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ABSTRACT

Spectral matching ICA (SMICA) is a source separation
method based on covariance matching in Fourier space that
was designed to address in a flexible way some of the gen-
eral problems raised by Cosmic Microwave Background data
analysis. However, a common issue in astronomical data anal-
ysis is that the observations are unevenly sampled or incom-
plete maps with missing patches or intentionally masked parts.
In addition, many astrophysical emissions are not well mod-
eled as stationary processes over the sky. These effects impair
data processing techniques in the spherical harmonics repre-
sentation. This paper describes a new wavelet transform for
spherical maps and proposes an extension of SMICA in this
space-scale representation.

1. INTRODUCTION

In the widely accepted ’Big Bang’ model, the Universe started
out extremely dense and hot, and then cooled down as it ex-
panded, going through successive phase transitions. Some
370 000 years after the ’Big Bang’, when the temperature of
the Universe was around 3000 K, a particular transition oc-
curred: as thermal energy was no longer sufficient to keep
electrons and positively charged particles apart, these then
combined into neutral atoms. Before that, the photons, elec-
trons and light positive nuclei were strongly interacting and
the Universe was a highly homogeneous opaque plasma in
near thermal equilibrium. Any slight fluctuation in matter
density would then also be imprinted in the distribution of
photons. After the so-called ’atomic recombination’, because
photons and atoms interact only very weakly, their fates were
no longer so tightly coupled. In fact, the Universe is now
transparent and the photons in their majority are and will be
moving freely. Since the Universe further expanded, these
photons are now in the microwave range but they should still
be distributed according to a Black Body emission law, as
they were before recombination. They should also still be
carrying along information on the density fluctuations in the
early Universe from which such large scale structures as galax-

ies or clusters of galaxies are thought to have evolvedvia
gravitational collapse.

The Cosmic Microwave Background (CMB) was first ob-
served in 1965 by Penzias and Wilson confirming a prediction
made by Gamow in the late 1940’s. But it was not until the
early 1990’s that evidence for small fluctuations in the CMB
sky could finally be found thanks to the observations made by
COBE [1]. This was further investigated with higher resolu-
tion and sensitivity by a number of experiments among which
Archeops [2], and WMAP [3]. Full-sky multi-spectral obser-
vations with unprecedented sensitivity and angular resolution
are expected from the ESA’s PLANCK1 mission, which is to
be launched in 2007.

A major issue in modern cosmology is the measurement
of these fluctuations as these are strongly related to the cos-
mological scenarios describing the properties and evolution
of our Universe. In fact, the precise estimation of the statis-
tical properties (spatial power spectrum, Gaussianity) of the
CMB field will constrain these models and set tighter bounds
on major cosmological parameters describing the matter con-
tent and the geometry of our Universe. However, several
distinct astrophysical sources emit radiation in the frequency
range used for CMB observations [4]. To first order, the total
sky emission observed in direction(ϑ, ϕ) with detectord is a
noisy linear mixture ofNc components:

xd(ϑ, ϕ) =
Nc∑
j=1

Adjsj(ϑ, ϕ) + nd(ϑ, ϕ) (1)

wheresj is the emission template for thejth astrophysical
process, herein referred to as asourceor a component. The
coefficientsAdj reflect emission laws whilend accounts for
noise. When observations are obtained fromNd detectors,
this equation can be put in vector-matrix form:

X(ϑ, ϕ) = AS(ϑ, ϕ) +N(ϑ, ϕ) (2)

whereX andN are vectors of lengthNd, S is a vector of
lengthNc, and A is theNd ×Nc mixing matrix. Hence, esti-
mating the CMB and other component maps from the data

1http://astro.estec.esa.nl/Planck



can be seen as a problem of source separation from noisy
mixtures that can be approached using blind component sep-
aration or independent component analysis (ICA) methods,
assuming the astrophysical components originate in indepen-
dent physical processes.

Blind component separation (and in particular estimation
of the mixing matrix) depends very much on the model used
for the probability distribution of the sources [5]. In a first set
of techniques, source separation is achieved in a noise-less
setting, based on the non-Gaussianity of all but possibly one
of the components. Methods of this type have been applied
to CMB observations in [6, 7]. However, the main compo-
nent of interest (the CMB itself) is very well described by a
Gaussian isotropic stationary model and the observed mix-
tures suffer from additive gaussian noise, so that better per-
formance can be expected from methods based on Gaussian
models.

In a second set of blind techniques, the components are
modeled as Gaussian processes, either stationary or non sta-
tionary and, in a given representation, separation requires that
the sources have diverse,i.e. non proportional, variance pro-
files. The blind separation in a noise free environment, of in-
stantaneous mixtures of non stationary components is exam-
ined in [8]. The case of mixed stationary components is stud-
ied in [9] : moving to a Fourier representation, it is shown that
colored components can be separated based on the diversity
of their power spectra. The spectral matching ICA method
(SMICA) described in [10, 11], is an extension of this ap-
proach to noisy observations.

Although working in the frequency domain does offer sev-
eral benefits (e.g. easy handling of detector dependent point
spread functions), the non locality of the spherical harmonics
transform will have some undesired effects when dealing with
non-stationary components or noise. In fact, in many exper-
iments, only an incomplete sky coverage is available. Either
the instrument observes only a fraction of the sky or some re-
gions of the sky must be masked due to localized strong astro-
physical sources of contamination: compact radio-sources or
galaxies, strong emitting regions in the galactic plane. These
effects can be mitigated in a simple manner thanks to the
localization properties of wavelets. In fact, building on the
above, it is natural to investigate the possible benefits of ex-
ploiting both non-stationarity and spectral diversity in a Gaus-
sian model using wavelets. Although blind source separation
in the wavelet domain has been previously examined, the set-
ting here is different. We mention, for instance, the separation
method in [12] which is based on the non-Gaussianity of the
source signals but after asparsifyingwavelet transform and
the Bayesian approach in [13] which adopts a similar point
of view although with a richer source model accounting for
correlations in the wavelet representation.

The following section describes a new wavelet transform
for data mapped on the sphere. Then, considering the prob-
lem of incomplete data as a model case of practical signifi-
cance, an extension of SMICA for blind source separation in
the wavelet representation is discussed in section 3. Numeri-
cal experiments are reported in section 4.

2. SPHERICAL WAVELET TRANSFORM

There are clearly many different possible implementations of
a wavelet transform on the sphere and their performance de-
pends on the application. We consider here an undecimated
isotropic transform. This makes it easy to handle missing
patches in observed maps and isotropy is a favorable property
when analyzing a statistically isotropic gaussian field such as
the CMB, or data sets such as maps of galaxy clusters, which
contain only isotropic features [14].

An isotropic transform is obtained using a scaling func-
tion φlc(ϑ, ϕ) with cut-off frequencylc and azimuthal sym-
metry, meaning thatφlc does not depend on the azimuthϕ.
Hence its spherical harmonic coefficientsφ̃lc(l,m) vanish when
m 6= 0 so that :

φlc(ϑ, ϕ) = φlc(ϑ) =
l=lc∑
l=0

φ̃lc(l, 0)Yl0(ϑ, ϕ) (3)

Then, convolving a maps0(ϑ, ϕ) with φlc is greatly simpli-
fied and the spherical harmonic coefficients of the resulting
maps1 are readily given by

s̃1(l,m) =

√
2l + 1

4π
φ̃lc(l, 0)s̃0(l,m) (4)

and this is taken advantage of in the present implementation.
The spherical harmonic coefficients of the scaling function we
retained hereφlc follow a cubic B-spline profile:

φ̃lc(l, 0) =
2
3
B3(

2l
lc

) (5)

(6)

whereB3 is defined forx ∈ [−2, 2] by

B3(x) =
1
12

(| x− 2 |3 − 4| x− 1 |3 + 6| x |3

− 4| x+ 1 |3 + | x+ 2 |3)
(7)

and null elsewhere.
Assuming, for ease of presentation, thats0 is actually re-

lated to an unknown maps−1 by

s0 = s−1 ∗ φlc (8)

where ∗ stands for convolution, a sequence of recursively
smoother approximations tos0 on a dyadic resolution scale
can be obtained as follows

s1 = s−1 ∗ φ2−1lc = s0 ∗ hlc

s2 = s−1 ∗ φ2−2lc = s1 ∗ h2−1lc

. . .

sj = s−1 ∗ φ2−j lc = sj−1 ∗ h2−j+1lc

(9)

whereφ2−j lc is a rescaled version ofφlc and theh2−j lc are
low pass filters defined by :

h2−j lc =

{
φ2−j−1lc

φ2−jlc

if l < lc
2j+1

0 otherwise
(10)



The cut-off frequency is reduced by a factor of2 at each
step so that in applications where this is useful such as com-
pression, the number of samples could be reduced by the
same factor. Here however, no downsampling is performed
and the maps have the same number of pixels on each scale.
Hence the orthogonality constraint is clearly relaxed, so there
is some freedom in the choice of the wavelet functionψlc to
be used with the scaling functionφlc . Taking the difference
between two consecutive smooth approximations is a simple
possibility which results in the following construction of the
wavelet function

ψ2−j lc = φ2−j+1lc − φ2−j lc (11)

and, definingg2−j lc = 1− h2−j lc , the detail maps or wavelet
coefficients at scalej are given by :

sw
j = sj−1 − sj = ψ2−j lcs−1

= sj−1 ∗ g2−j+1lc

(12)

This particular decomposition is readily inverted by

s0(ϑ, ϕ) = sJ(ϑ, ϕ) +
J∑

j=1

sw
j (ϑ, ϕ) (13)

which is a simple addition of the smooth array with the detail
maps.

3. SMICA IN WAVELET SPACE

Spectral matching ICA is a blind source separation technique
which, unlike most standard ICA methods, is able to recover
Gaussian sources from noisy observations. It operates in the
spectral domain and is based onspectral diversity: it is able to
separate sources provided they have different power spectra.
A detailed derivation can be found in [11]. We focus here on
extending SMICA to the wavelet domain using the transform
described above. We refer to this extension as wSMICA.

Consider the linear mixture model (2): applying the above
wavelet transform on both sides does not affect the mixing
matrixA. Then, assuming independent source and noise pro-
cesses, the covariance matrix of the observations at scalej ,
is structured as

RW,X(j) = ARW,S(j)A† +RW,N (j) (14)

whereRW,S(i) andRW,N (i) are the diagonal spectral co-
variance matrices in the wavelet representation ofS andN re-
spectively. Provided estimateŝRW,X(j) of RW,X(j) can be
obtained from the data, our wavelet-based version of SMICA
consists in minimizing the wSMICA criterion:

Φ(θ) =
J+1∑
j=1

αjD
(
R̂W,X(j), ARW,S(j)A† +RW,N (j)

)
(15)

for some sensible choice of the weightsαi and of the matrix
mismatch measureD, with respect to the full set of param-
etersθ = (A,RW,S(j), RW,N (j)) or a subset thereof. As
discussed in [11], a good choice forD is

DKL(R1, R2) =
1
2

(
tr(R1R

−1
2 )− log det(R1R

−1
2 )−m

)
(16)

which is the Kullback-Leibler divergence between twom-
variate zero-mean Gaussian distributions with covariance ma-
tricesR1 andR2. With this mismatch measure, the SMICA
is shown to be related to the likelihood of the data in a Gaus-
sian model so that we can resort to the EM algorithm to min-
imize (15). Actually, starting with the EM algorithm and fin-
ishing with a few BFGS steps was found to be a much faster
strategy [11].

In dealing with non stationary data or, as a special case,
with gapped data, an attractive feature of wavelet filters over
the spherical harmonic transform is that they are well local-
ized in the initial representation. Provided the wavelet filter
response on scalej is short enough compared to data size and
gap widths, most of the samples in the filtered signal will then
be unaffected by the presence of gaps. Hence using exclu-
sively these samples yields an estimated covariance matrice
R̂W,X(j) which is not biased by the missing data, although
at the cost of a slight increase of variance due to discarding
some data samples. Writing the wavelet decomposition onJ
scales ofX as

X(ϑ, ϕ) = XJ(ϑ, ϕ) +
J∑

j=1

Xw
j (ϑ, ϕ) (17)

and denotinglj the size of the setMj of wavelet samples
unaffected by the gaps at scalej, the wavelet covariances are
simply estimated using

R̂W,X(1 ≤ j ≤ J) =
1
lj

∑
t∈Mj

Xw
j (ϑt, ϕt)Xw

j (ϑt, ϕt)†

R̂W,X(J + 1) =
1

lJ+1

∑
t∈MJ+1

XJ+1(ϑt, ϕt)XJ+1(ϑt, ϕt)†

(18)

The weights in the spectral mismatch (15) should be cho-
sen to reflect the variability of the estimate of the correspond-
ing covariance matrix. Since wSMICA uses wavelet filters
with only limited overlap, in the case of complete data maps,
we follow the derivation in [11] and takeαj to be proportional
to the number of spherical harmonic modes in the spectral do-
main covered at scalej. In the case of data with gaps, we must
further take into account that only a fractionβi of the wavelet
coefficients are unaffected so that theαj should be modified
in the same ratio.

When running wSMICA, power densities in each scale
are obtained for the sources and detector noise along with the
estimated mixing matrix. These are used in reconstructing the
source mapsvia Wiener filtering in each scale: a coefficient



Fig. 1. The maps on the left are the templates for CMB, galactic dust and SZ used in the experiment described in section 4. The
maps on the right were estimated using wSMICA and scalewise Wiener filtering. (The different maps are drawn here in different
color scales in order to enhance structures and ease visual comparisons).



Xw
j (ϑ, ϕ) is used to reconstruct the maps according to

Ŝw
j (ϑ, ϕ) =

(
Â†R̂W,N (j)−1Â+ R̂W,S(j)−1

)−1×

Â†R̂W,N (j)−1Xw
j (ϑ, ϕ)

(19)

In the limiting case where noise is small compared to signal
components, this filter reduces to

Ŝw
j (ϑ, ϕ) = (Â†R̂W,N (j)−1Â)−1Â†R̂W,N (j)−1Xw

j (ϑ, ϕ)
(20)

Clearly, the above Wiener filter is optimal only in front of sta-
tionary Gaussian processes. For non Gaussian maps, such as
given by the Sunyaev Zel’dovich effect (defined in the next
section), better reconstruction can be expected from non lin-
ear methods.

4. NUMERICAL EXPERIMENTS

The application of wSMICA to synthetic mixtures of CMB,
galactic dust and Sunyaev Zel’dovich (SZ) maps is considered
here. Dust emission is the greybody emission of small dust
particles in our own galaxy. The intensity of this emission
is strongly concentrated towards the galactic plane, although
cirrus clouds at high galactic latitudes are present as well [15].
The SZ effect is a small distortion of the CMB blackbody
emission that can be modeled, to first order, as a small ad-
ditive emission, negative at frequencies below 217 GHz, and
positive at frequencies above [16].

The component maps used, shown on figure 1, were ob-
tained as described in [11]. The problem of instrumental point
spread functions is not adressed here, and all maps are as-
sumed to have the same resolution. The high level foreground
emissions from the galactic plane region were discarded using
theKp2 mask from the WMAP team website2. These three
incompletemaps were mixed using the matrix in table 1 to
simulate observations in the six channels of the Planck high
frequency instrument (HFI).

CMB DUST SZ channel

1.0 1.0 −1.51 100 GHz
1.0 2.20 −1.05 143 GHz
1.0 7.16 0.0 217 GHz
1.0 56.96 2.22 353 GHz
1.0 1.1× 103 5.56 545 GHz
1.0 1.47× 105 11.03 857 GHz

Table 1. Entries ofA, the mixing matrix used in our simula-
tions.

Gaussianinstrumentalnoise was added in each channel
according to model (2). The relative noise standard deviations
between channels were set according to the nominal values of
the Planck HFI given in table 2 and we experimented with five
globalnoise levels at−6,−3, 0, +3 and+6 dB from nominal
values.

2http://lambda.gsfc.nasa.gov/product/map/intensitymask.cfm

100 GHz 143 GHz 217 GHz channel

2.65× 10−6 2.33× 10−6 3.44× 10−6 noise std

353 GHz 545 GHz 857 GHz channel

1.05× 10−5 1.07× 10−4 4.84× 10−3 noise std

Table 2. Nominal noise standard deviations in the six chan-
nels of the Planck HFI.
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Fig. 2. Relative reconstruction error defined by (21) of the
CMB component map using SMICA and wSMICA as a func-
tion of the instrumental noise level.

The synthetic observations were decomposed into six scales
using our wavelet transform on the sphere and wSMICA was
used to obtain estimates of the initial source templates. For
the sake of comparison, a separation with SMICA was also
performed based on Fourier statistics computed in the same
six dyadic bands imposed by our choice of wavelet transform.

The resulting component maps estimated using wSMICA,
for nominal noise levels, are shown on figure 1 where the
quality of reconstruction can be visually assessed by com-
parison to the initial components. Figure 2 gives more quan-
titative results in the particular case of CMB, comparing the
performance of SMICA and wSMICA in terms of reconstruc-
tion errorMQE which we defined by

MQE =
std(CMB(ϑ, ϕ)− α× ̂CMB(ϑ, ϕ))

std(CMB(ϑ, ϕ))
(21)

wherestd stands for empirical standard deviation ( obviously
computed outside the masked regions), andα is a linear re-
gression coefficient estimated in the least squares sense. These
results clearly show that using wavelet-based covariance ma-



trices provides a simple and efficient way to cancel the bad
impact that gaps actually have on the performance of estima-
tion using Fourier based statistics. Another way in which the
effect of the gap on the performance of SMICA could proba-
bly be reduced, is by applying a proper apodizing window on
the data prior to estimating the spectral covariance, which is
standard practice in harmonic analysis. With the mask used,
building such a window is not straightforward so that, in the
present experiments, SMICA was applied without correction
for the gaps. The results given on figure 2 should be inter-
preted knowingly.

It may be argued that the proposed wavelet based approach,
as implemented with wavelet transform described in section 2,
offers little flexibility in the spectral bands available for wS-
MICA while the Fourier approach gives complete flexibility
in this respect. But actually it is possible to use other trans-
forms on the sphere (e.g. wavelet packet transform,contin-
uous wavelet transform) or in fact any set of linear filters
preferably well localized both on the sphere and in the spheri-
cal harmonics domain. This way gaps are well dealt with and
spectral information is preserved to achieve the source sepa-
ration objective.

5. CONCLUSION

This paper has presented a new wavelet transform for data
mapped to the sphere. This transform was used to extend the
Spectral Matching ICA method to the wavelet domain, mo-
tivated by the need to deal with non stationary components.
Maps with missing patches are a particular example of prac-
tical significance. Our numerical experiments, based on real-
istic simulations of the astrophysical data expected from the
Planck mission, clearly show the benefits of correctly pro-
cessing existing gaps in the data which is not a real surprise.
We showed that, moving to the wavelet domain, it is possible
to easily cope with gaps of any shape in a very simple man-
ner, while still retaining spectral information for component
separation. Clearly, other possible types of non-stationarities
in the collected data such as spatially varying noise or compo-
nent variance, etc. could be dealt with very simply in a similar
fashion using our wavelet extension of SMICA.
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