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Abstract

A unified approach to (symmetric informationally complgte}itive op-
erator valued measures and mutually unbiased bases i®gedeh this arti-
cle. The approach is based on the use of Racah unit tensafsefovigner-
Racah algebra &U(2) D U(1). Emphasis is put on similarities and differ-
ences between SIC-POVMs and MUBs.

Keywords: finite—dimensional Hilbert spaces; mutually unbiasedbapositive op-

erator valued measuresti(2) D U(1) Wigner-Racah algebra

1 INTRODUCTION

The importance of finite-dimensional spaces for quantumhaueics is well recognized
(see for instancg][1]]3]). In particular, such spaces playajor role in quantum informa-
tion theory, especially for quantum cryptography and quargtate tomography][4[-]R7].
Along this vein, a symmetric informationally complete ($IQositive operator valued
measure (POVM) is a set of operators acting on a finite Hilseaice [4]{I}] (see also
[B] for an infinite Hilbert space) and mutually unbiased Isa@dUBs) are specific bases
for such a spacd J15[-[27].

The introduction of POVMs goes back to the sevenfies[[4]-THe most general quan-

tum measurement is represented by a POVM. In the present werkvill be interested
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in SIC-POVMs, for which the statistics of the measuremelanad the reconstruction of
the quantum state. Moreover, those POVMs are endowed wigxtaa symmetry condi-
tion (see definition in Sec. 2). The notion of MUBs (see debniin Sec. 3), implicit or
explicit in the seminal works of [15J[18], has been the albjef numerous mathematical
and physical investigations during the last two decade®imection with the so-called
complementary observables. Unfortunately, the questoknbw, for a given Hilbert
space of finite dimensiod, whether there exist SIC-POVMs and how many MUBSs there
exist has remained an open one.

The aim of this note is to develop a unified approach to SIC-M&¥nd MUBs based
on a complex vector space of higher dimension, viz.instead ofd. We then give a
specific example of this approach grounded on the WigneaelRatgebra of the chain
SU(2) D U(1) recently used for a study of entanglement of rotationalsariant spin
systems[[28] and for an angular momentum study of MUBE[[28, 27

Most of the notations in this work are standard. Let us sinmpgntion thafl is the
identity operator, the bar indicates complex conjugatiéhdenotes the adjoint of the
operatorA, ¢,, stands for the Kronecker symbol farandb, and A(a,b,c) is 1 or 0

according as, b andc satisfy or not the triangular inequality.

2 SIC-POVMs

Let C? be the standard Hilbert space of dimensieendowed with its usual inner product
denoted by( | ). As is usual, we will identify a POVM with a nonorthogonal detpo-
sition of the identity. Thus, a discrete SIC-POVM is a6t : z = 1,2,---,d*} of @2

nonnegative operator3, acting onC¢, such that:
o they satisfy théraceor symmetry condition

1

moreover, we will assume the operatdts are normalized, thus completing this
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condition with

Tr (P2) = 1; (@)

¢ they form adecomposition of the identity

d2

1

y Y P =TI 3)
r=1

¢ they satisfy a&ompleteness conditiothe knowledge of the probabilities defined

by p. = Tr(P,p) is sufficient to reconstruct the density matpix

Now, let us develop each of the operatétson an orthonormal (with respect to the
Hilbert—Schmidt product) basis; : i = 1,2, - - -, d*} of the space of linear operators on
(Cd

d2

P, = Z vi(z)uy, (4)

=1
where the operators; satisfyTr(ulTuj) = ¢;,;. The operatorg’, are thus considered as
vectors

v(@) = (vi(@),v2(2), - -, v (7)) (5)

in the Hilbert spaceC® of dimensiond® and the determination of the operatdfs is
equivalent to the determination of the components) of v(x). In this language, the

trace property[(1) together with the normalization comxiit2) give

1

U(SC) 'U(y) = ﬁ (dézv,y + 1) ) (6)

wherev(z) - v(y) = Zfilmw(y) is the usual Hermitian product i#i*’.

In order to compare Eq[](6) with what usually happens in tlaechefor SIC-POVMs,
we suppose from now on that the operatétsare rank-one operators. Therefore, by
putting

Py = |®2)(Pq| (7)



with |¢,) € CY, the trace property[f] 2) reads
1
2 _
(|2} = = (Ao +1). ®)

From this point of view, to findi? operatorsP, is equivalent to findingl® vectors|¢, )

in C¢ satisfying Eq.[(8). At the price of an increase in the numbesomponents from
d3 (for d2 vectors inC%) to d* (for d? vectors inC¥), we have got rid of the square
modulus to result in a single scalar product (compare Efjsar(@ [B)), what may prove
to be suitable for another way to search for SIC-POVMs. Meegoour relation () is
independent of any hypothesis on the rank of the operadtarsn fact, there exists a lot
of relations among thes# coefficients that decrease the effective number of coefisie
to be found and give structural constraints on them. Thds¢ioas are highly sensitive
to the choice of the basig; : i = 1,2, ---,d*} and we are going to exhibit an example

of such a set of relations by choosing the basis to consisaoR unit tensors.

The cornerstone of this approach is to identify with a subspace(;) of constant
angular momentuni = (d — 1)/2. Such a subspace is spanned by thegein) : m =
—j,—j +1,---,7}, where|j,m) is an eigenvector of the square and theomponent
of a generalized angular momentum operator. wét be the Racah unit tensdr [29]
of orderk (with £ = 0,1,---,25) defined by its2k + 1 componentsuq (k) (whereq =
—k,—k+1,---,k) through

5> Z v (R Y ) ©

m——j mi=
where(- - -) denotes a 3jn Wigner symbol. For fixed;, the (25 + 1)? operatorw(k)
(with k = 0,1,---,2j andqg = —k,—k + 1,---, k) act onz(j) ~ C? and form a basis
of the Hilbert spac&€” of dimensionNV = (2 + 1)2, the inner product ifC" being the
Hilbert—Schmidt product. The formulas (involving unit gems, 3<m and 6- symbols)
relevant for this work are given in Appendix (see alsd [29]@®]). We must remember
that those Racah operators are not normalized to unity édagan (4p)). So this will

generate an extra factor when definingr).
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Each operator, can be developed as a linear combination of the operadf;ﬁ}s

Hence, we have

2j k
Po=3 Y crg(n)ul’, (10)

k=0 q=—k

where the unknown expansion coefficientg(z) area priori complex numbers. The
determination of the operatof is thus equivalent to the determination of the coefficients

ckq(z), which are formally given by
crg() = (2k + 1)(@s]uy”| @), (12)

as can be seen by multiplying each member of Ed. (10) by tharad)f uﬁf) and then
using Eq. [46) of Appendix.

By defining the vector

v(z) = (vi(2), va(z), -+ on(2)), N =(2j +1)2 (12)
via
1 o
vi(x):mckq(x), i=k"+k+q+1, (13)

the following properties and relations are obtained.

e The first component, (x) of v(z) does not depend ansince

1
)=

forallz € {1,2,---,(25 +1)?}.

(14)

Proof: Take the trace of E(. (10) and use Eq] (48) of Appendix.

e The components;(x) of v(z) satisfy thecomplex conjugation propergyescribed

by

Crq(x) = (=1)cr—g(2) (15)
forallz € {1,2,---,(2j +1)*}, k€ {0,1,---,2j} andq € {—k, —k +1,---, k}.
Proof: Use the Hermitian property éf, and Eq. [[43) of Appendix.
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e Interms ofcy,, Eq. () reads

2j 1 k 1 |

forall z,y € {1,2,---,(25 + 1)?}, where the sum ovey is SO(3)-rotationally

invariant.

Proof: The proof is trivial.

e The coefficientsy,(z) are solutions of theonlinear systengiven by

1 . 2/ 2 k¢ ro0 K
ok rierel = (=) QZZZZ<—q —p Q)

k=0 ¢=0 q=—k p=—¢

{’; ! f}ckqmc@(x) 17)

forallze{1,2,---,(2j+1)*}, K €{0,1,---,2j}andQ € {-K,—K+1,---, K}.

Proof: Consider?? = P, and use the coupling relatiop {51) of Appendix involving
a 3—m and a 6+ Wigner symbols.

As a corollary of the latter property, by takidg = 0 and using Eqs[(47) anf {50)

of Appendix, we get again the normalization relatijpriz)||? = v(z) - v(z) = 1.

e All coefficientscy,(x) are connected through tisem rule

241?25 & ‘ ‘
S S S () - e g a8

z=1 k=0q¢=—k
which turns out to be useful for global checking purposes.

Proof: Take thegm—jm’ matrix element of the resolution of the identity in terms of

the operators>,/(2j + 1).

3 MUBs

A complete set of MUBSs in the Hilbert spa€¥ is a set ofd(d + 1) vectors|aa) € C?
such that

1
|<aa|bﬁ>|2 = a,ﬁéa,b + g(l - 5a,b)> (19)
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wherea = 0,1,---,danda = 0,1,---,d — 1. The indices of type refer to the bases
and, for fixeda, the indexx refers to one of thé vectors of the basis correspondingito
We know that such a complete set existg i§ a prime or the power of a prime.Q, see
(G]-(24).

The approach developed in Sec. 2 for SIC-POVMs can be apiaidtlJBs too. Let
us suppose that it is possible to fidd- 1 setsS, (with a = 0,1, - - -, d) of vectors inC¢,
each sef5, = {|ac) : @« = 0,1,---,d — 1} containingd vectors|aca) such that Eq.[(19)

be satisfied. This amounts to findid@! + 1) projection operators
[, = |aa)(aq] (20)
satisfying thetrace condition

1
Tr (HaaHbﬁ) - 504,[35(1,17 + 8(1 - 5(1,1))7 (21)

where the trace is taken @f. Therefore, they also formreonorthogonal decomposition

of the identity
d d-1

1
m Z Z Haa =1 (22)

a=0 a=0

As in Sec. 2, we develop each operaify, on an orthonormal basis with expansion

coefficientsw; (ac). Thus we get vectors(aa) in C%
w(aa) = (wy(aw), we(aw), - - -, w2 (ax)) (23)

such that

w(aa) - w(bB) = bu s0up + %(1 — 6u) (24)

foralla,b € {0,1,---,d} anda, 8 € {0,1,---,d — 1}.

Now we draw the same relations as for POVMs by choosing thaliRaperators to be
our basis inC**. We assume once again that the Hilbert spa¢és realized bye(j) with

j = (d —1)/2. Then, each operatdf,, can be developed on the basis of {B¢ + 1)?



operatormff) as

2j

k
Moo = Y Y diglac)ul®, (25)

k=0 g=—k
to be compared with Eq[_(L0). The expansion coefficients are

dpg(aa) = (2k + 1){aalul?|ac) (26)

foralla € {0,1,---,2j+ 1}, €{0,1,---,25}, k€ {0,1,---,2j} andq € {—k, —k +
1,---,k}. Fora anda fixed, the complex coefficient,, (a«) define a vector

w(aa) = (wy(aa), wy(ac), -, wy(aa)), N =(2j+ 1) (27)

in the Hilbert spac&”, the components of which are given by

1
i =—-d . =k +k+q+ 1. 28
w;(ac) ST kqlacr), i q (28)

We are thus led to the following properties and relationse pfoofs are similar to those

in Sec. 2.

e First componentv, (ax) of w(ax):

1
d, = 29
oo(aOé) \/m (29)
foralla € {0,1,---,2j + 1} anda € {0,1,---,25}.
e Complex conjugation property
dig(acr) = (—1)%dy_(ac) (30)

foralla € {0,1,---,2j+1}, « € {0,1,---,25}, k € {0,1,---,2j} andq €
{—=k,—k+1,--- k}.

e Rotational invariance
27 1 k 1
Z 2/{7 n 1 qzzk qu(aa)qu(bﬁ) = a,ﬁéﬂhb + m(l — 5a,b) (31)

k=0

foralla,b € {0,1,---,25 + 1} andw, 5 € {0,1,---,25}.
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e Tensor product formuta

1 . % 2 k¢ P
ok g poxelea) = (1) QZZZZ(—q —p Q)

k=0 ¢=0 q=—k p=—¢

{508 bafaaty(oa) 32)

foralla € {0,1,---,2j+1}, a € {0,1,---,25}, K € {0,1,---,2j} and@ €
{(-K,—K +1,---,K}.

e Sum rule
2j+1 25 25k . )
DI IR T Y 2 (Cpmaeg 416 33
S Yty (L F T ) =y e @)
a=0 a=0 k=0 q=—k

which involves all coefficientd,,(ax).

4 CONCLUSIONS

Although the structure of the relations in Sec. 1 on the omallaand Sec. 2 on the other
hand is very similar, there are deep differences betweenwibesets of results. The
similarities are reminiscent of the fact that both MUBs ah@-8OVMs can be linked to
finite affine planes[J14, 18, RP,143]25] and to complex proje@—designg[d, 10, 1P,[24].
On the other side, there are two arguments in favor of themiffces between relationk (6)
and [Z§). First, the problem of constructing SIC-POVMs imensiond is not equivalent
to the existence of an affine plane of orddfL4,[13]. Second, there is a consensus around
the conjecture according to which there exists a complétef3dUBs in dimensiond if
and only if there exists an affine plane of orddp3].

In dimensiond, to find d? operatorsP, of a SIC-POVM acting on the Hilbert space

C¢ amounts to findi? vectorsv(x) in the Hilbert spac€” with N = ¢? satisfying

[vall = 1, v(2) - v(y) forz 7y (34)

T d+1
(the norm||v(z)|| of each vectow(z) is 1 and the angle,, of any pair of vectors(x)

andv(y) iswy, = cos ' [1/(d + 1)] for z # y).
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In a similar way, to findd + 1 MUBs of C? is equivalent to find/ + 1 setsS, (with
a = 0,1,---,d) of d vectors,i.e,, d(d + 1) vectors in all,w(ac) in CY with N = d?
satisfying

w(aa) - w(af) = dop,  wlaa) - w(bf) = % fora #0 (35)

(each setS, consists ofd orthonormalized vectors and the anglg,,s of any vector
w(a«) of a setS, with any vectonw(b3) of a setS}, is waaps = cos ' (1/d) for a # b).

According to a well accepted conjectuffé¢ [8] 10], SIC-POVMsdd exist in any
dimension. The present study shows that in order to progecttmjecture it is sufficient
to prove that Eq[(34) admit solutions for any valuelof

The situation is different for MUBs. In dimensiahit is known that there exist+ 1
sets ofd vectors of typdaa) in C? satisfying Eq.[(7]9) whed is a prime or the power of
a prime. This shows that Ed. {35) can be solvedd#g@rime or power of a prime. Fat
prime, it is possible to find an explicit solution of Ef.](19).fact, we have[[26], 27]

1 J . . .
|aa> — : E w(]+m)(]fm+1)a/2+(J+m)a|j’ m>’ (36)
V25 +1 Sl
2w 1
= i = —(d—1 37
o = ew (i), i=gld-D 37)

fora,a € {0,1,---,25} while
|acr) = [j,m) (38)

fora =2j+1anda=75+m=0,1,---,25. Then, Eq.[(26) yields

el Ju O . AR R
o) = 51N Y ey (R ) @)

27 +1 vl -m
O(m,m') = (m—m) B(l—m—m')a—i—a} (40)
fora,a € {0,1,---,25} while
- b
dufac) =802k + -1y (26T (1)

fora =2j+1anda =j+m = 0,1,---,2j4. It can be shown that Eqq. {40) arjd](41)

are in agreement with the results of Sec. 2. We thus have &i@ohf the equations for
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the results of Sec. 2 whehis prime. As an open problem, it would be worthwhile to find
an explicit solution for the coefficient$,,(a«r) whend = 25 + 1 is any positive power
of a prime. Finally, note that to prove (or disprove) the eahjire according to which a
complete set of MUBSs in dimensiahexists only ifd is a prime or the power of a prime
is equivalent to prove (or disprove) that Elg.](35) has a smiuinly if d is a prime or the

power of a prime.

APPENDI X: WIGNER-RACAH ALGEBRA OF SU(2) D
u(l)

We limit ourselves to those basic formulas for the Wignecdtaalgebra of the chain
SU(2) D U(1) which are necessary to derive the results of this paper. Uimmstions
in this appendix have to be extended to the allowed valueth®mvolved magnetic and
angular momentum gquantum numbers.

The definition [P) of the components” of the Racah unit tensar®) yields

. . o kg
Gl liomty = -y (2080, @2)

from which we easily obtain the Hermitian conjugation pnape

T (k)
P = (=1). (43)
The 3—m Wigner symbol in Eq.[(42) satisfy the orthogonality relaso
i oJ ok gy _ 1 .
Z/ < m m/ q ) ( m m/ P - 2k+15k,€5q,pA(]a] ,k‘) (44)
and
i J ok ioJ kY
;(27{74‘1) ( m m g ) ( MM g )T m, MOm? M- (45)
q
The trace relation on the spagg)
k)t (e 1 .
Tr (")) = G Oradun A K) (46)
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easily follows by combining Eqs[ (#2) and[44). Furthermdneintroducing

.j j, 0 S _1\J—m 1
(m o 0)_5],3,5,”7,,1,( D (47)

in Eg. (44), we obtain the sum rule

i kg . . .
Z(_l)J ( _]m q ’;I]’L ) =V 2] + 15k705f1,0A<J7 k?.])7 (48)

known in spectroscopy as the barycenter theorem.

There are several relations involving;3r- and 6+ symbols. In particular, we have
M (T kg jgot g JgoK
2ommnt (=) ( -m q M ) ( -M p m ) ( -m Q m )
; E ¢ K k0 K
— _121—69( ){ - .}, 49
=) —q¢ —p Q JoJoJ (49)

where{- - -} denotes a 6i-Wigner symbol (0¥ Racah coefficient). Note that the intro-

kb0 o ks 1
{j j J}_é’“’f( D V@k+ 1) (2) + 1) (50)

in Eq. (49) gives back Eq[_ (#4). Equatidn](49) is central mdlerivation of the coupling

duction of

relation

Ry (0 = KZQ(—l)?J'—Q@K +1) ( _kq _gp g ) { I; f [j }ug(). (51)
Equation [[5]1) makes it possible to calculate the commutaﬁ@r, ul(f)] which shows that
the set{uﬁ,’“) ck=0,1,---,24; q=—k,—k+1,--- k} can be used to span the Lie
algebra of the unitary group B + 1). The latter result is at the root of the expansions

(%) and [3p).
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