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Abstract

A unified approach to (symmetric informationally complete)positive op-

erator valued measures and mutually unbiased bases is developed in this arti-

cle. The approach is based on the use of Racah unit tensors forthe Wigner-

Racah algebra ofSU(2) ⊃ U(1). Emphasis is put on similarities and differ-

ences between SIC-POVMs and MUBs.

Keywords: finite–dimensional Hilbert spaces; mutually unbiased bases; positive op-

erator valued measures;SU(2) ⊃ U(1) Wigner-Racah algebra

1 INTRODUCTION

The importance of finite-dimensional spaces for quantum mechanics is well recognized

(see for instance [1]-[3]). In particular, such spaces playa major role in quantum informa-

tion theory, especially for quantum cryptography and quantum state tomography [4]-[27].

Along this vein, a symmetric informationally complete (SIC) positive operator valued

measure (POVM) is a set of operators acting on a finite Hilbertspace [4]-[14] (see also

[3] for an infinite Hilbert space) and mutually unbiased bases (MUBs) are specific bases

for such a space [15]-[27].

The introduction of POVMs goes back to the seventies [4]-[7]. The most general quan-

tum measurement is represented by a POVM. In the present work, we will be interested
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in SIC-POVMs, for which the statistics of the measurement allows the reconstruction of

the quantum state. Moreover, those POVMs are endowed with anextra symmetry condi-

tion (see definition in Sec. 2). The notion of MUBs (see definition in Sec. 3), implicit or

explicit in the seminal works of [15]-[18], has been the object of numerous mathematical

and physical investigations during the last two decades in connection with the so-called

complementary observables. Unfortunately, the question to know, for a given Hilbert

space of finite dimensiond, whether there exist SIC-POVMs and how many MUBs there

exist has remained an open one.

The aim of this note is to develop a unified approach to SIC-POVMs and MUBs based

on a complex vector space of higher dimension, viz.d2 instead ofd. We then give a

specific example of this approach grounded on the Wigner-Racah algebra of the chain

SU(2) ⊃ U(1) recently used for a study of entanglement of rotationally invariant spin

systems [28] and for an angular momentum study of MUBs [26, 27].

Most of the notations in this work are standard. Let us simplymention thatI is the

identity operator, the bar indicates complex conjugation,A† denotes the adjoint of the

operatorA, δa,b stands for the Kronecker symbol fora and b, and∆(a, b, c) is 1 or 0

according asa, b andc satisfy or not the triangular inequality.

2 SIC-POVMs

Let Cd be the standard Hilbert space of dimensiond endowed with its usual inner product

denoted by〈 | 〉. As is usual, we will identify a POVM with a nonorthogonal decompo-

sition of the identity. Thus, a discrete SIC-POVM is a set{Px : x = 1, 2, · · · , d2} of d2

nonnegative operatorsPx acting onCd, such that:

• they satisfy thetraceor symmetry condition

Tr (PxPy) =
1

d + 1
, x 6= y; (1)

moreover, we will assume the operatorsPx are normalized, thus completing this
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condition with

Tr
(

P 2
x

)

= 1; (2)

• they form adecomposition of the identity

1

d

d2

∑

x=1

Px = I; (3)

• they satisfy acompleteness condition: the knowledge of the probabilitiespx defined

by px = Tr(Pxρ) is sufficient to reconstruct the density matrixρ.

Now, let us develop each of the operatorsPx on an orthonormal (with respect to the

Hilbert–Schmidt product) basis{ui : i = 1, 2, · · · , d2} of the space of linear operators on

Cd

Px =

d2

∑

i=1

vi(x)ui, (4)

where the operatorsui satisfyTr(u†
iuj) = δi,j. The operatorsPx are thus considered as

vectors

v(x) = (v1(x), v2(x), · · · , vd2(x)) (5)

in the Hilbert spaceCd2

of dimensiond2 and the determination of the operatorsPx is

equivalent to the determination of the componentsvi(x) of v(x). In this language, the

trace property (1) together with the normalization condition (2) give

v(x) · v(y) =
1

d + 1
(dδx,y + 1) , (6)

wherev(x) · v(y) =
∑d2

i=1 vi(x)vi(y) is the usual Hermitian product inCd2

.

In order to compare Eq. (6) with what usually happens in the search for SIC-POVMs,

we suppose from now on that the operatorsPx are rank-one operators. Therefore, by

putting

Px = |Φx〉〈Φx| (7)
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with |φx〉 ∈ Cd, the trace property (1, 2) reads

|〈Φx|Φy〉|2 =
1

d + 1
(dδx,y + 1) . (8)

From this point of view, to findd2 operatorsPx is equivalent to findingd2 vectors|φx〉

in Cd satisfying Eq. (8). At the price of an increase in the number of components from

d3 (for d2 vectors inCd) to d4 (for d2 vectors inCd2

), we have got rid of the square

modulus to result in a single scalar product (compare Eqs. (6) and (8)), what may prove

to be suitable for another way to search for SIC-POVMs. Moreover, our relation (6) is

independent of any hypothesis on the rank of the operatorsPx. In fact, there exists a lot

of relations among thesed4 coefficients that decrease the effective number of coefficients

to be found and give structural constraints on them. Those relations are highly sensitive

to the choice of the basis{ui : i = 1, 2, · · · , d2} and we are going to exhibit an example

of such a set of relations by choosing the basis to consist of Racah unit tensors.

The cornerstone of this approach is to identifyCd with a subspaceε(j) of constant

angular momentumj = (d − 1)/2. Such a subspace is spanned by the set{|j, m〉 : m =

−j,−j + 1, · · · , j}, where|j, m〉 is an eigenvector of the square and thez-component

of a generalized angular momentum operator. Letu
(k) be the Racah unit tensor [29]

of orderk (with k = 0, 1, · · · , 2j) defined by its2k + 1 componentsu(k)
q (whereq =

−k,−k + 1, · · · , k) through

u(k)
q =

j
∑

m=−j

j
∑

m′=−j

(−1)j−m

(

j k j
−m q m′

)

|j, m〉〈j, m′|, (9)

where(· · ·) denotes a 3–jm Wigner symbol. For fixedj, the (2j + 1)2 operatorsu(k)
q

(with k = 0, 1, · · · , 2j andq = −k,−k + 1, · · · , k) act onε(j) ∼ Cd and form a basis

of the Hilbert spaceCN of dimensionN = (2j + 1)2, the inner product inCN being the

Hilbert–Schmidt product. The formulas (involving unit tensors, 3–jm and 6–j symbols)

relevant for this work are given in Appendix (see also [29] to[31]). We must remember

that those Racah operators are not normalized to unity (see relation (46)). So this will

generate an extra factor when definingvi(x).
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Each operatorPx can be developed as a linear combination of the operatorsu
(k)
q .

Hence, we have

Px =

2j
∑

k=0

k
∑

q=−k

ckq(x)u(k)
q , (10)

where the unknown expansion coefficientsckq(x) are a priori complex numbers. The

determination of the operatorsPx is thus equivalent to the determination of the coefficients

ckq(x), which are formally given by

ckq(x) = (2k + 1)〈Φx|u(k)
q |Φx〉, (11)

as can be seen by multiplying each member of Eq. (10) by the adjoint of u
(ℓ)
p and then

using Eq. (46) of Appendix.

By defining the vector

v(x) = (v1(x), v2(x), · · · , vN(x)), N = (2j + 1)2 (12)

via

vi(x) =
1√

2k + 1
ckq(x), i = k2 + k + q + 1, (13)

the following properties and relations are obtained.

• The first componentv1(x) of v(x) does not depend onx since

c00(x) =
1√

2j + 1
(14)

for all x ∈ {1, 2, · · · , (2j + 1)2}.

Proof: Take the trace of Eq. (10) and use Eq. (48) of Appendix.

• The componentsvi(x) of v(x) satisfy thecomplex conjugation propertydescribed

by

ckq(x) = (−1)qck−q(x) (15)

for all x ∈ {1, 2, · · · , (2j + 1)2}, k ∈ {0, 1, · · · , 2j} andq ∈ {−k,−k + 1, · · · , k}.

Proof: Use the Hermitian property ofPx and Eq. (43) of Appendix.
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• In terms ofckq, Eq. (6) reads
2j

∑

k=0

1

2k + 1

k
∑

q=−k

ckq(x)ckq(y) =
1

2(j + 1)
[(2j + 1)δx,y + 1] (16)

for all x, y ∈ {1, 2, · · · , (2j + 1)2}, where the sum overq is SO(3)–rotationally

invariant.

Proof: The proof is trivial.

• The coefficientsckq(x) are solutions of thenonlinear systemgiven by

1

2K + 1
cKQ(x) = (−1)2j−Q

2j
∑

k=0

2j
∑

ℓ=0

k
∑

q=−k

ℓ
∑

p=−ℓ

(

k ℓ K
−q −p Q

)

×
{

k ℓ K
j j j

}

ckq(x)cℓp(x) (17)

for all x∈ {1, 2, · · · , (2j+1)2}, K ∈ {0, 1, · · · , 2j} andQ∈ {−K,−K+1, · · · , K}.

Proof: ConsiderP 2
x = Px and use the coupling relation (51) of Appendix involving

a 3–jm and a 6–j Wigner symbols.

As a corollary of the latter property, by takingK = 0 and using Eqs. (47) and (50)

of Appendix, we get again the normalization relation‖v(x)‖2 = v(x) · v(x) = 1.

• All coefficientsckq(x) are connected through thesum rule

(2j+1)2
∑

x=1

2j
∑

k=0

k
∑

q=−k

ckq(x)

(

j k j
−m q m′

)

= (−1)j−m(2j + 1)δm,m′ , (18)

which turns out to be useful for global checking purposes.

Proof: Take thejm–jm′ matrix element of the resolution of the identity in terms of

the operatorsPx/(2j + 1).

3 MUBs

A complete set of MUBs in the Hilbert spaceCd is a set ofd(d + 1) vectors|aα〉 ∈ Cd

such that

|〈aα|bβ〉|2 = δα,βδa,b +
1

d
(1 − δa,b), (19)
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wherea = 0, 1, · · · , d andα = 0, 1, · · · , d − 1. The indices of typea refer to the bases

and, for fixeda, the indexα refers to one of thed vectors of the basis corresponding toa.

We know that such a complete set exists ifd is a prime or the power of a prime (e.g., see

[16]-[24]).

The approach developed in Sec. 2 for SIC-POVMs can be appliedto MUBs too. Let

us suppose that it is possible to findd + 1 setsSa (with a = 0, 1, · · · , d) of vectors inC
d,

each setSa = {|aα〉 : α = 0, 1, · · · , d − 1} containingd vectors|aα〉 such that Eq. (19)

be satisfied. This amounts to findingd(d + 1) projection operators

Πaα = |aα〉〈aα| (20)

satisfying thetrace condition

Tr (ΠaαΠbβ) = δα,βδa,b +
1

d
(1 − δa,b), (21)

where the trace is taken onCd. Therefore, they also form anonorthogonal decomposition

of the identity

1

d + 1

d
∑

a=0

d−1
∑

α=0

Πaα = I. (22)

As in Sec. 2, we develop each operatorΠaα on an orthonormal basis with expansion

coefficientswi(aα). Thus we get vectorsw(aα) in Cd2

w(aα) = (w1(aα), w2(aα), · · · , wd2(aα)) (23)

such that

w(aα) · w(bβ) = δα,βδa,b +
1

d
(1 − δa,b) (24)

for all a, b ∈ {0, 1, · · · , d} andα, β ∈ {0, 1, · · · , d − 1}.

Now we draw the same relations as for POVMs by choosing the Racah operators to be

our basis inCd2

. We assume once again that the Hilbert spaceCd is realized byε(j) with

j = (d − 1)/2. Then, each operatorΠaα can be developed on the basis of the(2j + 1)2
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operatorsu(k)
q as

Πaα =

2j
∑

k=0

k
∑

q=−k

dkq(aα)u(k)
q , (25)

to be compared with Eq. (10). The expansion coefficients are

dkq(aα) = (2k + 1)〈aα|u(k)
q |aα〉 (26)

for all a ∈ {0, 1, · · · , 2j + 1}, α ∈ {0, 1, · · · , 2j}, k ∈ {0, 1, · · · , 2j} andq ∈ {−k,−k +

1, · · · , k}. Fora andα fixed, the complex coefficientsdkq(aα) define a vector

w(aα) = (w1(aα), w2(aα), · · · , wN(aα)) , N = (2j + 1)2 (27)

in the Hilbert spaceCN , the components of which are given by

wi(aα) =
1√

2k + 1
dkq(aα), i = k2 + k + q + 1. (28)

We are thus led to the following properties and relations. The proofs are similar to those

in Sec. 2.

• First componentw1(aα) of w(aα):

d00(aα) =
1√

2j + 1
(29)

for all a ∈ {0, 1, · · · , 2j + 1} andα ∈ {0, 1, · · · , 2j}.

• Complex conjugation property:

dkq(aα) = (−1)qdk−q(aα) (30)

for all a ∈ {0, 1, · · · , 2j + 1}, α ∈ {0, 1, · · · , 2j}, k ∈ {0, 1, · · · , 2j} and q ∈

{−k,−k + 1, · · · , k}.

• Rotational invariance:

2j
∑

k=0

1

2k + 1

k
∑

q=−k

dkq(aα)dkq(bβ) = δα,βδa,b +
1

2j + 1
(1 − δa,b) (31)

for all a, b ∈ {0, 1, · · · , 2j + 1} andα, β ∈ {0, 1, · · · , 2j}.
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• Tensor product formula:

1

2K + 1
dKQ(aα) = (−1)2j−Q

2j
∑

k=0

2j
∑

ℓ=0

k
∑

q=−k

ℓ
∑

p=−ℓ

(

k ℓ K
−q −p Q

)

×
{

k ℓ K
j j j

}

dkq(aα)dℓp(aα) (32)

for all a ∈ {0, 1, · · · , 2j + 1}, α ∈ {0, 1, · · · , 2j}, K ∈ {0, 1, · · · , 2j} andQ ∈

{−K,−K + 1, · · · , K}.

• Sum rule:
2j+1
∑

a=0

2j
∑

α=0

2j
∑

k=0

k
∑

q=−k

dkq(aα)

(

j k j
−m q m′

)

= (−1)j−m2(2j + 1)δm,m′ (33)

which involves all coefficientsdkq(aα).

4 CONCLUSIONS

Although the structure of the relations in Sec. 1 on the one hand and Sec. 2 on the other

hand is very similar, there are deep differences between thetwo sets of results. The

similarities are reminiscent of the fact that both MUBs and SIC-POVMs can be linked to

finite affine planes [12, 13, 22, 23, 25] and to complex projective 2–designs [8, 10, 19, 24].

On the other side, there are two arguments in favor of the differences between relations (6)

and (24). First, the problem of constructing SIC-POVMs in dimensiond is not equivalent

to the existence of an affine plane of orderd [12, 13]. Second, there is a consensus around

the conjecture according to which there exists a complete set of MUBs in dimensiond if

and only if there exists an affine plane of orderd [22].

In dimensiond, to find d2 operatorsPx of a SIC-POVM acting on the Hilbert space

Cd amounts to findd2 vectorsv(x) in the Hilbert spaceCN with N = d2 satisfying

‖vx‖ = 1, v(x) · v(y) =
1

d + 1
for x 6= y (34)

(the norm‖v(x)‖ of each vectorv(x) is 1 and the angleωxy of any pair of vectorsv(x)

andv(y) is ωxy = cos−1[1/(d + 1)] for x 6= y).
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In a similar way, to findd + 1 MUBs of Cd is equivalent to findd + 1 setsSa (with

a = 0, 1, · · · , d) of d vectors,i.e., d(d + 1) vectors in all,w(aα) in CN with N = d2

satisfying

w(aα) · w(aβ) = δα,β, w(aα) · w(bβ) =
1

d
for a 6= b (35)

(each setSa consists ofd orthonormalized vectors and the angleωaαbβ of any vector

w(aα) of a setSa with any vectorw(bβ) of a setSb is ωaαbβ = cos−1(1/d) for a 6= b).

According to a well accepted conjecture [8, 10], SIC-POVMs should exist in any

dimension. The present study shows that in order to prove this conjecture it is sufficient

to prove that Eq. (34) admit solutions for any value ofd.

The situation is different for MUBs. In dimensiond, it is known that there existd + 1

sets ofd vectors of type|aα〉 in Cd satisfying Eq. (19) whend is a prime or the power of

a prime. This shows that Eq. (35) can be solved ford prime or power of a prime. Ford

prime, it is possible to find an explicit solution of Eq. (19).In fact, we have [26, 27]

|aα〉 =
1√

2j + 1

j
∑

m=−j

ω(j+m)(j−m+1)a/2+(j+m)α|j, m〉, (36)

ω = exp

(

i
2π

2j + 1

)

, j =
1

2
(d − 1) (37)

for a, α ∈ {0, 1, · · · , 2j} while

|aα〉 = |j, m〉 (38)

for a = 2j + 1 andα = j + m = 0, 1, · · · , 2j. Then, Eq. (26) yields

dkq(aα) =
2k + 1

2j + 1

j
∑

m=−j

j
∑

m′=−j

ωθ(m,m′)(−1)j−m

(

j k j
−m q m′

)

, (39)

θ(m, m′) = (m − m′)

[

1

2
(1 − m − m′)a + α

]

(40)

for a, α ∈ {0, 1, · · · , 2j} while

dkq(aα) = δq,0(2k + 1)(−1)j−m

(

j k j
−m 0 m

)

(41)

for a = 2j + 1 andα = j + m = 0, 1, · · · , 2j. It can be shown that Eqs. (40) and (41)

are in agreement with the results of Sec. 2. We thus have a solution of the equations for
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the results of Sec. 2 whend is prime. As an open problem, it would be worthwhile to find

an explicit solution for the coefficientsdkq(aα) whend = 2j + 1 is any positive power

of a prime. Finally, note that to prove (or disprove) the conjecture according to which a

complete set of MUBs in dimensiond exists only ifd is a prime or the power of a prime

is equivalent to prove (or disprove) that Eq. (35) has a solution only if d is a prime or the

power of a prime.

APPENDIX: WIGNER-RACAH ALGEBRA OF SU(2) ⊃
U(1)

We limit ourselves to those basic formulas for the Wigner-Racah algebra of the chain

SU(2) ⊃ U(1) which are necessary to derive the results of this paper. The summations

in this appendix have to be extended to the allowed values forthe involved magnetic and

angular momentum quantum numbers.

The definition (9) of the componentsu(k)
q of the Racah unit tensoru(k) yields

〈j, m|u(k)
q |j, m′〉 = (−1)j−m

(

j k j
−m q m′

)

, (42)

from which we easily obtain the Hermitian conjugation property

u(k)
q

†
= (−1)qu

(k)
−q . (43)

The 3–jm Wigner symbol in Eq. (42) satisfy the orthogonality relations

∑

mm′

(

j j′ k
m m′ q

) (

j j′ ℓ
m m′ p

)

=
1

2k + 1
δk,ℓδq,p∆(j, j′, k) (44)

and
∑

kq

(2k + 1)

(

j j′ k
m m′ q

) (

j j′ k
M M ′ q

)

= δm,Mδm′,M ′. (45)

The trace relation on the spaceε(j)

Tr
(

u(k)
q

†
u(ℓ)

p

)

=
1

2k + 1
δk,ℓδq,p∆(j, j, k) (46)
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easily follows by combining Eqs. (42) and (44). Furthermore, by introducing
(

j j′ 0
m −m′ 0

)

= δj,j′δm,m′(−1)j−m 1√
2j + 1

(47)

in Eq. (44), we obtain the sum rule

∑

m

(−1)j−m

(

j k j
−m q m

)

=
√

2j + 1δk,0δq,0∆(j, k, j), (48)

known in spectroscopy as the barycenter theorem.

There are several relations involving 3–jm and 6–j symbols. In particular, we have

∑

mm′M (−1)j−M

(

j k j
−m q M

) (

j ℓ j
−M p m′

) (

j K j
−m Q m′

)

= (−1)2j−Q

(

k ℓ K
−q −p Q

) {

k ℓ K
j j j

}

, (49)

where{· · ·} denotes a 6–j Wigner symbol (orW Racah coefficient). Note that the intro-

duction of
{

k ℓ 0
j j J

}

= δk,ℓ(−1)j+k+J 1
√

(2k + 1)(2j + 1)
(50)

in Eq. (49) gives back Eq. (44). Equation (49) is central in the derivation of the coupling

relation

u(k)
q u(ℓ)

p =
∑

KQ

(−1)2j−Q(2K + 1)

(

k ℓ K
−q −p Q

) {

k ℓ K
j j j

}

u
(K)
Q . (51)

Equation (51) makes it possible to calculate the commutator[u
(k)
q , u

(ℓ)
p ] which shows that

the set{u(k)
q : k = 0, 1, · · · , 2j; q = −k,−k + 1, · · · , k} can be used to span the Lie

algebra of the unitary group U(2j + 1). The latter result is at the root of the expansions

(17) and (32).
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[24] A. Klappenecker and M. Rötteler,Preprint quant-ph/0502031 (2005)

[25] W. K. Wootters,Found. Phys.36, 112 (2006)

[26] M. R. Kibler and M. Planat,Int. J. Mod. Phys.B 20, 1802 (2006)

[27] O. Albouy and M. R. Kibler,SIGMA3, article 076 (2007)

[28] H.-P. Breuer,J. Phys. A: Math. Gen.38, 9019 (2005)

[29] G. Racah,Phys. Rev.62, 438 (1942)

[30] U. Fano and G. Racah, “Irreducible tensorial sets”,New York: Academic Press

(1959)

[31] M. Kibler and G. Grenet,J. Math. Phys.21, 422 (1980)

14


