixed to 10 wt.%. Neodymium was used as a 

surrogate of trivalent actinide. In order to perform the incorporation of tetravalent actinides, 

neodymium was partly substituted by thorium in the aim to prepare 

Ca9Nd0.5Th0.5(PO4)4.5(SiO4)1.5F2 samples. So, (Nd,Th)-britholites were synthesized 

considering several ways, all based on dry chemical processes. We mainly focused our study 

on the use of thorium oxide as a Th-reagent in order to evidence the successive steps of the 

incorporation of this actinide in the britholite structure. Finally, the influence of the nature of 

the coupled substitution considered on the thorium incorporation in the britholite structure 

was also examined. 

In order to simplify the notation, britholites loaded with neodymium (e.g. 

Ca9Nd(PO4)5(SiO4)F2) will be noted Nd-britholites in the text and that containing 

simultaneously neodymium and thorium (e.g. Ca9Nd1-xThx(PO4)5-x(SiO4)1+xF2) will be called 

(Nd,Th)-britholite and the expected x value will always be given. 

 

2. Experimental 

2.1. Preparation of the samples 

All the chemicals used for the synthesis of (Nd,Th)-britholites (Nd2O3; CaF2; ThO2; 

Ca(HPO4)⋅2H2O; SiO2; CaCO3) were of proanalysis grade. The final samples were prepared 

through dry chemical methods involving an initial mixture of Nd2O3 / CaF2 / ThO2 / Ca2P2O7 / 

SiO2 / CaCO3 according to the global reaction: 

↑+→+++++ 221.544.540.50.59222372232 CO
2
7  F)(SiO)(POThNdCa  ThO

2
1  SiO

2
3  CaF  CaCO

2
7  OPCa

4
9  ONd

4
1  (1) 
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Prior to perform the synthesis, neodymium oxide was first heated at 1000°C for 3 hours 

to eliminate the presence of neodymium hydroxide. Calcium diphosphate was prepared from 

Ca(HPO4)⋅2H2O by heating at 1000°C for 3 hours.  

The capability of thorium to be incorporated in the britholite structure was evaluated 

through the use of several initial reagents. There were mainly oxide (ThO2 prepared by 

calcination of Th(C2O4)2⋅nH2O at 1000°C for 10 hours) or phosphates (e.g. α-ThP2O7 

prepared from a mixture of Th(NO3)4 and H3PO4 concentrated solutions in a mole ratio Th/P 

equal to 1/2, evaporated then finally calcinated at 800°C for 12 hours; or β-TPD obtained 

from a low temperature crystallized precursor Th2(PO4)2(HPO4)⋅H2O (called TPHPH) by 

firing at 1000°C for 12 hours). As an example, the reaction considered from α-ThP2O7 can be 

written: 

↑+→+++++ 221.544.540.50.597222372232 CO
2
9

  F)(SiO)(POThNdCa  OThP
2
1  SiO

2
3  CaF  CaCO

2
9  OPCa

4
7  ONd

4
1 (2) 

Two kinds of syntheses were performed. The first one involved a manual grinding of 

the powders in acetone for 15 minutes. It was followed by the evaporation of the solvent then 

finally by a heating treatment at 1400°C for 6 hours under inert atmosphere (argon). 

The second way was significantly different from the previous one since it involved 

mechanical grinding steps of the powders in a zirconia crusher for 15 minutes. The frequency 

of the oscillations of the crusher (RETSCH MM200) varied from 0 to 30 Hz, depending on 

the grinding efficiency expected. The ground mixture was thus heated at 1400°C for 6 hours 

under inert atmosphere (argon) in a PYROX HM 40 furnace with heating and cooling rates of 

5°C⋅min-1. 

In order to avoid any reaction between silica and alumina which was systematically 

observed in a first series of experiments, all the powders were heated in platinum or in 

alumina lined by platinum boats. 
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The use of manual grinding always led to less homogeneous samples compared to 

mechanical grinding of the initial reagents. For this reason, the major part of the samples was 

prepared through the second way of synthesis. 

 

2.2. Characterization of the powders 

The specific area of the powders was measured with a Coulter SA 3100 apparatus using 

the B.E.T. method (nitrogen adsorption at 77 K). TGA and DTA experiments were performed 

with a Setaram TG 92-16 apparatus under inert atmosphere (argon) with a heating rate of 

10°C⋅min-1. The X-Ray powder Diffraction (XRD) patterns were collected with a Bruker 

AXS D8 Advance diffractometer system using Cu Kα rays (λ = 1.5418 Å). 

The Electron Probe MicroAnalyses (EPMA) were carried out using a Cameca SX 50 or 

a Cameca SX 100 apparatus with an acceleration voltage of 15 kV and a current intensity of 

10 nA. Several calibration standards were used. They were mainly topaze Al2SiO4F2 (Kα ray 

of fluorine), orthose KAlSi3O8 (Kα ray of silicon), monazite LaPO4 (Kα ray of phosphorus), 

wollastonite Ca2SiO4 (Kα ray of calcium), monazite NdPO4 (Lα ray of neodymium) and thoria 

ThO2 (Mα ray of thorium). SEM micrographs were carried out with a Hitachi S2500 scanning 

electron microscope. 

 

3. Results and discussion  

3.1. Optimization of the conditions of synthesis 

The preparation of (Nd,Th)-britholite samples with x = 0.5 was optimized by the study 

of two important parameters: the thorium reagent used, on the one hand, and the grinding 

conditions, on the other hand. The purpose was to improve the final homogeneity of the 
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samples in respect to the Nd-britholite way of synthesis based on a manual grinding in 

acetone described in the literature [23]. 

 

3.1.1. Influence of the thorium reagent 

Several thorium reagents were considered: ThO2, α-ThP2O7 and β-TPD. All the samples 

were prepared thanks to a manual grinding before heating treatment. After each heating steps, 

XRD patterns were recorded. They only revealed the presence of the XRD lines of the 

britholite structure [25] excluding the formation of secondary phases. However, in the first 

unsuccessful syntheses where thorium was not incorporated in the britholite structure, it was 

still present as ThO2 (JCPDS file n° 42-1462) consecutively to the decomposition of thorium 

phosphates at this heating temperature. 

EPMA experiments carried out on the three compounds (Table 1) confirmed the results 

observed from XRD. Indeed, the major part of thorium was incorporated in the britholite 

structure for the three reagents considered. A more accurate analysis of the results revealed 

that the samples were heterogeneous since two average compositions of britholite were 

evidenced. The composition of the first one (major phase) was consistent with that expected 

while the second one (minor phase) was enriched in thorium, neodymium and silicon 

(particularly when using ThO2 and α-ThP2O7 as initial Th-reagents). Both phases kept the 

mole ratio (Si+P)/(Ca+Nd+Th) near to 0.6 necessary to ensure the charge compensation in the 

britholite structure. 

The incorporation rate of thorium was mainly dependent on the specific surface area of 

the initial Th-reagent used (thus on its reactivity). Indeed, ThO2 which exhibited the highest 

specific area (S.A. = 8 m2⋅g-1 instead of S.A. = 4-5 m2⋅g-1 for β-TPD and S.A. = 3.3 m2⋅g-1 for 

α-ThP2O7) lead to more homogeneous samples consequently to a better incorporation of 
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thorium. Thorium dioxide with these physico-chemical properties was thus preferred as the 

initial Th-reagent to follow the study. 

 

3.1.2. Influence of the grinding step 

In order to increase the reactivity of the initial precursors and to improve the 

homogeneity of the final compounds prepared, several conditions of mechanical grinding 

were studied (especially to improve the grinding efficiency). Three samples were prepared 

using different sets of grinding conditions: manual grinding in acetone for 15 minutes or two 

mechanical grindings (15 Hz or 30 Hz for 15 minutes).  

The influence of the grinding step on the specific surface area is really obvious. Indeed, 

while the mixture of the reagents (before grinding) presented a specific surface area of 0.8 ± 

0.1 m2⋅g-1, this one was increased up to 1.3 ± 0.1 m2⋅g-1 after a manual grinding in acetone for 

15 minutes then multiplied by a factor of 3 to 7 when making mechanical grinding steps (S.A. 

= 2.5 ± 0.1 m2⋅g-1 after grinding at 15 Hz; S.A. = 4.0 ± 0.1 m2⋅g-1 after grinding at 30 Hz). 

The XRD patterns of these three (Nd,Th)-britholite samples (with x = 0.5) matched well 

with that recorded for Nd-britholite. The EPMA experiments (Table 1) showed that the 

incorporation of thorium reached 10 wt.%. They also revealed that the solid prepared using 

manual grinding exhibited two britholite compositions: 

Ca9.13Nd0.45Th0.50(PO4)4.62(SiO4)1.38F1.48O0.37 (which corresponds to the expected composition) 

and Th- and Nd-enriched phase of formula Ca8.30Nd0.89Th0.91(PO4)3.58(SiO4)2.44F1.19O0.58. 

When using a mechanical grinding (either for 15 minutes at 15 Hz or at 30 Hz), the samples 

appeared more homogeneous with an average composition of 

Ca8.96Nd0.51Th0.52(PO4)4.48(SiO4)1.49F0.11O1.02 near to that expected [28]. This important 

improvement of the samples homogeneity was clearly attributed to the mechanical grinding 

step. It was confirmed by the comparison of the micrographies of manually and mechanically 
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ground (30 Hz) samples (Fig. 1a and Fig. 1b, respectively) which revealed some 

heterogeneities on the first sample. On the basis of these results, all the samples were prepared 

from ThO2 and thanks to mechanical grinding (15 minutes, 30 Hz). 

 

3.2. Incorporation of thorium versus the heating temperature 

Considering the conditions of synthesis previously defined (mechanical-grinding at 30 

Hz for 15 minutes followed by calcination at 1400°C for 6 hours), it was interesting to 

understand the successive chemical steps leading to the incorporation of thorium in the 

britholite structure. So, this incorporation was followed versus the heating temperature for 

Ca9Nd0.5Th0.5(PO4)4.5(SiO4)1.5F2 prepared from a mixture of powdered CaF2, Nd2O3, SiO2, 

CaCO3, Ca2P2O7 and ThO2. Prior to make the heat treatment, the mixture was mechanically 

ground for 15 minutes at a frequency of 30 Hz in order to get the optimal reactivity of the 

powder then heated between 800°C and 1400°C for 6 hours.  

 

3.2.1. TGA – DTA experiments 

TGA and DTA experiments were performed using CaO instead of CaCO3 because of 

the high contribution of CO2 release coming from the decomposition of CaCO3 in the global 

weight losses. The following reaction was thus considered for TGA-DTA:  

21.544.540.50.5922272232 F)(SiO)(POThNdCa  ThO
2
1  SiO

2
3  CaF  CaO

2
7  OPCa

4
9  ONd

4
1 →+++++   (2) 

The TGA curve (Fig. 2) exhibited a weight loss of 2 % between 350°C and 450°C 

associated to an endothermic peak on the DTA curve, corresponding to the loss of water 

molecules associated to the decomposition of calcium oxide hydroxide CaO1-x(OH)2x into 

anhydrous calcium oxide CaO (which exhibits an important hygroscopic character). 
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For higher temperatures, only a small weight loss (0.5 %) was observed between 

1070°C and 1200°C. It was associated to a broad endothermic peak (Fig. 2), which was 

attributed to the formation of britholite. These results appeared in good agreement with that 

reported by Audubert et al. who reported the formation of Nd-britholite samples at 1200°C 

[29]. 

 

3.2.2. XRD analysis 

In order to follow the formation of britholites, XRD patterns were recorded on samples 

heated at several temperatures ranging from 500°C to 1400°C with a step of 100°C (Fig. 3). 

The associated refined unit cell parameters are reported in Table 2 and their variations versus 

the heating temperature are summarized in Fig. 4. Correlatively, the chemical composition 

was followed by EPMA versus the heating temperature (Fig. 5). 

From these results, several steps were evidenced in the thorium incorporation. Apatite 

structure was first formed between 800°C and 900°C while neither thorium nor silicates 

participate to the "elaboration" of the structure as indicated from the refined unit cell 

parameters and from the EPMA experiments. These analyses confirmed the formation of 

fluorapatite Ca10(PO4)6F2 containing only small amounts of silicate, neodymium and thorium 

at these temperatures. Both neodymium and thorium were still present in the oxide form in the 

mixture, as shown from the XRD patterns while SiO2, which remained amorphous, was 

detected with difficulty. 

For T ≥ 1000°C, Nd2O3 was not still detected in the XRD patterns while the intensity of 

the XRD lines associated to ThO2 strongly decreased, showing the progressive incorporation 

of thorium in the britholite structure between 1000°C and 1100°C (Fig. 3). Simultaneously, 

the weight percent of thorium, neodymium and silicon significantly increased in the britholite 

structure as shown by the refined unit cell parameters (Fig. 4) and the elementary weight 
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loadings (Fig. 5). Above 1100°C, the refined unit cell parameters tend to that of the final 

(Nd,Th)-britholite sample (with x = 0.5) (Fig. 4) while the elementary weight percent are in 

good agreement with that expected (Fig. 5). However, the EPMA analyses revealed that the 

compounds were more homogeneous when increasing the temperature up to 1400°C. 

Previous studies carried out on Nd-britholites, prepared from a mixture of reagents 

manually ground, showed that the incorporation of neodymium occurred above 1200°C. 

Audubert explained the formation of Nd-britholite by the formation of intermediates such as 

Ca2SiO4, NdPO4, and Ca3(PO4)2 which reacted with CaF2 to form the fluorapatite below 

1000°C. The Nd-incorporation was only efficient above 1200°C where both neodymium and 

silicate ions participated to the formation of the britholite structure [29].  

 

3.3. Preparation of Ca9Nd1-xThx(PO4)5-x(SiO4)1+xF2 solid solutions 

On the basis of the previous results, the incorporation of thorium in britholite was 

studied through the elaboration of Ca9Nd1-xThx(PO4)5-x(SiO4)1+xF2 and  

Ca9Nd1-xThx(PO4)5(SiO4)F2-xOx samples for 0 ≤ x ≤ 1, considering the coupled substitutions 

(Nd3+, PO4
3-) ⇔ (Th4+, SiO4

4-) and (Nd3+, F-) ⇔ (Th4+, O2-), respectively. 

 

3.3.1. Synthesis of Ca9Nd1-xThx(PO4)5-x(SiO4)1+xF2 solid solution 

The XRD patterns of Ca9Nd1-xThx(PO4)5-x(SiO4)1+xF2 are reported on Fig. 6 for several x 

values ranging from 0 to 20 wt.%(Th) in the solid. All these patterns appeared in good 

agreement with that reported for Ca9Nd(PO4)5(SiO4)F2 (JCPDS file n° 87-0480 and [25]). No 

diffraction line, which could indicate the presence of ThO2 or Nd2O3, was observed. From 

these results, the reaction between all the initial reagents appeared to be complete. In order to 

complete the characterization, the samples were also examined by µ-Raman and infra-red 



13 

absorption spectroscopies: all the vibrations band observed can be assigned to the vibrations 

of PO4 or SiO4 characteristic in apatitic structure (Fig. 7). 

The samples were characterized by EPMA (Table 5) which revealed homogeneous and 

single phase samples for all the compositions examined (up to 20 wt.%). For each sample, the 

x values determined from the amounts of Nd, Th, Si and P in the samples considering the 

formula Ca9Nd1-xThx(PO4)5-x(SiO4)1+xF2 led to the average value x  (Table 5) and appeared in 

good agreement with the expected values. 

The corresponding refined unit cell parameters are gathered in Table 3 while their 

variations versus the average substitution rate are reported in Fig. 8 and in Table 4. 

For the (Nd3+, PO4
3-) ⇔ (Th4+, SiO4

4-) coupled substitution, the unit cell parameters 

increase linearly when substituting neodymium by thorium in the samples. Nevertheless, this 

small increase (∆V/V ~ 0.7 % from x = 0 to x = 1) could result from two antagonistic 

variations: replacement of neodymium (VIIrNd = 1.05 Å [30]) by the smaller thorium (VIIrTh = 

1.00 Å [30]) and of phosphate group by larger silicate entities [28]. Indeed, the average 

lengths of P-O and Si-O bonds in XO4 groups are usually equal to 1.53 ± 0.03 Å for P-O bond 

and 1.61 ± 0.02 Å for Si-O bond, leading to larger tetrahedra for silicate groups [31]. 

The observations of the samples by SEM (Fig. 9) showed that for low values of 

substitution rates (x = 0 or x = 0.25), i.e. for low silicated britholites, the samples presented 

essentially grains with rounded form. For higher x values, powders exhibited needle-like 

grains of 5-10 µm in length and 1-2 µm in width. The same observations were already done 

by Boyer et al. for lanthanum bearing britholites when studying full phosphated or full 

silicated apatites [32]. 
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3.3.2. Influence of nature of the substitution (Nd3+, F-) ⇔ (Th4+, O2-) vs. (Nd3+, PO4
3-) ⇔ 

(Th4+, SiO4
4-). 

In order to evidence the importance of the coupled substitution, a second kind of 

substitution was examined. It consisted in the substitution (Nd3+, F-) ⇔ (Th4+, O2-), leading to 

the formation of Ca9Nd1-xThx(PO4)5(SiO4)1F2-xOx samples (0 ≤ x ≤ 1) in which the mole ratio 

PO4/SiO4 was kept constant and equal to 5/1 (the charge compensation being ensured by 

oxide anion in these samples). All the other parameters (Th-reagent, grinding step …) 

previously optimized were kept constant. 

The XRD patterns revealed that the samples were polyphased, composed by britholite, 

thorium dioxide, and huttonite ThSiO4 for the highest x values. 

The EPMA results (Table 6 and Fig. 10) revealed a good accuracy between the 

experimental weight percents compared to that expected for x ≤ 0.5. On the contrary, thorium 

was partly incorporated in the britholite structure for x ≥ 0.66 (pointed by the dash box in Fig. 

10) leading to polyphase samples. The weight percent of thorium loaded in these samples 

reached only 9 to 11 wt.% instead of 13 to 19 wt.% expected. Simultaneously, the mole ratio 

PO4/SiO4, which remained close to 5/1 confirmed that the stoichiometry of britholites was 

kept. 

The variations of the refined unit cell parameters (Table 7 and Fig. 11) remained very 

low for x ≤ 0.5 and did not vary significantly for x ≥ 0.66. Since the mole ratio PO4/SiO4 

remained constant, this variation was only correlated to the replacement of neodymium by 

thorium in the structure. 

The comparison of both kinds of substitutions studied ((Nd3+, PO4
3-) ⇔ (Th4+, SiO4

4-) 

and (Nd3+, F-) ⇔ (Th4+, O2-)) clearly evidenced the benefit of using the first one (Fig. 12) 

which led to accurate and expected results for all the chemical compositions considered. On 
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the contrary, for the second way, only samples with x ≤ 0.5 were obtained as pure and single 

phase compounds indicating a limit of loading of around 10-11 wt.%. 

 

4. Conclusion 

From the results obtained, the incorporation of thorium in the britholite structure 

occurred above 1100°C but it was necessary to fire the initial mixture at 1400°C for 6 hours to 

prepare single phase and homogeneous compounds. The incorporation of thorium in the 

britholite structure was observed for all the thorium reagents used (oxide or phosphate). The 

use of a mechanical grinding step (15 minutes, 30 Hz) allowed to increase the specific surface 

area (thus the reactivity) of the mixture and led to a better homogeneity of the final samples. 

The optimized conditions were fixed to a mechanical grinding (15 minutes, 30 Hz) followed 

by a heat treatment at 1400°C for 6 hours. 

The incorporation of thorium in the structure is probably possible due to the small 

differences of ionic radius between calcium, neodymium and thorium (VIIrCa2+ = 1.06 Å, 

VIIrNd
3+ = 1.05 Å and VIIrTh4+ = 1.00 Å [30]). In order to ensure the quantitative incorporation 

of thorium, it appeared necessary to consider the coupled substitution (Nd3+, PO4
3-) ⇔ (Th4+, 

SiO4
4-) instead of the substitution (Nd3+, F-) ⇔ (Th4+, O2-). Indeed, by the first way, 

homogeneous and single phase solid solutions were prepared from Ca9Nd(PO4)5(SiO4)F2 to 

Ca9Th(PO4)4(SiO4)2F2 leading to the whole neodymium substitution. The associated small 

increase of the unit cell parameters results from the simultaneous replacement of phosphate 

groups by bigger silicate. It was accompanied by a significant change in the grain 

morphology. 

These results contrast with that obtained when using the coupled substitution  

(Nd3+, F-) ⇔ (Th4+, O2-) which confirmed a limitation of about 10 wt.% in the 



16 

Th-substitution, the samples being polyphase for higher weight loading. These problems were 

associated to some problems occurring in the charge balance because of the partial 

substitution of fluoride ions by oxide ions. 

On the basis of the results reported in this paper, the sintering of (Nd,Th)-britholite 

(with x = 0.5) was undertaken in order to perform the densification of the samples. These 

sintered dense pellets were leached to study the chemical durability of this potential waste 

storage matrix [33]. Furthermore, it also appeared interesting to study the incorporation of a 

smaller tetravalent actinide which could exhibit several oxidation states during the synthesis, 

the sintering process and the leaching tests. This naturally led us to study the incorporation of 

uranium in the britholite structure. 
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Table 1.  Results of EPMA analysis of (Nd,Th)-britholites (with x = 0.5) for several 
Th-reagents and several grinding conditions for ThO2. 

Reagent  β-TPD α-ThP2O7 ThO2 

  
manual 
grinding 

manual grinding manual grinding 
vibro-grinding 
15 Hz-15min 

vibro-grinding 
30 Hz-15min 

 Calc.  Phase I (maj) Phase II (min) Phase I (maj) Phase II (min)   

wt. %(O) * 33.2 34.6 ± 0.4 34.5 ± 0.1 32.3 ± 2.0 33.9 ± 0.4 31.2 ± 0.8 34.4 ± 0.3 35.1 ± 0.3 

wt. %(F) 3.3 2.4 ± 0.2 2.3 ± 0.1 2.0 ± 0.5 2.5 ± 0.1 1.8 ± 0.1 1.8 ± 0.2 0.2 ± 0.1 

wt. %(Si) 3.7 3.6 ± 0.3 3.5 ± 0.2 4.6 ± 1.5 3.4 ± 0.2 5.4 ± 0.2 3.9 ± 0.2 3.7 ± 0.1 

wt. %(P) 12.1 12.7 ± 0.4 12.8 ± 0.1 10.3 ± 2.8 12.5 ± 0.3 8.8 ± 0.8 11.6 ± 0.3 12.2 ± 0.1 

wt. %(Ca) 31.3 32.1 ± 0.5 32.0 ± 0.6 28.2 ± 3.6 31.9 ± 0.7 26.2 ± 0.6 31.4 ± 0.5 31.6 ± 0.3 

wt. %(Nd) 6.3 5.4 ± 0.4 6.3 ± 0.2 11.7 ± 6.3 5.7 ± 0.6 10.1 ± 0.8 6.3 ± 0.3 6.5 ± 0.3 

wt. %(Th) 10.1 9.2 ± 0.9 8.6 ± 1.0 10.9 ± 0.9 10.1 ± 0.8 16.5 ± 2.1 10.5 ± 0.9 10.6 ± 0.4 

Mole ratio         

Si/P 0.333 0.316 ± 0.035 0.305 ± 0.016 0.53 ± 0.01 0.30 ± 0.03 0.68 ± 0.09 0.37 ± 0.02 0.33 ± 0.01 

Nd/Ca 0.056 0.047 ± 0.004 0.054 ± 0.003 0.12 ± 0.01 0.050 ± 0.006 0.107 ± 0.006 0.056 ± 0.004 0.057 ± 0.003 

Th/Ca 0.056 0.050 ± 0.006 0.046 ± 0.006 0.07 ± 0.02 0.055 ± 0.005 0.109 ± 0.016 0.058 ± 0.008 0.058 ± 0.002 

(Si+P)/ 
(Ca+Nd+Th) 

0.600 0.61 ± 0.01 0.61 ± 0.01 0.59 ± 0.01 0.596 ± 0.006 0.60 ± 0.02 0.586 ± 0.004 0.597 ± 0.007 

Expected formula Proposed formulae 

Ca 9 9.08 ± 0.14 9.09 ± 0.17 8.6 ± 0.5 9.13 ± 0.20 8.30 ± 0.19 9.06 ± 0.14 8.96 ± 0.09 

Nd 0.5 0.42 ± 0.03 0.49 ± 0.02 1.0 ± 0.2 0.45 ± 0.05 0.89 ± 0.07 0.51 ± 0.01 0.51 ± 0.02 

Th 0.5 0.45 ± 0.04 0.42 ± 0.05 0.6 ± 0.5 0.50 ± 0.04 0.91 ± 0.12 0.52 ± 0.04 0.52 ± 0.02 

PO4 4.5 4.64 ± 0.15 4.68 ± 0.04 4.0 ± 0.5 4.62 ± 0.11 3.58 ± 0.33 4.32 ± 0.11 4.48 ± 0.04 

SiO4 1.5 1.46 ± 0.12 1.43 ± 0.08 2.0 ± 0.4 1.38 ± 0.08 2.44 ± 0.09 1.59 ± 0.08 1.49 ± 0.04 

F 2 1.41 ± 0.12 1.35 ± 0.06 1.3 ± 0.3 1.48 ± 0.06 1.19 ± 0.07 1.10 ± 0.12 0.11 ± 0.06 

O 0 0.03 ± 0.01 0.11 ± 0.01 0.65 ± 0.03 0.37 ± 0.01 0.61 ± 0.01 0.66 ± 0.01 1.01 ± 0.01 

* obtained by difference 

 



20 

Table 2.  Variation of the refined unit cell parameters of the apatite/britholite phase versus 
the heating temperature (expected formula: Ca9Nd0.5Th0.5(PO4)4.5(SiO4)1.5F2). 

T (°C) a (Å) c (Å) V (Å3) F20 

800 9.367 (2) 6.884 (1) 523.1 (4) 84 (0.0059; 40) 

900 9.371 (2) 6.886 (1) 523.6 (4) 83 (0.006; 40) 

1000 9.382 (2) 6.896 (1) 525.6 (4) 42 (0.012; 40) 

1100 9.418 (2) 6.908 (1) 530.6 (4) 86 (0.0065; 36) 

1200 9.411 (2) 6.904 (1) 529.6 (4) 184 (0.0035; 31) 

1300 9.411 (2) 6.910 (1) 529.9 (4) 170 (0.0038; 31) 

1400 9.408 (2) 6.910 (1) 529.7 (4) 184 (0.0035; 31) 

Nd-britholite [25] 9.3938 (8) 6.9013 (5) 527.40 (7) --- 
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Table 3.  Refined unit cell parameters and volume of Ca9Nd1-xThx(PO4)5-x(SiO4)1+xF2 
britholites (0 ≤ x  ≤ 1). 

x  a (Å) c (Å) V (Å3) F20 

0 9.401 (2) 6.902 (1) 528.3 (4) 195 (0.0033; 31) 

0.15 9.406 (2) 6.907 (1) 529.2 (4) 165 (0.0039; 31) 

0.21 9.405 (2) 6.905 (1) 529.0 (4) 179 (0.0036; 31) 

0.50 9.408 (2) 6.910 (1) 529.7 (4) 184 (0.0035; 31) 

0.52 9.412 (2) 6.911 (1) 530.2 (4) 150 (0.0043;31) 

0.55 9.411 (2) 6.912 (1) 530.1 (4) 129 (0.0050; 31) 

0.71 9.415 (2) 6.911 (1) 530.5 (4) 191 (0.0034; 31) 

0.83 9.417 (2) 6.915 (1) 531.1 (4) 157 (0.0041; 31) 

1.01 9.421 (2) 6.919 (1) 531.8 (4) 115 (0.0056; 31) 
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Table 4.  Variation of the refined unit cell parameters and volume of  
Ca9Nd1-xThx(PO4)5-x(SiO4)1+xF2 (0 ≤ x  ≤ 1) versus the thorium substitution rate. 

Unit cell parameter Variation 

a (Å) 9.4012 (6) + 0.019 (1) x  

c (Å) 6.9025 (7) + 0.015 (1) x  

V (Å3) 528.3 (1) + 3.3 (2) x  
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Table 5.  Results of EPMA analysis of Ca9Nd1-xThx(PO4)5-x(SiO4)1+xF2 britholites  
for 0 ≤ x ≤ 1. 

 x = 0 x = 0.15 x = 0.25 x = 0.5 

 Calc. Exp. Calc. Exp. Calc. Exp. Calc. Exp. 

wt.%(O) * 34.6 34.8 ± 0.3 34.2 33.7 ± 0.4 33.9 34.4 ± 0.3 33.2 35.1 ± 0.3 

wt.%(F) 3.4 3.3 ± 0.1 3.4 2.9 ± 0.3 3.4 2.8 ± 0.3 3.3 0.2 ± 0.1 

wt.%(Si) 2.5 2.6 ± 0.1 2.9 2.9 ± 0.1 3.1 3.1 ± 0.2 3.7 3.7 ± 0.1 

wt.%(P) 14.0 14.1 ± 0.1 13.4 13.4 ± 0.2 13.0 13.3 ± 0.3 12.1 12.2 ± 0.1 

wt.%(Ca) 32.5 31.9 ± 0.1 32.1 33.7 ± 0.3 31.9 31.2 ± 0.6 31.3 31.6 ± 0.3 

wt.%(Nd) 13.0 13.3 ± 0.4 10.9 10.5 ± 0.5 9.6 10.0 ± 0.5 6.3 6.5 ± 0.3 

wt.%(Th) --- --- 3.1 3.0 ± 0.2 5.1 5.2 ± 0.5 10.1 10.6 ± 0.4 

xNd  0.03 ± 0.01  0.18 ± 0.01  0.22 ± 0.01  0.53 ± 0.02 

xTh  0  0.15 ± 0.01  0.26 ± 0.03  0.51 ± 0.02 

4POx   0.00 ± 0.01  0.12 ± 0.01  0.14 ± 0.01  0.49 ± 0.01 

4SiOx   0.02 ± 0.01  0.15 ± 0.01  0.22 ± 0.01  0.55 ± 0.01 

x   0.01 ± 0.01  0.15 ± 0.01  0.21 ± 0.01  0.52 ± 0.01 

 
 x = 0.75 x = 0.85 x = 1 

 Calc. Exp. Calc. Exp. Calc. Exp. 

wt.%(O) * 32.7 33.2 ± 0.4 32.5 32.6 ± 0.2 32.1 32.4 ± 0.2 

wt.%(F) 3.3 2.3 ± 0.2 3.2 2.1 ± 0.1 3.8 1.8 ± 0.1 

wt.%(Si) 4.2 4.0 ± 0.1 4.4 4.3 ± 0.1 4.7 4.8 ± 0.2 

wt.%(P) 11.2 11.4 ± 0.2 10.9 11.0 ± 0.1 10.4 10.3 ± 0.2 

wt.%(Ca) 30.7 30.4 ± 0.4 30.5 31.8 ± 0.2 30.2 31.2 ± 0.4 

wt.%(Nd) 3.1 3.4 ± 0.2 1.8 1.8 ± 0.1 --- --- 

wt.%(Th) 14.8 15.3 ± 0.4 16.7 16.4 ± 0.4 19.4 19.4 ± 0.7 

xNd  0.72 ± 0.04  0.85 ± 0.05  1 

xTh  0.78 ± 0.02  0.84 ± 0.02  1.01 ± 0.04 

4POx   0.65 ± 0.01  0.79 ± 0.01  0.99 ± 0.02 

4SiOx   0.70 ± 0.02  0.84 ± 0.02  1.05 ± 0.05 

x   0.71 ± 0.02  0.83 ± 0.02  1.01 ± 0.03 

* obtained by difference 
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Table 6.  Results of EPMA analysis for Ca9Nd1-xThx(PO4)5(SiO4)1F2-xOx samples 
(0.25 ≤ x ≤ 1). 

 x = 0.25 x = 0.5 x = 0.66 x = 0.75 x = 1 

 Calc. Exp.  Calc. Exp. Calc. Exp.  Calc. Exp.  Calc. Exp.  

wt. %(O) * 34.3 34.7 ± 0.4 34.0 34.4 ± 0.2 33.8 33.4 ± 0.2 33.8 34.4 ± 0.3 33.5 36.0 ± 0.2 

wt. %(F) 2.9 2.7 ± 0.2 2.5 2.3 ± 0.1 2.2 2.8 ± 0.1 2.0 2.4 ± 0.2 1.6 2.8 ± 0.1 

wt. %(Si) 2.5 2.4 ± 0.1 2.4 2.5 ± 0.1 2.4 2.4 ± 0.1 2.4 2.4 ± 0.2 2.3 1.7 ± 0.2 

wt. %(P) 13.7 13.9 ± 0.4 13.4 13.6 ± 0.2 13.3 13.6 ± 0.2 13.2 13.8 ± 0.3 13.0 15.6 ± 0.3 

wt. %(Ca) 31.9 31.9 ± 0.4 31.3 31.2 ± 0.4 30.9 33.4 ± 0.3 30.7 32.2 ± 0.4 30.2 35.0 ± 0.5 

wt. %(Nd) 9.6 9.5 ± 0.5 6.3 6.5 ± 0.3 4.2 4.2 ± 0.3 3.1 3.5 ± 0.2 --- --- 

wt. %(Th) 5.1 4.9 ± 0.4 10.1 9.5 ± 0.5 13.1 10.3 ± 1.0 14.8 11.3 ± 0.6 19.4 8.9 ± 0.9 

Mole ratio           

Si/P 0.200 0.191 ± 0.015 0.200 0.200 ± 0.012 0.200 0.191 ± 0.014 0.200 0.192 ± 0.019 0.200 0.119 ± 0.013 

Nd/Ca 0.083 0.083 ± 0.006 0.056 0.058 ± 0.003 0.038 0.035 ± 0.003 0.028 0.030 ± 0.002 --- --- 

Th/Ca 0.028 0.026 ± 0.002 0.056 0.053 ± 0.003 0.073 0.053 ± 0.006 0.083 0.061 ± 0.004 0.111 0.044 ± 0.005 

(Si+P)/ 
(Ca+Nd+Th) 

0.600 0.606 ± 0.008 0.600 0.610 ± 0.007 0.600 0.575 ± 0.006 0.600 0.605 ± 0.012 0.600 0.617 ± 0.015 

xNd 0.25 ± 0.01 0.48 ± 0.02 0.68 ± 0.02 0.73 ± 0.04 1 

xTh 0.24 ± 0.02 0.47 ± 0.02 0.49 ± 0.05 0.55 ± 0.03 0.41 ± 0.04 

xF 0.41 ± 0.12 0.60 ± 0.06 0.38 ± 0.06 0.55 ± 0.12 0.39 ± 0.06 

xO 0.23 ± 0.01 0.37 ± 0.01 0.75 ± 0.01 0.38 ± 0.01 0.00 ± 0.01 

Proposed 
formulae 

     

Ca 8.97 ± 0.11 8.94 ± 0.11 9.19 ± 0.08 9.13 ± 0.11 9.46 ± 0.14 

Nd 0.75 ± 0.04 0.52 ± 0.02 0.32 ± 0.02 0.27 ± 0.02 --- 

Th 0.24 ± 0.02 0.47 ± 0.02 0.49 ± 0.05 0.55 ± 0.03 0.41 ± 0.04 

PO4 5.07 ± 0.15 5.05 ± 0.07 4.83 ± 0.07 5.06 ± 0.11 5.45 ± 0.10 

SiO4 0.97 ± 0.04 1.01 ± 0.04 0.92 ± 0.04 0.97 ± 0.08 0.65 ± 0.08 

F 1.59 ± 0.12 1.40 ± 0.06 1.62 ± 0.06 1.45 ± 0.12 1.61 ± 0.06 

O 0.23 ± 0.01 0.37 ± 0.01 0.75  ± 0.01 0.38 ± 0.01 0.00  ± 0.01 

* obtained by difference 
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Table 7.  Refined unit cell parameters and volume of Ca9Nd1-xThx(PO4)5(SiO4)1F2-xOx 
britholites (0 ≤ x ≤ 1). 

xexpected a (Å) c (Å) V (Å3) F20 

0 9.401 (2) 6.902 (1) 528.2 (4) 195 (0.0033; 31) 

0.25 9.401 (2) 6.902 (1) 528.3 (4) 174 (0.0037; 31) 

0.50 9.401 (2) 6.900 (1) 528.1 (4) 174 (0.0037; 31) 

0.66 9.403 (2) 6.903 (1) 528.5 (4) 258 (0.0025; 31) 

0.75 9.397 (2) 6.895 (1) 527.3 (4) 174 (0.0037; 31) 

1.00 9.392 (2) 6.893 (1) 526.5 (4) 111 (0.0045; 40) 

 

 



26 

Figure captions 

Figure 1.  Micrographies in BSE mode of (Nd,Th)-britholites (with x = 0.5): manual 
grinding (a), mechanical grinding at 30 Hz (15 min.) (b). Black zones are pores in 
the samples. 

Figure 2. TGA and DTA experiments performed on reagents mechanically grounded for the 
synthesis of (Nd,Th)- britholites (x = 0.5). 

Figure 3. Variation of the XRD patterns of (Nd,Th)-britholites (x = 0.5) versus the heating 
temperature. Main diffraction lines of ThO2 (*), Nd2O3 (#) and Ca2P2O7 (o). 

Figure 4. Variations of refined unit cell parameters a (a) and c (b) for the apatite or 
britholite major phase versus the heat temperature (t = 6 hours). The hatched 
zones correspond to the possible variations of the parameters of each phases 
reported in the literature or in this study. 

Figure 5. Variations of the ratio between the experimental weight percent (deduced from 
EPMA experiments) over that expected for each elements of (Nd,Th)-britholite 
(with x = 0.5): F, P, Ca (a) and Si, Nd, Th (b) versus the heating temperature (t = 6 
hours). 

Figure 6. XRD patterns of Ca9Nd1-xThx(PO4)5-x(SiO4)1+xF2 britholites for several x values. 

Figure 7. µ-Raman (left) and infra-red (right) spectra of Nd-britholite (a) and 
(Nd,Th)-britholite (x = 0.5) (b). 

Figure 8. Variations of refined unit cell parameters a and c (a) and volume (b) of  
Ca9Nd1-xThx(PO4)5-x(SiO4)1+xF2 britholites versus the average substitution rate x . 

Figure 9. SEM observations of Ca9Nd1-xThx(PO4)5-x(SiO4)1+xF2 britholites: x = 0 (a),  
x = 0.25 (b), x = 0.5 (c), x = 0.75 (d) and x = 1 (e-f). 

Figure 10. Variations of the ratio between the elementary experimental weight percent 
(deduced from EPMA experiments) over that expected for  
Ca9Nd1-xThx(PO4)5(SiO4)F2-xOx britholite versus the expected substitution rate x. 

Figure 11. Variations of refined unit cell parameters a and c (a) and volume (b) of  
Ca9Nd1-xThx(PO4)5(SiO4)1F2-xOx britholites versus the expected substitution rate. 

Figure 12. Variation of the experimental incorporation rate versus expected rate through the 
(Nd3+, PO4

3-) ⇔ (Th4+, SiO4
4-) substitution (a) and (Nd3+, F-) ⇔ (Th4+, O2-) 

substitution (b). 
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