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Since the seminal work of Negele and Vautherin, the Wigner-Seitz approximation has been widely
applied to study the inner crust of neutron stars formed of nuclear clusters immersed in a neutron
sea. In this article, the validity of this approximation is discussed in the framework of the band
theory of solids. For a typical cell of 200Zr, present in the external layers of the inner crust, it is shown
that the ground state properties of the neutron gas are rather well reproduced by the Wigner-Seitz
approximation, while its dynamical properties depend on the energy scale of the process of interest or
on the temperature. It is concluded that the Wigner-Seitz approximation is well suited for describing
the inner crust of young neutron stars and the collapsing core of massive stars during supernovae
explosions. However the band theory is required for low temperature transport properties as, for
instance, the effective neutron mass giving rise to entrainment effects.
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In the standard model of neutron stars [1], the crust
is believed to be formed of nuclear clusters in a body
centered cubic lattice stabilized by Coulomb forces and
considered infinite and pure (made of only one type of
nuclei at a given density). In the inner crust, at densi-
ties above ∼ 4.1011 g.cm−3 and below ∼ 1014 g.cm−3, the
“neutron drip” regime is reached and the clusters are sur-
rounded by a neutron fluid. A formal comparison can be
made with electrons in ordinary solids present on earth:
part of the neutrons participate to the nuclear clusters
which form the lattice (equivalent to electrons bounded
to atoms) while part of the neutrons are delocalized over
the whole crystal (equivalent to valence electrons). As a
consequence, the band theory of solids developed in con-
densed matter [2] can be applied to describe the crust
of neutron star. But due to the highly specific numer-
ical issues of band theory, nuclear physicists have pre-
ferred to use an approximation due to Wigner and Seitz
(W-S) [3, 4], where the crust is divided into indepen-
dent and spherical cells. Since the work of Negele and
Vautherin [5], the W-S approximation has been used to
predict the structure of the crust, the pairing properties,
the thermal effects, or the low lying energy excitation
spectrum [6, 7, 8, 9, 10, 11, 12]. Only recently, band the-
ory calculations have been carried out in order to study
the hydrodynamical properties of the neutron fluid and
in particular the neutron effective mass giving rise to en-
trainment effects [13, 14, 15], although these calculations
are not yet self-consistent. While the W-S approxima-
tion is well justified below the “neutron drip” regime, its
validity beyond remains to be assessed.

In this article, we investigate the limitations of the W-
S approximation in the ρ ∼ 7.1011 g.cm−3 density layer
of the inner crust, composed of a crystal of zirconium like
clusters [5] surrounded by the neutron gas. In Sect. I, be-

fore discussing the W-S approximation, we briefly review
the band theory of solids. Then we compare in Sect. II
the results of the band theory with those of the W-S
approximation for the single particle wavefunctions and
energy spectra. Consequences for the properties of the
neutron gas are discussed.

I. MICROSCOPIC QUANTUM DESCRIPTION

OF NEUTRON STAR INNER CRUST

An accurate description of the inner crust, assuming
that it is a perfect crystal, should rely on the band theory
of solids [2]. In this section, we briefly review this theory
in the context of neutron star crust and discuss the W-S
approximation in this framework.

A. Band theory of solids

According to the Floquet-Bloch theorem, the single
particle quantum states are given by modulated plane
waves

ϕαkkk(rrr) = uαkkk(rrr)eikkk·rrr , (1)

where the functions uαkkk(rrr) have the full periodicity of
the lattice. Each single particle quantum state is thus
labeled by a discrete index α and by a wave vector kkk.
The energy spectrum is therefore formed of a series of
sheets or “bands” in kkk-space.

The Bloch states (1) are completely determined by the
knowledge of the functions uαkkk(rrr) inside a W-S cell of
the lattice, whose shape is imposed by the symmetry of
the crystal. The cell, centered around one nuclear clus-
ter, is electrically neutral and therefore contains as many
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electrons as protons. The effects of the ion lattice on
the electrons, which give rise to complicated band struc-
tures in ordinary terrestrial matter are negligible in the
inner crust of a neutron star due to the very high den-
sities [16]. Nevertheless, the neutron band effects due to
nuclear inhomogeneities cannot be ignored.

In the present study, we consider the outermost layers
of the inner crust where pairing effects are negligible [17].
In the Hartree-Fock approximation with Skyrme forces
which we shall consider in the following, the occupied
nucleon single particle wave functions are obtained by
solving the self-consistent equations (q = n, p for neu-
trons and protons respectively)

h
(q)
0 ϕ

(q)
αkkk (rrr) = ε

(q)
αkkk ϕ

(q)
αkkk (rrr) (2)

where the single particle Hamiltonian is defined by

h
(q)
0 ≡ −∇∇∇ · h̄2

2m⊕
q (rrr)

∇∇∇ + Uq(rrr) − iWqWqWq(rrr) · ∇∇∇× σσσ , (3)

the effective masses m⊕
q (rrr), mean fields Uq(rrr) and spin-

orbit terms WqWqWq(rrr) being functionals of the single particle
wave functions. These equations have to be solved inside
the W-S cell with the boundary conditions imposed by
the Floquet-Bloch theorem

ϕ
(q)
αkkk (rrr + TTT ) = eikkk·TTT ϕ

(q)
αkkk (rrr) , (4)

where TTT is any lattice vector. This means in particular
that the wavefunction between two opposite faces of the
cell has a phase shift eikkk·TTT where TTT is the corresponding
lattice vector. The single particle energies are periodic in
the reciprocal lattice whose vectors KKK satisfy KKK ·TTT = 2πn
(where n is any integer)

ε
(q)
α,kkk+KKK = ε

(q)
αkkk . (5)

Consequently only the values of kkk inside the first Brillouin
zone (i.e. W-S cell of the reciprocal lattice) are relevant.

Equivalently, equations (2) can be written directly for

the u
(q)
αkkk (rrr) functions in the decomposition (1) which leads

to

(h
(q)
0 + h

(q)
kkk )u

(q)
αkkk (rrr) = ε

(q)
αkkk u

(q)
αkkk (rrr) (6)

where the kkk-dependent Hamiltonian h
(q)
kkk is defined by

h
(q)
kkk ≡ h̄2k2

2m⊕
q (rrr)

+ vqvqvq · h̄kkk , (7)

and the velocity operator vqvqvq is defined by the commutator

vqvqvq ≡ 1

ih̄
[rrr, h

(q)
0 ] . (8)

The band theory takes into account all the symmetries
of the system. However equations (2) with the boundary
conditions (4) are numerically very complicated to solve.
The approximation introduced a long time ago by Wigner
and Seitz in the study of metallic sodium [3, 4] has been
widely applied in the context of neutron star crust, as
described below.

B. Wigner-Seitz approximation

The spherical W-S approximation is a computation-
ally very efficient method with the advantage of reduc-
ing the 3D partial differential Eqs. (2) to ordinary differ-
ential radial equations. This approximation is twofold.

First of all, the Hamiltonian h
(q)
kkk in equation (6) is ne-

glected. Consequently the wave functions and the en-
ergies are independent of kkk and approximated by the
solutions at kkk = 0. Only the band index α remains.
Secondly, the W-S polyhedron is replaced by a sphere
of equal volume. The equations are then usually solved
with the Dirichlet-Neumann mixed boundary conditions
which yield a nearly constant neutron density outside the
cluster.

The W-S approximation turns out to be very good if
the boundary conditions play a minor role. For instance,
bound states whose associated wave functions are van-
ishingly small outside the clusters are very well treated
provided that the spatial extent of these states is smaller
than the lattice spacing. This condition is fulfilled al-
most everywhere in the crust except in the bottom layers
where the clusters nearly touch. The aim of this paper is
to investigate the validity of the W-S approximation for
the outermost layers of the inner crust where the bound
neutron states are not altered by the boundary condi-
tions.

Let us emphasize that in the W-S approximation, the
nuclear clusters are supposed to be spherical while in
the full band theory, no assumption is made about their
shape. For the low densities of interest in this study, the
nuclear clusters can still be considered as spherical. It
should mentioned that in a recent development of the
W-S approximation [18], the W-S cell is replaced by a
cube with strictly periodic boundary conditions. Possi-
ble deformations of the nuclear clusters are thus included
but at the price of unphysical boundary conditions be-
cause the W-S cell of the body centered cubic lattice is a
truncated octahedron and not a cube (the cube being the
W-S cell of the simple cubic lattice). This is the reason
why we still consider the spherical W-S approximation
closer to the physical situation than the cubic one at low
density.

II. COMPARISON BETWEEN THE BAND

THEORY AND THE W-S APPROXIMATION

The comparison between the band theory and the W-S
approximation gives an estimate of the contribution (7)
of the k-dependent Hamiltonian hkkk and incidentally on
the effects of the boundary conditions. We have consid-
ered the shallow layers of the crust at the average baryon
density ρ ∼ 7 × 1011 g/cm3 formed of a crystal made
of zirconium like clusters (Z = 40) with 160 neutrons
(bound and unbound) per lattice site[5]. In the follow-
ing we shall refer to such cluster as 200Zr. Under such
conditions, only unbound neutrons are sensitive to the
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FIG. 1: Neutron (full lines) and proton (dotted lines) density
distributions for 200Zr in the W-S cell, obtained in the W-S
approximation.

boundary conditions and the nuclear clusters are spheri-
cal.

For the comparison, we first solve the self-consistent
Hartree-Fock equations in coordinate space, considering
the W-S approximation. The effective force used is the
same as in references [7, 8, 9], namely the Skyrme interac-
tion SLy4 [19]. In Fig. 1, we show the neutron and proton
densities calculated in the spherical W-S cell with 200Zr.
The size of the box is Rcell = 49.2 fm. The cell exhibits
a very large and diffuse neutron skin, which is typical of
those systems [5]. A small but non-zero neutron density
is present at large radius generating a non-zero mean field
potential. Asymptotically, this potential is equal to -0.05
MeV. All the states with energy larger than -0.05 MeV
are therefore unbound or “free”. We found that among
the 160 neutrons per lattice site, 70 are unbound.

The effective mass m⊕
n (rrr) and the mean field potential

Un(rrr) obtained for the spherical cell are used to con-
struct an effective Schrödinger equation for band theory
calculations. As the spin-orbit splitting is weak for most
of the states (see Fig. 5), we set the spin-orbit poten-
tial WnWnWn(rrr) to zero. In order to study the effects of the
boundary conditions, the Schrödinger equation is solved
with no further iterations by imposing the Bloch bound-
ary conditions (4) and using the Linearized Augmented
Plane Wave method (see [15] for details). The coordinate
space is divided in two regions: a spherical region around
the cluster plus an interstitial region. In the latter region,
the wave functions are expanded on a plane wave basis in
order to fulfill the Bloch boundary conditions. The lat-
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FIG. 2: Unbound neutron density calculated with the W-S
approximation (WS, full lines) and the full band theory (BT,
dotted lines).

tice spacing is determined by requiring that the volume
of the W-S sphere is equal to the volume of the exact
W-S cell of the crystal, assumed to be a body centered
cubic lattice[1].

In the following, we compare the single particle wave
functions and energy spectra of the unbound neutrons.

A. Single particle wavefunctions

As already discussed in Sect. I B, the wave functions
of the bound states are nearly independent of the bound-
ary conditions. As a consequence, we expect that the
band theory and the W-S approximation provide identi-
cal bound states. Since the unbound states are orthog-
onal to the bound states, the W-S approximation and
the band theory are expected to yield similar unbound
wavefunctions inside the nuclear clusters. This is con-
firmed by the calculation of the density distribution of
the unbound neutrons (whose single particle energies ex-
ceed −0.05 MeV as discussed previously) shown on Fig. 2,
obtained with the band theory and the W-S approxima-
tion. For the comparison, the density ρ(rrr) obtained from
the band theory, has been averaged over the solid angle
around one lattice site as follows

ρ(r) =

∫

dΩ

4π
ρ(rrr) , (9)

where r is the radial distance from the lattice site. Simi-
lar density oscillations are obtained in both calculations
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in the vicinity of the nuclear cluster for r < 10 fm as
expected. Qualitative differences in the neutron density
are however observed in the interstitial regions outside
clusters due to different boundary conditions. The un-
bound neutron density distribution is nearly flat in the
band theory while it is more fluctuating in the W-S ap-
proximation. The Bloch wavefunctions outside the clus-
ters are similar to plane waves (thus giving a constant
density) which cannot be properly described in the W-S
approximation owing to the expansion of the wavefunc-
tions into only a few spherical harmonics. An analysis of
the contribution of each single particle wave function to
the unbound neutron density in the W-S approximation
reveals that the oscillations at small radius are mainly
coming from p-states, such as 3p1/2 or 3p3/2 whereas at
larger radii (r > 20 fm) only a few larger ℓ states, mainly
d-f-g-h states, are contributing to the free neutron den-
sity.

As a result, the W-S approximation predicts a different
number of neutrons outside the cluster than in the band
theory. Since the total number of free neutrons should
be the same in both calculations, the difference in the
density profile at large radius implies a larger difference
in magnitude at small radius. This is more clearly seen
on Fig. 3, by plotting the integrated number N(r) of free
neutrons inside the W-S cell at radius r, defined by

N(r) = 4π

∫ r

0

r′2ρ(r′)dr′ , (10)

ρ(r) being the local density of unbound neutrons. The
figure shows that the W-S approximation underestimates
the number Nin = N(R) of free neutrons inside the re-
gion of radius R around the cluster and consequently
overestimates the number Nout = N(Rcell) − N(R) of
free neutrons outside. For both calculations, the number
of free neutrons in the cell is N(Rcell) = 70. Quantita-
tively taking R = 15 fm, the difference between the two
calculations is about ∆N = |∆Nin| = |∆Nout| = 3 which
is rather small.

This first comparison shows that the single particle
wave functions of unbound neutrons are qualitatively well
reproduced by the W-S approximation inside the nuclear
clusters. The main differences in the wavefunctions be-
tween the two calculations are found in the interstitial
region due to the different boundary conditions. How-
ever this has a rather small effect on the ground state
properties of the neutron gas, like the neutron density
distribution. More generally the W-S approximation can
be expected to be a good approximation to the full band
theory for evaluating the matrix elements of any operator
taking vanishing values outside the cluster region.

B. Single particle energy spectrum

Figs. 4 and 5 show the energy spectrum of the unbound
neutrons obtained in the band theory and in the W-S ap-
proximation, respectively. It should be noted from Fig. 5
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FIG. 3: Integrated unbound neutron number (see text) cal-
culated with the W-S approximation (WS, full lines) and the
band theory (BT, dotted lines)
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FIG. 4: Unbound single particle energy spectrum as obtained
in the band theory vs the Bloch wave vector kkk, along high
symmetry lines in the first Brillouin zone using standard no-
tations [20].

that the spin-orbit splitting is very weak for d, f, g and
h states (as predicted by Negele&Vautherin [5]) but not
for p states. This is due to the fact that the spin-orbit
splitting is proportional to the convolution of the density
gradient together with the wave functions. The density
gradient is localized in the central cluster while the d, f, g
and h states are mostly in the external region. For those
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FIG. 5: Unbound single particle energy spectrum obtained in
the W-S approximation.

states, the convolution leads to a weak splitting.
Since in band theory, the energies depend also on the

wavevector kkk, only the energy bands along some specific
symmetry directions in kkk-space are displayed. The en-
ergy spectrum obtained with the W-S approximation is
comparable to the one obtained in the band theory for
the symmetry point Γ corresponding to the center kkk = 0
of the first Brillouin zone (W-S cell of the reciprocal lat-
tice). The correspondence is not exact and the differences
come from the spherical approximation. As a result, the
W-S approximation predicts less states but with larger
degeneracies than the band theory at the symmetry point
Γ. The figures show clearly another important difference
between the band theory and the W-S approximation: in
the former case the energy spectrum is continuous while
in the latter case it is discrete.

A relevant quantity to compare the energy spectra is
the level density, which plays a pivotal role when calcu-
lating dynamical processes. It is defined by

g(E) = Vcell

∑

α

∫

BZ

d3kkk

(2π)3
δ(E − εαkkk) (11)

where the integral is taken over the first Brillouin zone
(BZ).

Using the δ function to integrate out one of the vari-
ables, the level density becomes

g(E) =
Vcell

(2π)3

∑

α

∫

dS(E)

|∇kkkεαkkk|
, (12)

where the integral is taken over the surface of constant
energy εαkkk = E in kkk-space. Expression (12) shows that
the level density is a probe of the topology of constant en-
ergy surfaces in kkk-space. We have extracted the level den-
sity from band theory by using the Gilat-Raubenheimer
method as in reference [14, 15].
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FIG. 6: Level density for neutron unbound states calculated
with the band theory (solid line) compared with the predic-
tion of the free Fermi gas (dashed line). The energy resolution
is of the order of keV.

In the W-S approximation the level density reduces to
a discrete sum

gWS(E) =
∑

njℓ

(2j + 1)δ(E − εnjℓ) . (13)

In Fig. 6, we show the level density predicted by the
band theory for the unbound single particle levels. As ex-
pected the figure shows that the energy spectrum in the
band theory is continuous and has a complex fine struc-
ture. The spectrum exhibits a quasi band gap of about
30 keV slightly around 90 keV. This is in sharp contrast
with the W-S approximation for which the energy levels
are discrete and separated by about 100 keV. In other
words, the W-S approximation overestimates the neu-
tron shell effects. The global energy dependence of the
level density follows the behavior of the free Fermi gas,

g(E) ≃ Vcell

2π2

(

2m

h̄2

)3/2
√

E − Ev , (14)

where Ev ≃ −0.031 MeV is the energy at the bottom
of the valence band. The agreement between the two
curves is very good for energies close to Ev. This means
that the Fermi surface is nearly spherical at low ener-
gies as confirmed by the calculations shown on Fig. 7.
This is due to the fact that the Fermi wavelength of the
unbound neutrons is much larger at low energies than
the lattice spacing. As a consequence the effect of Bragg
diffraction is negligible. It can be inferred from Fig. 6
that distortions of the Fermi surface from the spherical
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FIG. 7: (Color online)Constant neutron energy surface of a
body centered cubic lattice of 200Zr inside the first Brillouin
zone for E = −0.0015MeV.

shape happens at energies larger than 0. The first kink
around the zero of energy is a characteristic van Hove
singularity (as a result of the vanishing of the gradient
∇kkk εαkkk at some kkk points in the expression (12), also vis-
ible on Fig. 4) and indicates a topological transition of
the Fermi surface. This occurs when the Fermi sphere
touches the faces of the first Brillouin zone. For a body
centered cubic lattice, the transition takes place when
the radius of the sphere is equal to

√
2π/a where a is the

lattice spacing. Above the first kink, the Fermi surface
becomes non spherical with the appearance of necks close
to the Brillouin zone faces as illustrated on Fig. 8. The
Fermi surface undergoes further topological changes as it
crosses Bragg planes (higher Brillouin zones) as revealed
by the singularities in the level density. The actual Fermi
surface (associated with the 160 neutrons per cell) has
a very complicated shape with 11 branches (associated
with the 11 bands which cross the Fermi level).

In Fig. 9, we show the integrated number of single
particle levels which are below a given energy E

N(E) =

∫ E

Ev

dε g(ε) . (15)

The W-S approximation exhibits a stair steps structure
due to the discretization of the states. As already no-
ticed, the energy levels are discrete and highly degen-
erate, due to the imposed spherical symmetry around
the cluster. In contrast, in the band theory the spher-
ical symmetry is partly broken due to the translational
symmetry of the crystal lattice. The energy levels thus

FIG. 8: (Color online)Constant neutron energy surface of a
body centered cubic lattice of 200Zr inside the first Brillouin
zone for E = 0.0085MeV.

broaden into bands, with a low residual degeneracy (at
most 6 at each kkk point for cubic crystals, counting the
spin degeneracy [20]), which overlap so that the energy
spectrum is continuous.

In conclusion, for processes which involve transfered
energies above the characteristic level spacing around
the Fermi energy, the differences between the W-S ap-
proximation and the full band theory are expected to be
small. For instance, it is typically the case for neutrino
response function [22] or thermal effects before the star
cools completely down. However at lower energies, as
pertaining for instance the effective neutron mass rele-
vant for fluid dynamics [13, 14, 15], the full band theory
is required. The level spacing can be roughly evaluated
from the quantity h̄2/2mR2

cell. From the top to the bot-
tom layers of the crust, the characteristic level spacing
varies from about 100 keV to 200 keV, which corresponds
to temperatures of the order of 109 K. Such temperatures
are found in young neutron stars less than a few hundred
years after their birth [23]. The W-S approximation is
therefore well suited for describing the hot dense matter
(except for the high density layers where the spherical
approximation may be too restrictive) in young neutron
stars and in the collapsing core of massive stars during
supernova explosions [6]. This discussion however does
not take into account pairing effects, which are negligible
in the outermost layers of the crust considered in this
work but are expected to be important in denser and
deeper layers [17]. It should be noted that a recent study
has shown that the pairing properties of the unbound
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neutrons are strongly sensitive to the choice of boundary
conditions in the W-S approximation, especially in the
bottom layers of the crust [12, 21].

III. CONCLUSION

In this article, a comparison has been done between
the full band theory and the W-S approximation which
has been widely applied in studies of neutron star crust.
The external layers of the inner crust at a baryon density
ρ ∼ 7 × 1011 g/cm3 composed of zirconium like clusters
200Zr have been considered. Since the bound nucleons are
not much affected by the boundary conditions, we have
focused on the unbound neutrons. We have shown that
the ground state properties such as the unbound neutron
density distribution, are rather well reproduced by the
W-S approximation, while the dynamical properties de-

pend on the process of interest or the energy exchanged.
It should also be noticed that depending on the quantities
of interest, the free neutron model for the unbound neu-
trons could be a good first approximation. In the future,
it could be interesting to explore an intermediate scheme
which goes beyond the Wigner-Seitz approximation and
remains simpler to implement in numerical calculations
than the full band theory.

The energy spectrum is continuous in the full band the-
ory with no energy gaps while the W-S approximation
yields a discrete spectrum thereby overestimating neu-
tron shell effects. The W-S approximation can therefore
be applied whenever the processes under considerations
involve energies larger than the level spacing induced by
the discretization, which in the present case is of order
∼ 100 keV. In particular, the W-S approximation is well
suited for describing the hot (T >∼ 109 K) dense matter in
the inner crust of young neutron stars and in the collaps-
ing core of massive stars during supernovae explosions.
However low temperature transport processes such as the
effective neutron mass relating the momentum to the ve-
locity and giving rise to entrainment effects, require a
fine knowledge of the energy spectrum around the Fermi
level (i.e. the Fermi surface) which cannot be reproduced
by the W-S approximation. Since the lattice spacing is
predicted to decrease with increasing depth, becoming
comparable to the size of the nuclear clusters and to
the Fermi wave length of the free neutrons at the bot-
tom of the crust, the validity of the W-S approximation
should be carefully investigated in the denser layers of the
crust, especially concerning pairing effects. Besides, the
assumption of spherical symmetry in the W-S approx-
imation is probably too restrictive near the crust-core
interface where the clusters are expected to be strongly
deformed [16].
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