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Abstract—The ATLAS High Level Trigger’s (HLT) primary
function of event selection will be accomplished with a Level-2
trigger farm and an event filter (EF) farm, both running software
components developed in the ATLAS offline reconstruction
framework. While this approach provides a unified software
framework for event selection, it poses strict requirements on
offline components critical for the Level-2 trigger. A Level-2
decision in ATLAS must typically be accomplished within 10
ms and with multiple event processing in concurrent threads.To
address these constraints, prototypes have been developed that
incorporate elements of the ATLAS data flow, high level trigger,
and offline framework software. To realize a homogeneous
software environment for offline components in the HLT, the
Level-2 Steering Controller was developed. With electron/gamma-
and muon-selection slices it has been shown that the required
performance can be reached, if the offline components used are
carefully designed and optimized for the application in the HLT.

Index Terms—Programming
reusability, triggering.

environments, software

I. INTRODUCTION

HE Large Hadron Collider (LHC) currently under con-

struction at CERN will produce pp-collisions with a center
of mass energy of /s = 14 TeV at a design luminosity of 103+
cm~2s~!. With a bunch crossing rate of 40 MHz and about
23 interactions per bunch crossing, it requires, however, highly
selective trigger systems to reduce the expected 107 interac-
tions per second to an acceptable rate of a few hundred Hz.
ATLAS [1] is one of the two large general purpose experiments
at the LHC and covers a widely diversified physics program [2],
ranging from discovery physics to precision measurements of
Standard Model parameters. ATLAS has an inner detector for
precision tracking mounted inside a superconducting magnet
with 2 T field strength. Outside the solenoid follow electromag-
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netic and hadronic calorimeters. Muon identification is achieved
with a high precision muon spectrometer. The total number of
readout channels is about 103,

Given the required large selectivity of the ATLAS trigger
(~10~7) and the rare nature of the most interesting physics sig-
natures at the LHC collider, it is essential to understand the ef-
ficiencies at each step of the event selection process. Sharing a
large number of software components across all platforms from
the trigger event selection software to the offline physics anal-
ysis and reconstruction environment helps in achieving this goal
and allows for a common development and run environment.

II. THE ATLAS TRIGGER

The ATLAS trigger is based on three levels of online selec-
tion: Level-1, Level-2, and Event Filter (EF). The second and
third level triggers, together known as the high level trigger
(HLT) [3], [4], are implemented on PCs running the Linux op-
erating system.

The Level-1 trigger [5] is implemented in custom hardware
and will reduce the initial event rate to about 75 kHz. The
Level-1 decision is based on data from the calorimeters and the
muon detectors. For accepted events small localized regions in
pseudo rapidity 7 and azimuthal angle ¢ centered on the high
p, objects identified by the Level-1 trigger are determined.
Each region of interest (Rol) contains the type and the thresh-
olds passed of the associated high p,. candidate objects.

The Level-2 trigger’s selection process is guided by the
Rol information supplied by the Level-1 trigger and uses full
granularity event data within a Rol from all detectors. In this
way, only 2% of the full event data are needed for the decision
process at Level-2, thus reducing the required aggregate band-
width to serve the Level-2 trigger. The selection algorithms
request data from the readout buffers (ROB) for specific
detectors in a Level-1 defined Rol for each processing step.
The data are held in the ROBs until the Level-2 trigger accepts
or rejects the event. The Level-2 event selection algorithms
are controlled by the HLT selection framework and run inside
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the Level-2 Processing Units [6], [7] (L2PU) in concurrent
worker-threads, each processing one event. The multithreaded
approach minimizes overheads from context-switching and
avoids stalling the CPU when waiting for requested Rol
data to arrive from the ROBs. Asynchronous services, like
input of data and application monitoring, are executed in
separate threads. This allows an efficient use of multi-CPU
processors but requires also all software running in the L2PU
to be thread-safe. The technical aspects of multithreading are
handled by the dataflow software itself, including creation and
deletion of threads and any locking mechanism that may be
required. The Level-2 output rate is about 2 kHz with typical
event decision times of 10 ms.

If an event is accepted by Level-2, the Event Builder collects
all the event data fragments from the ROBs. The complete event
is then made available to the EF for the final stage of trigger
processing. Here, more complex algorithms provide a further
rate reduction to about 200 Hz with typical event decision times
of 1-2 s. While the Level-2 reconstructs localized regions, the
baseline for the EF is a full offline-like event reconstruction
guided by the Level-2 Result. It will also use more complete
calibration, alignment and magnetic field data.

To achieve a fast rejection, the event processing in the HLT
selection proceeds in steps for feature extraction and hypothesis
decisions. At the end of each step, the step results are checked
against abstract physics signatures defined in trigger menus.

III. HiIGH LEVEL TRIGGER SELECTION SOFTWARE

The HLT selection framework [8] constitutes the run environ-
ment for the trigger algorithms. It is common to Level-2 and EF
and is composed of four main components. The HLT Steering
schedules the HLT Algorithms corresponding to the input seed,
so that all necessary data for a trigger decision are produced.
Information about event specific quantities is exchanged via
components of the event data model (EDM). During event pro-
cessing data are stored and accessed through a data manager.
This allows to hide platform- and storage technology-specific
details of event data access from the algorithms. The HLT algo-
rithms either reconstruct new event quantities or check trigger
hypotheses with previously computed event features.

As the main purpose of the HLT selection software is event
selection, it has to run efficiently and reliably in the online
environment. In addition, critical selection components must
be transferable to the offline environment for development
and testing purposes. By providing a common code base for
the online and the offline software, the HLT guarantees the
consistency of trigger performance evaluations. It also provides
a “physicist-friendly” environment for trigger algorithm devel-
opment. In addition, studies have already shown [9] that great
cost savings can be obtained with the proper global optimiza-
tion of the trigger. Having a single common framework, where
the different trigger levels can be cross optimized, greatly
facilitates these studies.

Since the EF provides an offline-like environment, the HLT
selection software is naturally based on the ATLAS offline re-
construction and analysis environment ATHENA [10], which it-
self is based on the GAUDI [11] framework. This allows for the
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Fig. 1. The L2PU finite state machine. All algorithms and services are
created at initialization time in the Configure step. The Level-2 selection code
is executed in parallel in multiple worker-threads.

reuse of the storage manager, the EDM, the detector descrip-
tion and many algorithms, which are already developed by the
offline community. Only the HLT Steering framework and cer-
tain algorithms remain as HLT specific developments. In the
case of the Level-2 trigger, a similar ansatz is more difficult
due to the multithreaded selection process and the more severe
performance requirements. Even though Level-2 algorithms are
specially developed to meet the tight timing requirements, they
use the same EDM- and detector description objects present in
the EF and offline. A transparent use of such components is pos-
sible and a common implementation of the HLT framework for
both Level-2 and EF can be realized if the same interfaces are
available at Level-2. This is provided by the Level-2 steering
controller (SC).

IV. THE LEVEL-2 STEERING CONTROLLER

The SC [12] is the software component that interfaces the
L2PU, the dataflow application which provides access to the
event data stored in ROBs and the HLT event selection soft-
ware. The purpose of the SC is threefold: to allow the L2PU to
host and control the selection software; to allow the reuse of the
same trigger algorithm steering software as in the EF; and to
provide a mechanism for transmitting the results of Level-1 and
Level-2 processing between the data acquisition system and the
event selection software. All dataflow applications follow for
control a state model implemented in form of finite state ma-
chines (FSM). The key to the SC design is to place this inter-
face where the functionality of the dataflow and event selection
frameworks can be cleanly separated. The location chosen is the
FSM of the L2PU.

The SC provides the means for forwarding state changes from
the dataflow software (Fig. 1) to the event selection software. An
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Fig. 2. The sequence of interactions of the SC with the L2PU and the Event Selection Software. Three states are shown: configure, start, and stop. The gray area
shows the interactions which happen in multiple Worker Threads. The pROS is the component that forwards the Level-2 Result to the EF.

important aspect of this approach is that the Level-2 event data
access is managed entirely by the dataflow. The SC then does
not need to interact directly with the data input threads or other
dataflow components.

Fig. 2 illustrates the sequence of interactions of the SC with
the L2PU and the event selection software. The figure shows
three states: configure, start, and stop. During the configure
phase, configuration, and conditions data are obtained from ex-
ternal databases via an HLT-online interface. These data are then
used to configure the selection software and all associated com-
ponents.

After a start the SC receives an “execute event” directive with
a Level-1 Result as argument. The result of event processing is
directly returned as Level-2 Result to the L2PU. A stop com-
mand terminates algorithm execution and produces run sum-
mary information.

Since the trigger event selection software is being developed
in the ATLAS offline framework, which is itself based on the
GAUDI framework, the SC also has been designed to reuse the
framework interfaces defined in GAUDL. In this way, there is a
unified environment for event reconstruction and selection from
the second level trigger to the offline analysis.

Since the event selection software executes in multiple
worker threads, the SC must provide a thread-safe environment.
At the same time, and in order to provide an easy-to-use frame-
work for offline developers, the SC must hide all technical
details of thread handling and locks. Thread safety has been
implemented in the SC by using GAUDI’s name-based object
and service bookkeeping system. Copies of components that
need to be thread-safe are created for each worker thread
with different labels. The labels incorporate the thread-ID of
the worker thread, as obtained from the dataflow software.
The number of threads created by the dataflow software is

transferred to the SC, which transparently creates the number
of required copies. In this scheme, the same configuration can
be used in the offline and in the Level-2 environments; the
thread-ID collapses to null in the offline environment, as it is
not needed there.

In contrast to the EF and offline environment, all Level-2 al-
gorithm- and service instances need to be created and initialized
in the configuration state of the L2PU FSM, since only in this
phase a L2PU has access to external databases. Later in the event
loop, only access to information stored locally on the processor
is possible. The configure step is still executed in a single thread
and only later after the transition to the start state of the FSM
the thread specific copies of the algorithms and services are at-
tached to the worker threads.

The implementation of the SC consists of three components.

* An interface class, which forward the L2PU state changes
to the algorithm execution framework. Different interface
implementations, e.g., for dataflow testing without algo-
rithms, can be specified in the L2PU configuration and
are loadable as shared libraries. This implementation also
helps to minimize cross dependencies in the respective
dataflow and offline repositories.

* The multithreaded algorithm execution environment. The
necessary changes for multithreading support have been
incorporated in the GAUDI base libraries and are available
with the recent official releases of the GAUDI framework.

* A modified ATHENA event loop handler. Contrary to of-
fline, the event loop is controlled by the dataflow software.
The modified event loop handler makes the Level-1 Result
available to the HLT selection software, executes the algo-
rithms for a given event and forward the Level-2 decision
to the L2PU interface class.
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A typical development and prototype setup. GAUDI with support for multiple threads is the basic algorithm execution environment. It is shared by the

online and the offline environments. Algorithms are developed in the offline environment and tested with the L2PU emulator athenaMT. The same binary libraries
containing the event selection algorithms are then used by the real L2PU running in a dataflow setup.

The implementation is complemented by special utility ser-
vices, which connect, e.g., the GAUDI framework messaging to
the corresponding dataflow implementations.

V. SOFTWARE DEVELOPMENT MODEL

HLT software developers follow a typical edit, compile and
run cycle in the ATHENA offline environment, when creating
new software components. For running an application, the
ATHENA main program together with a job configuration file
would be used: athena (job-configuration).

Since the same interfaces are available in the EF and the
L2PU environment the code developed in the offline environ-
ment can be directly downloaded in binary form to the pro-
cessors. For Level-2 the developer has to follow however a set
of simple coding rules [13] to produce thread safe code and to
make its algorithms or services compatible with the automatic
creation of multiple copies in the L2PU. Furthermore, it should
be not necessary to use locks or mutexes to adapt the code to the
multithreaded environment. To meet the timing requirements for
the second level trigger, the number and type of available ser-
vices is restricted to the necessary minimum, which is a subset
of the services available in the EF and in offline. In this way,
it should be always possible to move a Level-2 component to
the EF and offline environment. The other direction, however,
is only possible if the software component finds all its necessary
resources in the restricted L2PU environment.

The dataflow software can be configured to run either as
single or multinode system. The single-node system starts a
Read-Out Subsystem (ROS) emulator, a Level-2 supervisor,
and a L2PU in the same processing node, while the multinode
system distributes these applications over various nodes. The
setup of a complex dataflow system for application testing
is in both cases a nontrivial task and most HLT developers
lack also the necessary hardware resources. A multithreaded
test application called athenaMT was therefore created, which
presents internally the same run environment as a L2PU,
but can be started as simple as the normal ATHENA main
program: athenaMT (number of worker-threads)

TABLE 1
RATES ON A DUAL-PROCESSOR 1.533-GHz AMD ATHLON MACHINE

Prototype configuration [ Measured rate | Overhead/event

L2PU 21.7 kHz 46 us
L2PU+SC 17.0 kHz 59 ps
L2PU+SC+Data Manager 15.3 kHz 65 us

(job-configuration). athenaMT uses the SC and most
of the dataflow components that are also used in a standard
L2PU. It differs, however, in the supervision aspect of the
L2PU and in the way detector raw data are made available to
the processing unit. The application can be used on single- or
multi-CPU machines. HLT developers need not to be familiar
with detailed technical aspects of the dataflow software and are
also shielded from changes in the dataflow part of the software.
They can concentrate exclusively on the HLT software and
are able to perform a large variety of useful tests, from thread
safety to performance measurements, in a realistic L2PU
environment. Fig. 3 shows the relation between an online
dataflow setup and an offline development environment for
Level-2 software. In this way the development effort for HLT
and dataflow can be widely parallelized. It is clear, however,
that the final certification of the HLT software has to be done
on a large distributed system.

VI. PERFORMANCE MEASUREMENTS

After integrating the SC with the dataflow software, both
performance and robustness tests were carried out on a dual-
processor 1.533-GHz AMD Athlon machine. The SC ran for
over 50 h with three threads with an early version of the selec-
tion software prototype. The prototype ran successfully on both
single-CPU and double-CPU machines, showing it to be thread
safe. A direct measurement of the SC overhead yielded 13 s per
event. The overhead was estimated by comparing the number of
events per second a L2PU can handle when running without or
with the SC and executing a simple algorithm (first and second
row in Table I). Table I shows also the obtained rate, when in
addition the Level-1 Result is transfered to the data manager.
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Fig.4. The main contributions to the latency shown as curves of integrals for the y selection slice. The slice used offline software components for data conversion,
detector description, data manager, and steering. The contributions in order of decreasing importance are data preparation and conversion (Data conversion), HLT
framework overheads (Steering), algorithmic processing (muFast), and network access time (Network latency). The curves show, e.g., that in this setup algorithmic
processing is terminated for 95% of the events in less than 2 ms. The data sample consisted of 200 GeV muons at high luminosity. The muon background from the
ATLAS cavern was boosted by a factor of 2, so that the results give a conservative estimate of the processing times.

The quoted overhead includes all GAUDI framework steps to
schedule and execute algorithms and to execute the used base
services. The measurements were based on runs of at least 100
000 events and almost perfect scaling of the measured latency
was observed when the algorithm execution time was varied
with a CPU burning loop from 0 to 8 ms in the different con-
figurations, indicating that the overheads per event introduced
by the SC are independent of the algorithm execution time.

More tests with increasing complexity were performed on a
three-node dataflow system build with a dual-processor Intel
XEON 2.2 GHz machine hosting the L2PU, a dual-processor
1.533-GHz AMD Athlon machine hosting the ROS emulator
and a single-processor Intel Pentium 4 machine running the
Level-2 Supervisor. The dual -processor machines were con-
nected via a Gigabit Ethernet network. All machines were run-
ning the Redhat 7.3 Linux operating system.

In sequence, the offline data manager StoreGate [14] the HLT
steering and a fast inner tracker feature extraction algorithm
[15] were included in the setup. The algorithm used an early
version of the event data model and the raw data conversion
process from byte stream format to EDM classes. More com-
plex tests were recently done with complete e/~ and y selection
slices. They contained the complete HLT steering framework
with decoding of the Level-1 Result, scheduling of the feature
extraction algorithms, and sending the results of the Level-2 pro-
cessing to the EF. The data manager, the event data model, the
detector description for the calorimeters, and the muon system
and services for conversion from raw data byte stream format
to high-level data containers were used from offline. The fea-
ture extraction algorithms were specially developed for Level-2
but used the aforementioned offline services. In the case of the
e/~ slice, over 95% of the events were processed within 5 ms
for a sample of di-jet events at low luminosity and a Rol size of
An x A¢ = 0.3 x 0.3 [4]. Fig. 4 shows similar results for the
1 slice.

The overheads of the SC are negligible compared to the pro-
cessing times of the HLT event selection software. For both se-
lection slices the data preparation and conversion step domi-
nates the processing times. It contains all contributions from un-
packing of the raw data, the application of the complex detector
description and calibration schemes to the creation of fully cali-
brated high level physics objects suited for event reconstruction
and selection in the algorithms. The data preparation and con-
version time is a direct function of the number of handled input
raw data items and is therefore also sensitive, e.g., to the noise
level in the calorimeters and the occupancy of the muon cham-
bers due to cavern background. Appropriate data preprocessing
and noise reduction schemes can help to reduce the time spend
in this step [4]. The contribution from the HLT steering and the
network latency are similar for both selection slices. Measure-
ments on larger test beds [7] and detailed simulations of the full
system have shown [4], that at most a contribution of 1 ms from
the Rol data collection over the network is expected.

VII. EXPERIENCES

During the tests it was observed that the event throughput in
a L2PU did not scale in the expected way with the number of
worker-threads. This was due to the use of a common memory
pool for container objects in the default memory allocation
scheme of the standard template library (STL). The event pro-
cessing model of Level-2 favors a scheme where every thread
allocates its own memory pool. Such an allocation scheme
is available in the STL. After carefully optimizing the code
with it, the expected scaling behavior was observed. Such an
optimization poses limitations on the offline components used
and their external dependencies. For instance, external utility
libraries may not be available with this allocation scheme. To
avoid frequent memory allocation during event processing,
all large containers that hold detector data were designed to
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allocate memory only during initialization time and to reset
their data for each new event.

The reconstruction of full events in offline favors a processing
model where utility services and external data are retrieved on
demand. In the case of Level-2 this model cannot be applied
since during event processing only locally stored meta-data are
accessible. All required data need to be known at configuration
time and need to be prefetched by the processor. Furthermore,
the creation of large configuration objects on demand may lead
to time-outs during event processing. These restrictions required
aredesign and alternative initialization methods for some offline
components, especially for detector description and raw data
conversion.

The use of offline components in multiple worker threads and
the requirement to avoid locks in the event selection code limits
certain design and implementation choices, e.g., the use of sin-
gletons. These restrictions were communicated to the HLT de-
velopers at an early design stage.

VIII. CONCLUSION

The presented implementation of the SC for the ATLAS
Level-2 trigger enables the reuse of offline software compo-
nents throughout the ATLAS High Level Triggers. It realizes
a homogeneous software and development environment from
the Level-2 trigger to offline. Realistic prototypes have shown
that the required performances can be reached if the offline
components are carefully optimized and designed for reuse
in the triggers. This may limit architectural, design, and
implementation choices that are otherwise available in a pure
offline environment. An understanding of these restrictions is
necessary for all contributing developers.
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