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ABSTRACT

Aims. Several experiments have reported observations on possible correlations between the flux of high energy muons and intense solar flares.
If confirmed, these observations would have significant implications for acceleration processes in the heliosphere able to accelerate protons and
other ions to energies of at least tens of GeV.
Methods. The solar flare of the 14 of July 2000 offered a unique opportunity for the L3+C experiment to search for a correlated enhancement in
the flux of muons using the L3 precision muon spectrometer. Its capabilities for observing a directional excess in the flux of muons above 15 GeV
(corresponding to primary proton energies above 40 GeV) are presented along with observations made on the 14th of July 2000.
Results. We report an excess which appeared at a time coincident with the peak increase of solar protons observed at lower energies. The
probability that the excess is a background fluctuation is estimated to be 1%. No similar excess of the muon flux was observed up to 1.5 h after the
solar flare time.
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1. Introduction

It is known that solar protons are accelerated in high energy
solar processes, such as solar flares (SFs) and/or coronal mass
ejections (CMEs). Solar protons with energies higher than sev-
eral hundred MeV can produce secondary particles observed
at ground level. These highest energy solar proton events are
known as ground level enhancements (GLEs). Since the first
observation of a GLE in 1946 (Forbush 1946) more than sixty
GLEs have been detected (Shea & Smart 2001; WebD 2000;
Cliver 2006) mainly using the worldwide network of neutron
monitors (NMs). More than 100 NMs distributed at different
geomagnetic latitudes act as a “geomagnetic spectrometer” for
measuring GLEs. Soon after the first observations it was recog-
nized that the Sun can accelerate protons up to GeV energies
(Parker 1957).

It is of interest to know to how high an energy solar pro-
tons can be accelerated by the Sun. NMs located at geomagnetic
rigidities higher than 10 GV very rarely recorded excesses in
GLEs. This shows that for most GLEs the upper energy limit of
solar protons indirectly observed by NMs are less than 10 GeV.
In a very big GLE, on 29th September 1989, the biggest GLE
since 1956, the Huancayo NM with a rigidity cut-off of 13 GV,
observed a significant (>10%) increase (WebC 1989), suggest-
ing that solar protons with energies higher than 13 GeV are pro-
duced.

In recent years, utilizing the technique of particle trajectory
tracing (Cramp 1997) with an advanced model of the magneto-
spheric magnetic field (Tsyganenko 1989), data from different
NMs for a same GLE can be well modelled, and the solar
proton “beam” approaching the Earth can be well described
(Danilova 1999; Duldig 1999; Chebakova 1999). Many such
studies showed that solar protons in GLEs often follow a steep
spectrum (the typical index of the power spectrum is −6, or even

� Authorlist at the end, after the references.

steeper) and the beam is often anisotropic, sometimes highly
anisotropic.

It may thus be expected that the directionally integrating NM
may not be sensitive enough to higher energy solar protons with
steep spectra and/or anisotropic flux distributions. Therefore,
directional detectors (such as muon telescopes) should be bet-
ter suited for detecting higher energy solar protons in GLEs.
Using the underground muon detector Embudo with an equiv-
alent rigidity of 19 GV, a positive observation was reported
(Swinson 1990) in the GLE of the 29th of September 1989. The
signal increase was coincident in time with the increases seen by
NMs. It was concluded that the upper rigidity of solar particles
present during this event would be approximately 25 GV. In the
recent review paper of Ryan et al. (2000) it was stated that the
solar proton flux in this GLE had to extend up to 20 GeV to pro-
duce a positive signal in the Embudo detector, but could not have
extended significantly above 30 GeV.

However, some exceptional results, mainly obtained from
underground muon detectors (Filippov 1991; Alexeyev 1992;
Alexeyev 1994; Karpov 1998) have been reported about some
possible signals of higher energy solar protons. Among them,
the most outstanding one is from the Baksan underground muon
detector. This collaboration claimed that the observed excess of
the muon flux in the GLE of the 29th of September 1989 was
induced by solar protons with energies higher than 500 GeV.
In spite of its high energy this excess appeared at a time about
two hours after the impulsive phase of the flare. In addition, the
excess was assumed to be described by a very flat spectrum, be-
cause no signal was observed at the same time by the surface
detectors with much lower energy threshold.

Thus another question is raised: whether a delayed compo-
nent of solar protons can be present in a solar flare event. Some
analyses of NM data suggest such a picture: besides the accel-
eration of solar protons during the initial impulsive phase there
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is sometimes a delayed component in some solar flares that can
be seen from the time profiles of some NM data (Ryan 2000). It
is also of interest to study whether some higher energy muons,
like those seen in the Baksan event, appear in the delayed com-
ponent of a solar flare.

The L3+C collaboration used the precision muon chambers
of the L3 spectrometer (Adeva 1990) to measure cosmic ray
muons (Adriani 2002; Achard 2004). It possesses many advan-
tages: high directional resolution, high momentum resolution,
low momentum threshold and a large sensitive volume. Its run-
ning periods (1999–2000) were just during the peak years of the
recent solar activity cycle (the cycle No. 23). These factors place
this detector in a very good position to observe high energy solar
protons and to address the questions discussed above.

One GLE happened during the operation period of L3+C,
on the 14th of July 2000. In this paper the data analysis and
results related to this event are reported. We briefly introduce
this event in the next section and the experiment in Sect. 3. The
data analysis and results are given in Sect. 4. After discussion of
the results in Sect. 5, the conclusion is given in Sect. 6.

2. The GLE of the 14th of July 2000

The GLE of the 14th of July 2000 (Bieber 2002) was asso-
ciated with an X5.7/3B class solar flare produced in the 9077
sunspot region. The X-ray flare started at 10:03 UT and reached
its peak at 10:24 UT. The onset of a type II radio burst, desig-
nating the start time of high energy phenomena in the flare, and
being thought to be close to the time of relativistic proton accel-
eration (Cliver 1982, 2006), was at 10:20 UT. Soon after that, at
10:30 UT, the satellite borne detector GOES-8 observed a rapid
increase in proton fluxes with energies greater than 10 MeV,
50 MeV and 100 MeV, respectively (WebB 2000). Observed by
the instrument on board the Solar and Heliospheric Observatory
SOHO/LASCO a full halo, earth-directed CME, was seen to de-
velop during this event (WebA 2000). On ground, more than
20 NMs observed cosmic ray intensity increases ranging from
2% to 60% (Usoskin 2000; Flückiger 2001; Belov 2001). The
earliest onset time of NMs’ increases was at 10:30 UT. Among
them, the one having highest geomagnetic rigidity (4 GV) is the
Nomnisky NM. A small effect was recorded by the NM at the
mountain Alma-Ata station (rigidity 6.7 GV), indicating that a
solar proton flux with energy at least 6.7 GeV has been produced.

This flare was the biggest in the current solar cycle un-
til April 2001, and the third largest solar proton event above
10 MeV since 1976 (Belov 2001). Several studies (Duldig 2001;
Pchelkin 2001; Vashenyuk 2001) using the established technique
(Cramp 1997) and the standard magnetospheric magnetic field
model (Tsyganenko 1989) were made by unifying more than
20 NMs’ data in the analysis. This is the first time a GLE was
also modelled dynamically as mentioned in (Duldig 2001). In
the conclusions the following features were found concerning
the solar protons approaching the Earth: the spectrum was soft
with a power law index of −6 during the rising phase, of −7 by
11:00 UT, of −8 by 12:00 UT and of −8 to of −9 till 20:00 UT;
the pitch angle distribution was derived and it was noted that
the particle arrival was anisotropic at the onset time. It then be-
came increasingly isotropic, and after one hour it turned out to
be highly anisotropic again. The arrival direction (defined as the
pitch symmetry axis) was also rapidly changing with time. All
these features guided our analysis described below.
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Fig. 1. The L3 spectrometer. Only the muon detectors, the magnet and
the scintillator tiles were used in this experiment.

3. The L3+C experiment

The L3+C detector system (Adriani 2002) combined the high
precision muon drift chambers of the L3 spectrometer with an
air shower array on the surface. A drawing of the spectrometer
is shown in Fig. 1. Only the muon detectors, the magnet and
the scintillator tiles were used in this experiment. The L3 detec-
tor was located at the “Large Electron Positron Collider” LEP,
CERN, near Geneva (6.02◦E, 46.25◦N) at an altitude of 450 m
above sea level. The vertical geomagnetic rigidity cutoff of the
experimental site is ∼5 GV.

The muon drift-chamber system, with an octant shape in
the plane perpendicular to the electron positron beams (11 m
in width and 11 m in height) and a square shape in the plane
along the beam (11 m in length), installed in a 1000 m3 mag-
netic field of 0.5 T, was used to record cosmic ray muons and
to measure their momenta. The maximum geometrical accep-
tance was ∼200 m2 sr, covering a zenith angle ranging from 0◦
to ∼60◦. Located underneath approximately 30 m of molasse the
incident muon cutoff energy was 15 GeV. This corresponds to
primary proton energies above 40 GeV. In order to observe cos-
mic ray events independently of the L3 experiment, a timing de-
tector composed of 202 m2 of plastic scintillators was installed
on top of the magnet, and a separate trigger and DAQ system
was used for the data taking.

The dedicated data taking started in 1999 with a trigger rate
of about 450 Hz. Up to November 2000, nearly 1.2× 1010 muon
triggers were recorded within an effective live-time of 312 days.

4. Data analysis and results

The aim was to search for possible signals of solar protons from
our reconstructed muon data set during the period of the solar
flare event of the 14th of July 2000, and to see if solar protons
exist with higher energies than established until now. As men-
tioned in Sect. 2 the analysis of NMs’ data showed a soft so-
lar proton spectrum in this event, and that the spectrum became
softer with time. This means that the higher the solar proton
energy the shorter the signal duration. Therefore, this analysis
mainly concentrated on a short period, starting from 10:20 UT
(the onset time of the type II radio burst), up until the peak
time of the increase seen by NMs. The search was first per-
formed to see whether there was an excess muon signal in time
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coincidence with NM data. Then, in order to see whether a de-
layed component appeared in this event, the data were compared
to the background between ∼10:00 UT and ∼12:00 UT.

A data set of muons with surface energies between 15 GeV
and 25 GeV within the full acceptance of the L3+C detector was
used. Setting an upper limit for the surface energies of muons at
25 GeV was motivated by the expected soft solar proton spec-
trum. An additional search for higher energy signals was also
performed.

4.1. Event selection

Only events having well reconstructed muon tracks were se-
lected. The following selection criteria were applied:

1. only a single muon track is present in the muon chamber;
2. the track is composed of at least 3 segments of hits in

P-chambers (wires parallel to the magnetic field) and by 2
segments of hits in Z-chambers (wires perpendicular to the
magnetic field), ensuring good muon track quality.

All selected events were binned according to live-time and to
muon’s arrival direction on the ground.

A live-time interval of 0.839 s was used by the L3+C data
taking system as a minimal time bin in counting the number of
events. 100 such bins were combined to form a 83.9 s live-time
bin as the basic time unit in searching for possible signals.

To search for possible directional signals the direction
cosines l = sin θ cosφ and m = sin θ sinφ were used as measur-
ables of the muon directions, where θ and φ are the zenith and
azimuth angles of the muon direction at the surface. The squared
area of the variables l and m was divided into a 10 × 10 (l, m)
grid. Ignoring those cells with poor statistics within the detector
acceptance, 41 sky cells containing at least 20 events remained
for the investigation. The contour lines for directions having an
equal event rate are shown in Fig. 2 for data of the 14th of July
2000.

4.2. Background

Data from 12 h before 10:00 UT were taken as a background
measurement. According to the GOES-8 data the event rate of
protons with energies larger than 100 MeV was stable during this
12 h period (WebB 2000), just showing pure background fluctu-
ations. The same event selection criteria, same time binning and
direction binning were applied to the background analysis as for
the signal search.

4.3. Result

The data were compared to the background, while checking pos-
sible excesses during the peak time of NMs. In sky cell No.37,
defined as 0.2375 ≤ l ≤ 0.4375 , −0.4375 ≤ m ≤ −0.2375
(with a solid angle of 0.046 sr), and for a selected (see below)
16.78 min live-time window (with the real time from 10:24 UT
to 10:42 UT), an excess of counts in a bin containing 300 events
was found (Fig. 3a). This excess was obtained after a first search
for an 83.9 s live-time bin (resulting from the on-line live-time
counting), starting from 10:20 UT and having an anomalously
large number of events followed by other 83.9 s live-time bins
which also had a higher number of events. The bin at 10:24 UT
that met these requirements was taken as the starting bin for a
possible excess. The following 11 live-time bins were combined
with it to form the 16.78 min live-time window (out of 5 tri-
als no other grouping of elementary live-time bins could provide

Fig. 2. The distribution of the arrival directions of muons observed by
the L3+C detector. The contour lines indicate directions having an equal
event rate. The star marks show directions of the Sun for each hour with
t0 denoting the flare time. The square indicates the sky cell No. 37 (see
the text).
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a similar excess of events). The excess appeared at a time just
coincident with the peak increase of lower energy solar protons
(see the example taken from the the Oulu NM in Fig. 3b). The
background distribution in the same sky cell measured 12 hours
before 10:00 UT with 16.78 min live-time bins is shown in Fig. 4
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and is fitted by a Gaussian. Using the fitted mean of 235 and the
standard deviation equal to 15.4, the excess of 65 events gives
rise to a 4.2σ effect.

It has been also checked whether there were other possible
excesses appearing at delayed times. From 9:52 to 11:51 UT
five 16.78 min live-time bins were available corresponding
to 9:52–10:23 UT, 10:24–10:42 UT, 10:43–11:06 UT, 11:07–
11:30 UT and 11:31–11:51 UT, respectively. The histograms of
the standard deviations (σ) of the counts in all 41 sky cells in
these five time intervals are shown in Fig. 5. For each sky cell
the σ values were calculated from the data and from the fitted
background distribution in the same cell. The curve shown in
each of the five graphs is a standard Gaussian normalized to
the histogram. The deviations between the data and the stan-
dard Gaussian can be seen from the χ2/ndf values that are 3.68/6,
5.73/4, 5.35/6, 5.15/7 and 5.52/6, respectively. These values are
compatible with the background fluctuation. From Fig. 5 it is
also seen that the excess at the peak time of the solar flare and in
the sky cell No. 37 is the one having the highest significance.

The lower three figures of Fig. 5 show no excess after the
peak increase until 11:51 UT. It means that no evidence of
an hourly-delayed signal with short duration, narrow arrival
direction and flat energy spectrum is found in this analysis of
the 14th July 2000 solar flare.

5. Discussion

With the selected live-time binning of 16.78 min, we have found
an excess of 4.2σ in one of 41 sky cells. The total number of tri-
als being equal to the number of cells times the number of time
window selections (41 × 5 × 4 = 820; the 5 corresponds to the
number of trials to group the elementary live-time bins; the 4
corresponds to the 4 time periods analysed after the solar flare
time), the probability for such an excess being due to a back-
ground fluctuation is about 1% . An independent analysis of the
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Fig. 5. The shown histograms are distributions of the number of stan-
dard deviations from the mean of counts of 41 sky cells, for five time pe-
riods from 9:52 UT to 11:51 UT, each with 16.78 min live-time. Curves
are standard normal distributions for comparison.

data, using the “running mean” method, provided the same re-
sult. A confirmation of this conclusion was obtained by a Monte
Carlo generation of 800 distributions of statistical variables and
getting the distribution of the maximal standard deviations. One
gets also a 1% probability to find values equal or above 4.2.

By applying the same procedure to muons with energies
greater than 25 GeV, no excess was seen either in the sky cell
No. 37, or at the peak time of increases observed with NMs.
This is consistent with a known soft solar proton spectrum de-
duced from NM data.

In order to estimate the primary energies of solar pro-
tons which could be at the origin of the observed excess, a
Monte Carlo simulation using the air shower simulation code
CORSIKA (Heck 1998) was carried out. Primary protons were
assumed to be incident along the directions that make the pro-
duced muons to appear in the direction of sky cell No. 37. The
index of the primary power law was set to −6 above 20 GeV.
The energies of the protons which are responsible for the sec-
ondary muons in the energy regions 15–25 GeV and arriving at
the surface level of L3+C (450 m a.s.l.) are distributed in a nar-
row region: about 85% of the recorded muons are produced by
primary protons ranging from 40 GeV to 100 GeV with a most
probable energy of ∼70 GeV. If the primary spectrum is steeper,
this value will be lower. Therefore, this observed “excess” could
be attributed to solar protons of energies above those to which a
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set of NMs as a “geomagnetic spectrometer” in the Earth’s mag-
netic field are sensitive to.

An upper limit corresponding to this excess has been esti-
mated. Monte Carlo produced muons reaching the surface were
counted, assuming a proton flux with a power spectrum of index
−6 and penetrating into the atmosphere from directions around
the sky cell No. 37. An area centered around the muon chambers,
and large enough to contain the air shower cores, was set, ensur-
ing a very small fraction loss of muons (less than 1%). Each
muon was traced through the molasse and the muon chambers
and reconstructed using the same program as for the data. For
the background the same simulation procedure was done, but
using a primary cosmic ray spectrum with a power law index
of −2.7. As the primary proton flux is known, the comparison
between the observed data and the simulated data allows to set
an upper limit to the solar proton beam entering the upper atmo-
sphere around the direction of the sky cell No.37:

I(Ep ≥ 40GeV) ≤ 2.8×10−3 cm−2 s−1 sr−1 (90% c.l.).

This result is shown in Fig. 6 and is compared to other results
(Miroshnichenko 2001).

6. Conclusions

In the GLE event of the 14th July 2000 an excess of 65 muons
with Eµ = 15−25 GeV over a background of 235 in a partic-
ular sky region was observed which lasted from 10:24 UT to
10:42 UT. The chance probability for such an excess to be a
background fluctuation is about 1% in this search. It was time-
coincident with the peak increase observed by different NMs
during the impulsive phase of the solar flare. If the excess was
really induced by solar protons, the observation indicates that
solar protons with energies greater than 40 GeV were required
to produce the excess.

No evidence of any excess after the peak increase up to
11:51 UT has been observed.

This study shows that a high directional resolution muon
spectrometer at a shallow depth may detect solar protons with
greater energies than those reported by NMs.
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