Introduction

Cette note a pour but d'établir les expressions analytiques utilisées dans le code BETA [START_REF] Code | LNS version[END_REF] pour caractériser le mouvement des particules autour de l'orbite fermée chromatique dans un synchrotron. Elle détaille des calculs effectués il y a plus d'une dizaine d'années mais non publiés alors. Le formalisme utilisé est celui des aberrations au second ordre développé pour le code TRANSPORT [START_REF] Brown | A first and second order matrix theory for the design of beam transport systems and charged particles spectrometers[END_REF]. Il conduit aux expressions de la fonction dispersion au second ordre, des chromaticités au premier ordre et du « momentum compaction »au second ordre en fonction des termes de la matrice de transfert de la maille au second ordre. On retrouve ainsi certains résultats connus et publiés antérieurement [START_REF]Laclare Etude des aberrations de second ordre dans les systèmes optiques avec applications à l'éjection résonnante dans les accélérateurs circulaires[END_REF], [START_REF] Leleux | Tkatchenko Le glissement des nombres d'ondes en fonction de la quantité de mouvement dans MIMAS[END_REF], [START_REF] Nagaenko | Shukeilo Proceedings of the 12 th International Conference on High Energy Accelerators[END_REF]. De plus, cette approche permet d'obtenir une expression analytique explicite du momentum compaction au second ordre.

2 Matrice de transfert pour le mouvement autour de l'orbite fermée chromatique

Dans les notations du code TRANSPORT, les coordonnées d'une particule (x, θ, z, ϕ, l, δ) par rapport à la trajectoire centrale en un azimut s d'une maille s'expriment en fonction des coordonnées (x 0 , θ 0 , z 0 , ϕ 0 , l 0 , δ 0 ) à l'origine de cette maille sous la forme d'un développement au second ordre et prenant en compte l'existence d'un plan d'antisymétrie pour les champs.

x(s) = r 11 x 0 + r 12 θ 0 + r 16 δ (1) +t 111 x 0 2 + t 112 x 0 θ 0 + t 122 θ 0 2 +t 116 x 0 δ + t 126 θ 0 δ + t 166 δ 2 +t 133 z 0 2 + t 134 z 0 ϕ 0 + t 144 ϕ 0 2 θ(s) = r 21 x 0 + r 22 θ 0 + r 26 δ (2) +t 211 x 0 2 + t 212 x 0 θ 0 + t 222 θ 0 2 +t 216 x 0 δ + t 226 θ 0 δ + t 266 δ 2 +t 233 z 0 2 + t 234 z 0 ϕ 0 + t 244 ϕ 0 2 z(s) = r 33 z 0 + r 34 ϕ 0 (3) +t 313 x 0 z 0 + t 314 x 0 ϕ 0 + t 323 θ 0 z 0 +t 324 ϕ 0 θ 0 + t 336 z 0 δ + t 346 ϕ 0 δ ϕ(s) = r 43 z 0 + r 44 θ 0
(4) +t 413 x 0 z 0 + t 414 x 0 ϕ 0 + t 423 θ 0 z 0 +t 424 ϕ 0 θ 0 + t 436 z 0 δ + t 446 ϕ 0 δ Dans ces expressions, les termes r ij et t ijk sont des fonctions de la coordonnée longitudinale s et on a pris en compte le fait que la référence était inscrite dans le plan horizontal qui est un plan d'antisymétrie pour les champs de guidage et de focalisation.

Considérons maintenant une particule présentant un écart δ relatif en impulsion par rapport à la particule de référence et oscillant autour d'une orbite fermée chromatique x c (s) inscrite elle aussi dans le plan horizontal. En introduisant les écarts x, θ, z, φ, δ caractérisant le mouvement autour de l'orbite fermée x c (s), on peut écrire :

x(s) = x c (s) + x(s), θ(s) = θ c (s) + θ(s), δ = δ c + δ (5) z(s) = z(s), ϕ(s) = φ(s)
Il vient alors :

x(s) = x0 [r 11 + 2t 111 x c0 + t 112 θ c0 + t 116 δ c ] (6) + θ0 [r 12 + t 112 x c0 + 2t 122 θ c0 + t 126 δ c ] + δ[r 16 + t 116 x c0 + t 126 θ c0 + 2t 166 δ c ] θ(s) = x0 [r 21 + 2t 211 x c0 + t 212 θ c0 + t 216 δ c ] (7) + θ0 [r 22 + t 212 x c0 + 2t 222 θ c0 + t 226 δ c ] + δ[r 26 + t 216 x c0 + t 226 θ c0 + 2t 266 δ c ] z(s) = z0 [r 33 + t 313 x c0 + t 323 θ c0 + t 336 δ c ] (8) + φ0 [r 34 + t 314 x c0 + t 324 θ c0 + t 346 δ c ] φ(s) = z0 [r 43 + t 413 x c0 + t 423 θ c0 + t 436 δ c ] (9) + φ0 [r 44 + t 414 x c0 + t 424 θ c0 + t 446 δ c ]
Ici, les quantités x c0 , θ c0 , δ c caractérisent l'orbite fermée chromatique au premier ordre à l'origine de la maille et s'écrivent :

x c0 = D 10 δ c , θ c0 = D ′ 10 δ c
où D 10 et D ′ 10 sont la fonction dispersion au premier ordre et sa dérivée par rapport à s à l'origine de la maille.

3 Variation des nombres d'onde et des paramètres de Twiss en fonction de l'écart relatif δ en impulsion (chromaticité au premier ordre en δ)

Les expressions montrent que le mouvement des particules présentant un écart en impulsion peut-être décrit, autour de l'orbite fermée chromatique, par une matrice de transfert dont les termes Rij s'écrivent :

Rij = R ij + ∆R ij où R ij
correspond à la matrice de transfert au premier ordre d'une maille pour le mouvement autour de la trajectoire de référence et ∆Rij traduit l'influence des termes du second ordre. Sachant que les nombres d'onde ν x , ν z et les fonctions optiques β x , β z , α x , α z peuvent être déterminés à partir des termes de la matrice de transfert d'une période dans un synchrotron, il est immédiat de déduire leur variation pour le mouvement autour de l'orbite fermée chromatique. En effet, en écrivant :

R 11 + R 22 = 2cosµ x0 , R 33 + R 44 = 2cosµ z0 (10) 
pour le mouvement autour de l'orbite de référence.

R11 + R22 = 2cosµ x = 2cos(µ x 0 + ∆µ x ), R33 + R44 = 2cosµ z = 2cos(µ z 0 + ∆µ z ) (11)
pour le mouvement autour de l'orbite fermée chromatique et :

∆ν x = N ∆µ x 2π , ∆ν z = N ∆µ z 2π (12) 
on trouve, après quelques calculs élémentaires :

∆ν x = - N 4πsinµ x0 [∆R 11 + ∆R 22 ] ( 13 
)
∆ν z = - N 4πsinµ x0 [∆R 33 + ∆R 44 ] ( 14 
)
∆β x = ∆R 12 sinµ x0 - 2π N β x0 ∆ν x cotgµ x0 (15) 
∆β z = ∆R 34 sinµ x0 - 2π N β z0 ∆ν z cotgµ z0 (16) 
∆α x = 1 2sinµ x0 [∆R 11 -∆R 22 -2α x0 2π N ∆ν x cosµ x0 ] (17) 
∆α z = 1 2sinµ z0 [∆R 33 -∆R 44 -2α z0 2π N ∆ν z cosµ z0 ] (18) 
Dans ces expressions, µ x0 et µ z0 sont les avances de phase betatron sur une maille pour le mouvement autour de la référence, β x0 , β x0 , α x0 , α x0 sont les fonctions optiques associées à l'origine de la maille et N est le nombre de mailles. Les termes R ij sont les coefficients de la matrice de transfert de la maille. Les termes ∆R ij caractérisent la modification des coefficients de la matrice de transfert d'une période lorsqu'on décrit le mouvement des particules autour de leur orbite fermée chromatique. Ils sont donnés par : 

∆R 11 + ∆R 22 = δ c [D 10 (2T 111 + T 212 ) + D ′ 10 (T 112 + 2T 222 ) + T 116 + T 226 ] (19) 
où les termes T ijk sont eux aussi représentatifs de la matrice de transfert de la maille au second ordre.

Fonction dispersion au second ordre

Au second ordre, l'orbite fermée chromatique x c (s) et sa pente θ c (s) à d'une maille s'écrivent :

x c (0) = D 10 δ c + D 20 δ 2 c ( 27 
)
θ c (0) = D ′ 10 δ c + D ′ 20 δ 2 c ( 28 
)
Imposer la fermeture de l'orbite sur une période revient à écrire les relations suivantes où δ c à été remplacé par δ pour alléger l'écriture :

D 10 δ + D 20 δ 2 = R 11 (D 10 δ + D 20 δ 2 ) + R 12 (D ′ 10 δ + D ′ 20 δ 2 ) + R 16 δ (29) +T 111 (D 10 δ + D 20 δ 2 ) 2 + T 112 (D 10 δ + D 20 δ 2 )(D ′ 10 δ + D ′ 20 δ 2 ) +T 122 (D ′ 10 δ + D ′ 20 δ 2 ) 2 + T 116 (D 10 δ + D 20 δ 2 )δ +T 126 (D ′ 10 δ + D ′ 20 δ 2 )δ + T 166 δ 2 D ′ 10 δ + D ′ 20 δ 2 = R 21 (D 10 δ + D 20 δ 2 ) + R 22 (D ′ 10 δ + D ′ 20 δ 2 ) + R 26 δ (30) +T 211 (D 10 δ + D 20 δ 2 ) 2 + T 212 (D 10 δ + D 20 δ 2 )(D ′ 10 δ + D ′ 20 δ 2 ) +T 222 (D ′ 10 δ + D ′ 20 δ 2 ) 2 + T 216 (D 10 δ + D 20 δ 2 )δ +T 226 (D ′ 10 δ + D ′ 20 δ 2 )δ + T 266 δ 2
En résolvant le système formé par ces deux équations et en séparant les termes en δ et en δ 2 , il vient :

D 10 = (1 -R 22 )R 16 + R 12 R 26 2(1 -cosµ x0 ) (31) 
D ′ 10 = (1 -R 11 )R 26 + R 21 R 16 2(1 -cosµ z0 ) (32) 
D 20 = 1 2(1 -cosµx 0 ) {R 12 T 266 + (1 -R 22 )T 166 (33) +[R 12 T 216 + (1 -R 22 )T 116 ]D 10 +[R 12 T 226 + (1 -R 22 )T 126 ]D ′ 10 +[R 12 T 211 + (1 -R 22 )T 111 ]D 2 10 +[R 12 T 222 + (1 -R 22 )T 122 ]D ′2 10 +[R 12 T 212 + (1 -R 22 )T 112 ]D 10 D ′ 10 } D ′ 20 = 1 2(1 -cosµx 0 ) {R 21 T 166 + (1 -R 11 )T 266 (34) +[R 21 T 116 + (1 -R 11 )T 216 ]D 10 +[R 21 T 126 + (1 -R 11 )T 226 ]D ′ 10 +[R 21 T 111 + (1 -R 11 )T 211 ]D 2 10 +[R 21 T 122 + (1 -R 11 )T 222 ]D ′2 10 +[R 21 T 112 + (1 -R 11 )T 212 ]D 10 D ′ 10 }
Comme dans le paragraphe précédent, toutes les quantités R ij et T ijk représentent la matrice de transfert d'une maille.

5 Facteur de compression des moments (momentum compaction) au second ordre

Connaissant la fonction dispersion au premier et au second ordre à l'origine d'une maille, il est possible de calculer l'orbite fermée chromatique x c (s) en tout points de l'accélérateur en posant :

x c (s) = D 1 (s)δ + D 2 (s)δ 2 (35) θ c (s) = D ′ 1 (s)δ + D ′ 2 (s)δ 2 (36) 
avec : Où, ici, les termes r ij et t ijk sont des fonctions de la coordonnée longitudinale s.

D 1 (s) =
Intéressons-nous maintenant à la différence de longueur l sur une maille entre une orbite fermée chromatique (L) et l'orbite de référence (L 0 ) . On a : Finalement, en introduisant la notion de « momentum compaction », l'équation 41 s'écrit : l = L 0 (α 1 δ + α 2 δ 2 ) avec : 

l = L -L 0 = L 0 0 [h(s)x c (s) + θ 2 c (s) 2 ]ds ( 
α 1 = 1 L 0 [R 51 D 10 + R 52 D ′ 10 + R 56 ] (42) 

Conclusion

Le formalisme des aberrations au second ordre permet de déterminer des expressions analytiques explicites pour caractériser au premier ou au second ordre en δ le comportement des faisceaux présentant une dispersion en impulsion. La minimisation des perturbations chromatiques se réduit alors à la minimisation des termes du second ordre T ijk qui sont liés entre eux par les conditions de symplecticité.
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