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Abstract

The experimental charge radius values along Cd, Sn, Te, Xe, Ba and Sm isotopic se-
ries have been extracted from isotope shift measurements using different methods to
calibrate the electronic factor and mass shift effects. Static and dynamic charge radii
have been calculated in the framework of a microscopic configuration mixing ap-
proach on the ground of Hartree-Fock-Bogoliubov solutions obtained with the D1S
Gogny effective nucleon-nucleon interaction. Low-energy spectroscopic observables
have also been obtained. The theoretical and experimental results are compared and
discussed. It is shown that dynamical effects must be taken into account especially
for γ-soft and weakly deformed nuclei.
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1 Introduction.

The charge radii of nuclei, rc, and their variations along isotopic series provide
key information on the nuclear matter behaviour. For example, they can reveal
magic numbers and bring out changes in the nuclear deformation between
either neighbouring nuclei or different states inside the same nucleus. They
constitute hence one of the basic nuclear properties that any nuclear model
must be able to well describe.
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The most precise nuclear rc values have been obtained by use of the muonic
atom spectroscopy method. They have been determined for almost all elements
using the muon factories, but only for the stable isotopes. The most recent and
precise results so obtained have been reviewed by Fricke et al. [1]. To study
the rc evolution through a large number of isotopes, we must also use the
numerous results concerning the mean square charge radius changes, δ <r2

c>,
yielded by the optical method and choose the rc value of a stable mass as a
reference value.

For the tin isotopes, it was recently shown that the parabolic shape of the rc

curve against the neutron number could be explained by important dynamical
effects [2–5]. The purpose of the present work is to study the role played by
these dynamical contributions as the proton number moves away from N =
50. The data already known [6,7] led us to choose the following elements: Cd,
Sn, Te, Xe, Ba and Sm.

In muonic atom spectroscopy the uncertainty on the extracted values is al-
most only due to the nuclear polarization corrections whereas in optical spec-
troscopy, to deduce the δ <r2

c > values from the isotope shift measured, one
has to determine the electronic factor F of the optical transition as well as the
part of the isotope shift due to the mass difference or mass shift MS. Vari-
ous ways are currently used to get the F and MS values, which may provide
slightly different slopes of the δ <r2

c > and rc curves. Therefore, prior to com-
pare nuclear model predictions with the experimental rc curves, a very careful
and critical analysis of the data has to be performed and discussed. This tricky
problem will be widely treated in section 2. The nuclear model, taking into
account or not the dynamical effects, used in this work will be presented in
section 3. The comparison between experimental and theoretical results will
be shown and discussed in section 4. Lastly, the conclusions will be drawn in
section 5.

2 Determination of the experimental charge radii of Cd, Sn, Te,

Xe, Ba and Sm nuclei.

Laser spectroscopy is the only experimental method giving access, from the
isotope shift, to the change in the mean square charge radius through long
isotopic chains including stable and unstable nuclei. The isotope shift is the
displacement of the center of gravity of the hyperfine spectrum between two
neighboring isotopes. When the number of neutrons varies, changes are in-
duced in the atom, namely in the reduced mass of the nucleus plus electron
system, in the correlations between the electrons and in the charge distribution
inside the nucleus giving rise to the normal mass shift (δνAA′

NMS), the specific
mass shift (δνAA′

SMS) and the field shift (δνAA′

FS ). The mass shift dominates in
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light nuclei and is small in heavy elements [6]. The normal and specific mass
shifts depend in the same way on the atomic masses:

δνAA′

MS = δνAA′

NMS + δνAA′

SMS = (N + S) A
′ − A
AA′ = M A′ − A

AA′

The normal mass shift is easy to calculate, since N is given by the simple for-
mula: N = νi

1836.1 [8], where νi is the atomic transition energy. On the other
hand, the specific mass shift is very difficult to calculate. For pure s → p or
s2 → sp transitions, it has been shown that | S | ≤ N [8]. But when d or f
electrons are involved in the transition, S can be of the order of 10 × N or
more.
The change in the mean square charge radius is related to the field shift by:

δνAA′

FS = F × λAA′

= F × k × δ < r2
c >

AA′

,
where F is the electronic factor of the atomic transition, λ the nuclear para-
meter given by:

λ = δ < r2
c >

AA′

+ (C2/C1)δ < r4
c >

AA′

+ (C3/C1)δ < r6
c >

AA′

+ ...
and k a correcting factor calculated using the Cn Seltzer coefficients [9,10].
Usually the F factor is obtained from semi-empirical calculations using the
Goudsmit-Fermi-Segré formula to evaluate the change of the electronic charge
density at the nucleus. Relativistic calculations using Dirac-Fock or multicon-
figuration Dirac-Fock methods are also used to determine F. Results obtained
by these different methods can differ by 10 to 30 % [6].
An alternative way to determine both the electronic F factor and the specific
mass shift is by using King plot analysis [11]. In this case, the modified shifts
in the optical line under study are plotted against the modified shifts in an-
other line advisably chosen, for instance corresponding to a pure and simple
configuration for which the specific mass shift can be estimated to be negligi-
ble and the F factor accurately calculated. Such a plot gives a straight line, its
intercept is related to the specific mass shift and its slope equal to the ratio
of the F factors.
The King plot analysis is also applied with data obtained from other experi-
mental methods, such as the X-ray isotope shifts and the change in the mean
square charge radius deduced from electron scattering or muonic experiments.
It is worth noting that this type of experiments has been only performed on
stable isotopes since it requires several tens of milligrams of target material.
Using the muonic isotope shifts is not directly suitable because the difference
of muonic level energy does not depend on δ < r2 > but on δ < rke−αr >. In the
case of K-ray isotope shifts, the nuclear charge distribution investigated is the
same as in optical isotope shifts but the experimental errors are too important
to calibrate reliably the optical isotope shift measurements. In the same way,
the accuracy obtained for the charge radius in electron scattering experiment
is too low to allow the determination of the F factor and specific mass shift via
a King plot analysis. However, electron scattering measurements give access
to the radial dependence of the charge distribution. This result can be used to
extract the charge radius from the very precise and model-independent Bar-
rett radius obtained in muonic experiments. Such a method using the δ < r2

c >
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values resulting from a combined analysis of muonic atom and electron scat-
tering data has been proposed by Fricke et al. to calibrate the optical isotope
shift measurements and applied for eight elements (Ca, Kr, Sr, Zr, Mo, Sm,
Gd, Pb) [1]. However, by lack of electron scattering data, this combined analy-
sis cannot be used for any isotope series. Nevertheless, in principle, muonic
experiments give access to the better charge radius values available for the
stable nuclei, in spite of the uncertainty on the calculated nuclear polarization
corrections that limits their accuracy. The compilation made by Fricke et al.

summarizes the results from muonic experiments performed on almost all sta-
ble nuclei and provides a consistent set of charge radius values for these stable
isotopes [1]. The isotopic series we are interested in (Cd, Sn, Te, Xe, Ba and
Sm), located on both sides of the magic tin nuclei, have many stable isotopes
(8, 10, 8, 9, 7 and 7 respectively). Thus, we have used the charge radius values
of these stable isotopes to calibrate the isotope shift measurements performed
by optical spectroscopy. Our aim is to obtain the most consistent and reli-
able charge radius values over long isotopic chains in order to perform very
stringent comparison with theoretical calculations over a wide range of nuclei.
In a first step to estimate the possible remaining uncertainty of the method,
we compare the charge radius values determined using the calibration on the
muonic data with those obtained with the other methods currently used. The
charge radius values obtained from different methods are reported in tables
1-6 of the appendix.

2.1 Cadmium isotopes

We have evaluated the charge radii in three ways. Firstly we started from
the δ < r2

c > values given in ref. [6]. These values have been obtained from
the experimental data of ref. [12] using a factor F (FSE = 3.91 GHz/fm2)
determined semi-empirically and we have deduced the charge radii taking as
reference the value of the 114Cd stable isotope known from the Fricke et al.

compilation ref. [1]. The second estimation has consisted in determining new
values for the electronic factor and the specific mass shift by doing a King plot
between the optical isotope shifts measured for the stable isotopes in the 5s2

1S0 → 5s 5p 3P1 transition at 326.1 nm [12,6] and the charge radius values

reported in ref. [1]: Fµ = −4.37±0.18 GHz/fm2 and S
N = 2.43±0.35 with k =

0.977. Then we have used these F and S
N values to calculate, from the 102−120Cd

isotope shifts of refs. [6,12], new δ < r2
c > values and the corresponding charge

radii taking the same reference, 114Cd. Lastly the comparison between the
experimental isotope shifts and the δ < r2

c > values extracted from ref. [1]

for the stable nuclei has allowed us to determine the specific mass shift ( S
N

= 2.15±0.18) when the value of the electronic F factor obtained in Dirac-
Fock calculations is used (FDF = −4.16 GHz/fm2, refs. [12,10]). From these
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δ < r2
c > values we have obtained a third set of rc data taking again as reference

rc(
114Cd).

2.2 Tin isotopes

The isotope shifts have been measured from A = 110 up to 132 using the
5p2 3P0 → 5p 6s 3P1 transition at 286.3 nm [13,5]. In ref. [13], the electronic
factor has been calculated by Baird et al. [14] within a semi-empirical approach
(FSE= 3.3 ± 0.3 GHz/fm2), a k = 1 value has been used and the specific
mass shift has been evaluated from the δ < r2

c >
124,116 value obtained from

isotope shift measurement of the Kα transition. In ref. [5], a King plot has been
performed between the optical isotope shift and the muonic δ < r2

c > values
measured for the stable isotopes and reported in ref. [15], this led to: Fµ1 =

3.30±0.27 GHz/fm2 with k = 0.975 and S
N = −2.33 ± 0.35. We have obtained

a new determination of F and S
N by performing a similar King plot analysis

using the same optical isotope shift values but the muonic δ < r2
c > values

reported for the stable isotopes by Fricke et al.: Fµ2 = 2.04± 0.2 GHz/fm2

with k = 0.975 and S
N = −0.78±0.32. The fourth estimation of the electronic

factor, given in ref. [16] (FDF = 2.39±0.27 GHz/fm2), has been deduced from a
King plot with results from another optical transition for which F was obtained
using Dirac-Fock calculations. The specific mass shift has been evaluated from

the δ < r2
c >

124,116 value measured from the Kα-transition isotope shift ( S
N =

−1.04) and a k = 1 value has been used. From these sets of δ < r2
c > data, we

have calculated the charge radii taking as reference the value reported in ref.
[1] for 120Sn, except for the δ < r2

c > values obtained from Fµ1. In this case,
for a consistence purpose, we have used the rc value given in ref. [15] for 120Sn.

2.3 Tellurium isotopes

The neutron-rich tellurium isotopes have been recently studied by laser spec-
troscopy using the 5p4 3P2 → 5p3 6s 3S1 transition at 214.3 nm [17,18]. In this
work the electronic factor and the specific mass shift have been determined
by performing a King plot between the preliminary optical isotope shifts and
the δ < r2

c > values obtained from muonic experiment [19]: Fµ1 = 4.66±0.86

GHz/fm2 with k = 0.974 and S
N = −1.89±0.33. Starting from the same optical

isotope shift values we have done a second determination of the electronic fac-
tor and specific mass effect using the muonic δ < r2

c > values reported in ref.

[1]: Fµ2 = 3.78±0.48 GHz/fm2 with k = 0.974 and S
N = −1.73±0.37. Then we

have calculated the resulting charge radii taking as reference the 130Te charge
radius in the first case from [19] and in the second case from ref. [1].
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2.4 Xenon isotopes

The optical isotope shifts have been measured from A = 116 up to 146 in the
5p5 6s [3

2
]2 → 5p5 6p [3

2
]2 transition at 823.2 nm [20]. The δ < r2

c > values
have been obtained using the electronic factor calculated in semi-empirical
approach (FSE = −2.32 GHz/fm2 [6]) and assuming the specific mass shift to
be zero with an error of ± the normal mass shift. Using the δ < r2

c > given in
ref. [20] and taking as reference the 136Xe charge radius reported in ref. [1] we
have calculated the charge radii from 116Xe up to 146Xe. We have determined
new values for the electronic factor and the specific mass shift by doing a King
plot of the optical isotope shifts [20] versus the δ < r2

c > values reported in

ref. [1] : Fµ = −1.56±0.11 GHz/fm2 with k = 0.972 and S
N = 0.192±0.266.

Then we have calculated the corresponding δ < r2
c > from A = 116 up to 146

and deduced the charge radii taking again as reference the 136Xe charge radius
value reported in ref. [1].

2.5 Barium isotopes

The optical isotope shifts have been measured from A = 120 up to A = 148 us-
ing two transitions: the 6s2 1S0 → 6s 6s 1P1 transition at 553.6 nm and the BaII
D2 line at 455.4 nm (see the laser spectroscopy studies listed in ref. [6]). In the
following we will concentrate on the 553.6 nm transition because, in this case,
the electronic factor has been obtained not only from semi-empirical approach
but also in multiconfiguration Dirac-Fock calculations [10]. We have used three
different methods to estimate the Ba charge radii. Firstly starting with the
δ < r2

c > values from ref. [6], we have calculated the charge radii taking as ref-
erence the rc value reported in ref. [1] for 138Ba. The δ < r2

c > values given in
ref. [6] have been obtained with the following semi-empirical electronic factor

and specific mass shift: FSE = −3.929 GHz/fm2 and S
N = 0. Secondly we have

performed a King plot using the optical isotope shifts measured for the stable
isotopes [22] and the charge radius values obtained from muonic experiments
and reported in refs. [21] or [1], this led using k = 0.97 to Fµ1 = −3.163±0.144

GHz/fm2 and S
N = −0.707±0.109 or Fµ2 = −3.897±0.189 GHz/fm2 and S

N =
2.649±0.27, respectively. Using the δν values measured from A = 122 to A =
146 in the 553.6 nm transition [22,23], we have deduced the δ < r2

c > values
corresponding to these electronic factors and specific mass shift effects and
then the rc values taking as reference the 138Ba charge radius [21,1]. Finally
we have evaluated the specific mass shift corresponding to the electronic fac-
tor obtained in multiconfiguration Dirac-Fock calculations (FMCDF = −2.996
GHz/fm2 [10]) by comparing the δν values and the muonic δ < r2

c > values

for the stable isotopes: S
N = 0.1±1.1. A new set of rc data has been obtained
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taking as reference the charge radius given for 138Ba in ref. [1].

2.6 Samarium isotopes

Many laser spectroscopy studies have been performed in the samarium iso-
topes, they have been summed up in ref. [6]. The optical isotope shifts have
been measured from A = 138 to 145 using the 4f6 6s2 7F2 →4f6 6s 6p 5G2 tran-
sition at 600.42 nm [24] and from A = 146 to 154 using the 4f6 6s2 7F1 → 4f6

6s 6p 7F0 transition at 570.68 nm [25]. The isotope shifts of the stable isotopes
have been performed extensively, in 15 lines of the SmI spectrum including
the 570.68 nm [26]. Thus for this transition we could carry out a King plot
analysis using the optical shift and the muonic δ < r2

c > values given either
in refs. [27,28] or in ref.[1], this led, using k = 0.963, to Fµ1 = −2.82±0.14

GHz/fm2 and S
N = −16.37±1.84 or Fµ2 = −2.48±0.23 GHz/fm2 and S

N =
−18.79±3.01, respectively. Moreover, for this transition, Fricke et al. have
performed a combined analysis of the optical isotope shifts and of the data
obtained from muonic atom and electron scattering experiments, which led to

Fµe− = −3.86±0.86 GHz/fm2 and S
N = 0.4±1.3. In the 600.42 nm transition,

only the isotope shift of the 144,147Sm stable nuclei has been measured, which
is insufficient for a calibration using the muonic data. Finally the charge ra-
dius values in Sm have been calculated in four ways. Firstly, we have used the
semi-empirically determined δ < r2

c > values given in ref. [6] for A = 138-154
and taken as reference the charge radius of 144Sm reported in ref. [1]. For A =
144-154, we have evaluated the charge radii from the isotope shifts measured

in the 570.68 nm transition and the F and S
N values resulting from the King

plots performed using either the muonic atom data or the combined analysis.
The charge radius of the reference nucleus, 144Sm, was taken from ref. [1], ex-
cept when the muonic data used for the King plot were those of refs. [27,28].
In this case, in order to be consistent we have used the 144Sm rc value reported
in ref. [27].

The charge radius values obtained as indicated above are presented in fig. 1.
Before N = 82 the charge radii obtained using semi-empirical F factors are
systematically higher than those using the F factors determined by a King
plot analysis between the optical isotope shifts and the muonic δ <r2

c > values
for the stable isotopes. The contrary is observed after N = 82. However the
scattering of the values is not very important and one can wonder whether
the error bars are underestimated. For instance, in case of Cd, the possible
systematic error on δ <r2

c > due to the uncertainty in the specific mass shift
effect and F factor has been estimated and is indicated in ref. [12]. Taking
into account these systematic errors results in multiplying by a factor of 5 the
error bars in the charge radius as compared with the ones reported in table
1 column 3, and makes this radius value set consistent with the two others
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drawn in figure 1.
It is in the Xe isotope series that the larger differences are observed between
the charge radius sets. But the information on the laser-spectroscopy and
muonic-atom experiment results is scanty; in particular the charge radius val-
ues from muonic-atom experiment are only available in the compilation of
Fricke et al. [1]. However we can see in fig. 1 that the differences in charge
radii between the two data sets are less than or around one per cent. On the
other hand, analysing, for different N values the evolution of the charge radius
as a function of Z, one can conclude that the true charge radius values lie
somewhere between the values labelled FSE and those labelled Fµ.
For Sn, Te, Ba and Sm, two charge radius sets are available for the stable iso-
topes from muonic-atom experiment, leading to two determinations of the F
factor and specific mass shift effect. One can note that there is a compensation
between these two parameters since the charge radius values obtained over the

whole isotope series remain very similar even when the F and S
N factors are

significantly different.
In the following, for the comparison with theory, in a first step we will use the
charge radius values labelled Fµ or Fµ2 in fig. 1 or tables 1-6. They present
the advantage of consistency since they have been obtained applying the same
method for the determination of the F factor and specific mass shift effect,
using in all cases the charge radii reported for the stable isotopes in the com-
pilation by Fricke et al. [1]. For 138−143Sm that have not been studied with
the same optical transition than the heavier isotopes, we will use the charge
radius values from the data set labelled FSE. Finally it is worth noting that
the table of nuclear charge radii published by Angeli [29] supports quite well
the data sets that we have chosen to compare with the results of calculations.

3 Microscopic evaluation of nuclear charge radii and spectroscopic

properties.

A systematic investigation of Cd, Sn, Te, Xe, Ba and Sm isotopic chains has
been performed on the ground of Hartree-Fock-Bogoliubov solutions deduced
under triaxial symmetries from the D1S Gogny effective nucleon-nucleon in-
teraction [30–32]. At first step for each nucleus, constrained HFB (CHFB)
solutions are calculated by expansion of single particle states on a triaxial
harmonic oscillator basis. Involved numerical methods and codes for this pur-
pose are those described in ref. [33]. CHFB solutions are mapped against axial

q0 =
〈
Q̂20

〉
and triaxial q2 =

〈
Q̂22

〉
components of the mass quadrupole mo-

ment. This mapping is as it is usual rewritten in term of polar Bohr’s variables:
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β=

√
5π

3

√
q2
0 + 3q2

2

A
(
A

1

3 r0
)2 (1)

γ= arctan
√

3
q2
q0

or their usual cartesian counterparts (a0 = β cos γ, a2 = β sin γ). In the eq. 1
which connects scaled collective variables (β, γ) with quadrupole moments,
the standard liquid drop expression for the mean radius is employed with
r0 = 1.2 fm, A being the particle number.

As known, due to symmetry invariances, this mapping can be restricted to the
first sextant

{
0 6 β < +∞; 0 6 γ 6

π
3

}
. In practice, the CHFB calculations

are performed on a lattice with typically 80 mesh points in the first sextant
with 0 6 β 6 βc using the cutoff value βc = 0.65 which will secure, in present
case, the evanescent character of collective wave functions (see hereafter).

In each mesh point (β, γ), the neutron ρβγ
n (−→r ) and proton ρβγ

p (−→r ) densities
associated with the CHFB solution φβγ give, in particular, the value of neutron
and proton point mean square radius by:

〈
rβγ
k

〉2
=

1

Nk

∫
d3r ρβγ

k (−→r ) r2 with k = n or p (2)

where Np and Nn are the proton and neutron numbers. According to [31] and
[34], charge radii are then written in fm units as:

rβγ
c =

√〈
rβγ
p

〉2
+ fβγ

conv + εn (3)

with fβγ
conv =

3

2

(
B2 − a

)
and εn = −0.12

Nn

Np

(fm2)

In former expressions, fβγ
conv carries a proton form factor term (B = 0.65

fm) and a correction a due to center of mass motion. This correction, known to
be small, is evaluated assuming pure harmonic oscillator wave functions with

a = ~/ (mωβγ A) where m is the nucleonic mass (~
2

m = 41.47 MeV fm2) and
where ωβγ is the oscillator constant value (in MeV/~ ) chosen in each mesh
point to minimize the CHFB energy. Finally, εn is a standard expression of
the contribution to charge radii associated with the neutron electromagnetic
properties.

The HFB state - i.e. the solution φβmγm
at the minimum of total energy which

arises at deformation (β, γ) = (βm, γm) - defines what will be called hereafter
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the “static” properties and, in particular, the charge radius:

rHFB
c = rβmγm

c

At this step, we have applied a configuration mixing approach in the space
spanned by the CHFB states φβγ and their rotation transforms. The general
frame is the Generator Coordinate Method (GCM) under Gaussian Overlap
Approximation (GOA) for the complete quadrupole collective space i.e. for
axial and triaxial quadrupole vibrations together with rotation treated in this
frame on the same footing. Similar approach has been applied to the descrip-
tion of low-energy spectroscopy in various regions of the nuclear chart, and
in particular in [35] for light Hg isotopes. Present approach is identical in its
principles to those implemented for the description of the Normal-Super De-
formation (ND-SD) shape coexistence in mercury-lead and actinide regions
[36,37]. Technical details can be found in ref. [36] and refs. therein. This ap-
proach has been shown to be able to reproduce main trends for low-energy
collective levels in deformed and transitional nuclei. However, as well known,
the considered collective space is not well adapted to rigid spherical (magic
and particularly doubly magic) system, and some evidence of this weakness
has thus to be expected in some nuclei of our panel. Here, we will only recall
the main steps which are involved in the method.

i) Under the GOA approximation, the variational GCM Hill-Wheeler equation
in the five components of the quadrupole tensor {q2m} can be re-written in
the intrinsic system under a Schrödinger form i.e. an Hamiltonian Hcoll which
takes the form of the so-called full quadrupole collective Bohr Hamiltonian in
β, γ, and Euler angles Ω = (θ,ϕ,ψ). Hcoll has analytically the same form as
the Bohr Hamiltonian considered and numerically solved for the first time in
the pioneering work of ref. [38].

ii) The Hamiltonian Hcoll involves a kinetic term made with six functions of the
deformation, namely the three moments of inertia {Jk (β, γ)}k (where k refers
to the principal axes (k = 1, 2 and 3)) and three mass parameters allowing
to built the symmetric vibrational kinetic tensor {Bαα′ (β, γ)}α,α′={β,γ} associ-
ated with vibrations in β and γ directions and their coupling. These ingredients
are calculated for each CHFB solution φβγ using the perturbative approach
of motion and linear response theory driving to the so-called Inglis-Belyaev
formulas. However, previous works using self-consistent cranking calculations
have driven us to introduce a simple but realistic overall scaling factor on Jk

functions to take into account in a simple way the effect of rotation on the
nuclear field (the so-called dynamical Thouless-Valatin contribution).
Under GCM-GOA hypotheses, the potential term V = ECHFB − Ezp of
Hcollcarries rotational and vibrational Zero Point Energy contributions which
are also evaluated by Inglis-Belyaev cranking series belonging to the linear
response theory. Finally, we have used here as it is the case for instance in [36]
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and [37]:

Jk (β, γ)= 1.32 ∗ J Inglis−Belyaev
k (β, γ) , k = 1, 2, 3 (4)

Bαα′ (β, γ)=BInglis−Belyaev
αα′ (β, γ) , α, α′ = {β, γ} (5)

V (β, γ)=ECHFB (β, γ) − EInglis−Belyaev
zp (β, γ) (6)

iii) The Schrödinger equation is solved numerically using expansion techniques
similar to those explained in great details in [36]. Deduced eigen energies,
EI,n ordered by quantum number n in each block of good angular momentum
I, are associated with eigen states taking the form of normalized combinations:

ΨI,n =
∑

Keven>0

AI,n
K (β, γ) ϕI

MK (Ω) (7)

which carries spreading in deformation variables and K-mixing. In eq. 7,
ϕI

MK (Ω) refers to the standard combination (see. e.g. [38]) of Wigner rotation
matrices for angular momentum I and its projections ±K and M on the third
axis in intrinsic and laboratory frame, respectively.

Here we focus our interest on properties of the ground states. For this state
(I = K = 0, n = 1), the density of probability in collective space ρ0,1(β, γ) is
given by:

ρ0,1(β, γ) =
∣∣∣A0,1

0 (β, γ)
∣∣∣
2
µ (β, γ) (8)

where µ is the metric involving moments of inertia and mass parameters, in
such a way that for the normalized state, one has:

∫

sextant

ρ0,1(β, γ) β dβ dγ = 1 (9)

The associated charge radius, named in what follows “dynamic” or GCM-GOA
charge radius writes:

rGCM−GOA
c =

∫

sextant

ρ0,1(β, γ) rβγ
c β dβ dγ (10)

where rβγ
c is the local CHFB value defined in eq. 3. Other ground-state prop-

erties as 〈β〉 and 〈γ〉 are deduced in the same way through the knowledge of
the density ρ0,1(β, γ).
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In the panel of nuclei under study, we can isolate three types of typical behavior
in the collective space. Potentials Energy Surfaces (PES) and deduced densities
ρ0,1 for rigid or very rigid spherical nuclei are displayed in fig. 2 for 98,130Cd
nuclei taken as examples. Similar information for a soft mid-shell nuclei (116Sn)
is shown in fig. 3, whereas a prolate well-deformed behavior is displayed in fig. 4
through the 126Ba and 154Sm cases.

Hereafter and in the discussion of section 4, we will also refer to reduced E2
transition probability values calculated for the first transition in the ground
state (gs) band, namely 0+

gs → 2+
gs. These calculations have been performed

under simple hypothesis of uniform charge distribution in collective model
following [38]. That is known to be quite reliable as long as a shape transition
does not occur between the initial and the final states. Qualitatively, one can
retain that the microscopic charge quadrupole operator, which is non local
in the present collective space, can be replaced by the corresponding local
collective model operator as long as densities in the initial and final states are
high in the same area of the collective space. This is clearly the case for nuclei
under study, and, in particular for the transition 0+

gs → 2+
gs.

To be more explicit on this point, collective model assumption of ref. [38],
means that the considered charge quadrupole operator acting in the collective
space is taken simply as the two component operator:

Q̂0 =
3

4π
Z

(
r0A

1

3

)2
β cos γ (11)

Q̂2′ =
3

4π
Z

(
r0A

1

3

)2
β sin γ

with r0 = 1.2 fm.

Under these hypotheses, the reduced E2 transition probability between an
initial (I, n) and and a final (I ′, n′) state of our spectrum, writes:

B (E2; (I, n) → (I ′, n′)) =
1

(2I + 1)
|〈I, n ‖M (E2)‖ I ′n′〉|2 , (12)

where the reduced matrix element, for transitions (0, n) → (2, n′) under
present scope writes after evaluating geometrical coefficients:

〈0, n ‖M (E2)‖ 2, n′〉 =
〈
A0,n

0

∣∣∣Q̂0

∣∣∣A2,n′

0

〉
+

〈
A0,n

0

∣∣∣Q̂2′

∣∣∣A2,n′

2

〉
(13)

with
〈
AI,n

K

∣∣∣Q̂m

∣∣∣AI′,n′

K′

〉
=

∫

sextant

AI,n
K (β, γ) Q̂m AI,n′

K′ (β, γ) µ(β, γ) β dβ dγ (14)
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This paper is focused on measurement and evaluation of charge radii. To con-
trol the validity of the present GCM-GOA approach, it is however of some
interest to see some results obtained in this frame for other observables as
excitation energy of first levels in the ground state band

(
2+

gs, 4
+
gs

)
and these

E2 transition rates
(
0+

gs → 2+
gs

)
discussed above. For all isotopic chains under

study, these results are drawn in fig. 5. The main trends are satisfactorily re-
produced for these quantities. Main discrepancies appear for magic and doubly
magic nuclei. The only case where the B(E2) is over-evaluated do correspond
to the magic N = 50 Sn nuclei. This overestimation of the collectivity corre-
sponds to a certain inadequation of the considered space as already mentioned.
The very strong effect on excitation energies due to the N = 82 shell closure
is often missed by the calculation. It should be noticed, however, that such
approaches under quasiparticle hypothesis, manage with a spreading in the
number of particles. It could not be very surprising to see a smoothing on
excitation energies as function of N in the vicinity of the violent N = 82 shell
closure. The phenomenon is strong and makes the systems with N ± 2 quite
different from the system with N neutrons. Keeping in mind that we have
to take care around shell and doubly shell closures, the overall agreement
with experimental data which has been shown demonstrates that the present
theoretical description provides reliable gs wave functions and therefore a con-
venient ground to study in more detail the question of charge radii.

4 Discussion.

The static and dynamic root mean square charge radii calculated within the
theoretical approach described above are displayed in fig 6. Following the
analysis of section 2, they are compared in this figure with the rc values we
deduced from the optical isotope shift measurements by a King plot analysis
performed using the rc values known for the stable isotopes either from muonic
atom experiments or from a combined analysis.

For the Cd, Sn, Te and Sm isotopic series, we must note that the best agree-
ment is clearly obtained between the experimental data and the dynamic theo-
retical predictions. However for the nuclei having a neutron number very close
to a magic one (N = 50 or 82), the agreement can become better with the
static calculations; this is the case for the doubly magic 132Sn, magic 134Te,
Cd with N < 58 and Sm with 76 < N < 84.

On the other hand, for the Xe and Ba isotopic series, some of the rc values are
rather in best agreement with these given by the static predictions whereas
the curves have a smooth behaviour similar to this predicted by the dynamic
calculations. One can note, in particular, that the jumps found in the rc static
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curves never exist in the experimental ones. The jumps happen close to the
neutron mid-shell N = 66; namely between N=64 and 66 for the Te nuclei
and between N = 70 and 72 for the Xe and Ba ones. The potential energy
surfaces and the corresponding densities of 116,118Te (N = 64 and N = 66) and
124,126Xe (N = 70 and N = 72) are shown in figs. 7 and 8. These potential
energy surfaces are smooth with a very large γ valley and without any deep
well, which clearly indicates that the four nuclei are γ-soft. In such a case, the
HFB solution localized at the minimum is a poor description of the system
which strongly spreads out on the deformation space. This means that the
deduced static deformation is then not valuable. For example, the potential
energy surfaces of 116Te and 118Te are very similar but a small minimum is
visible at β = 0.35 for 116Te whereas no minimum appears for 118Te. This very
small difference could explain the static rc curve jump that is found between
116Te and 118Te because of the obvious strong influence of the deformation on
the rc value. The static and dynamic deformation parameters are shown in
fig. 9. We can see that the static deformation parameter β= 0.35 for 116Te
is large while it is only β = 0.17 for 118Te. In the same way the static rc

curve jumps calculated at N = 70 for the Xe and Ba isotopic series are due to
sudden changes of the deformation parameters (see fig. 9). We can conclude
that the local irregularities found for the rc curves with the static calculations
are artefacts that can come out for a soft nucleus for which the potential
energy surface is very smooth.

Such artefacts do not exist in dynamic calculations since the density is deter-
mined taking into account the shape of the whole potential energy surface.
Thus, for example, the densities calculated for 116Te and 118Te are very sim-
ilar, they spread out on a large part of the collective space, from β=0.1 to
0.4. In such cases, good predictions can only be obtained by use of dynamical
calculations, taking into account long range correlations. So, except for nuclei
situated very close to the magic numbers, the dynamic approach is expected
to provide the best description.

Now, it remains to understand why the static rc values seem to be in a bet-
ter agreement with the experimental rc values than the dynamic ones for the
Xe and Ba isotopic series. Is this due to the calculation quality or to the
experimental determination? To seek to answer the first question, it is pos-
sible to estimate the calculation quality by having a look again at the fig. 5
where some other experimental and predicted spectroscopic properties (B(E2),
E(2+), E(4+)/E(2+)) are compared. The agreement between predicted and
experimental results is at least as good for the Xe and Ba isotopic series as
for the other ones. The agreement is even particularly excellent for the Ba
nuclei. The calculation quality does not seem, hence, to be called in question
for Xe and Ba nuclei. As for the second question, we have to remind that the
larger difference between the various experimental determinations has been
obtained for the Xe and Ba isotopic series (see fig. 1). Moreover, some rea-
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sons of uncertainty in the rc determination in the Xe isotopic series have been
stressed in section 2. So, for Xe and Ba nuclei, we compare in fig. 10 the rc

values obtained with dynamic calculations with the two sets of data given by
the semi-empirical method (FSE) and the King plot determination (Fµ2) using
the muonic atom results. The best agreement is obviously obtained with the
data set semi-empirically determined. It is worth noting that the muonic rc

values of the stable isotopes (reported as open triangle in fig. 6) used to per-
form the King plot analysis, are all located close to the magic neutron number
N = 82 where the rc values are almost constant and consequently where the
mean square charge radius changes are very small. In these particular condi-
tions the F value can be not enough precisely determined to get the right rc

values for the nuclei located far away from the magic number. Moreover, the
muonic rc values reported in the Fricke table (ref. [1]) for the stable Xe and Ba
nuclei have been corrected for nuclear polarization effects assuming a spherical
nuclear shape whereas for the lightest isotopes a deformation already exists.
This approximation could also contribute to increase the uncertainty on the F
value. All of these facts show the limit of the method. For these critical cases
it is very clear that a combined analysis as that used for the Sm nuclei, is
absolutely necessary to get valuable results to be compared with theoretical
predictions.

5 Conclusion.

In this work, the rc values along the Cd, Sn, Te, Xe, Ba and Sm isotopic series
have been obtained using mainly the muonic atom and optical spectroscopy re-
sults. Among the various methods employed to determine the electronic factor
F and the Specific over Normal mass shift S/N, the King plot analysis using
the rc values extracted for the stable isotopes from muonic atom experiments
leads as expected to the most accurate rc values. However, this method seems
to reach its limits in cases where the reference stable isotopes are close to a
magic number and drive therefore a low slope of the rc curve as function of the
neutron number. This has been shown in Xe and Ba isotopic chains. In such
cases, a combined analysis would be essential but is unfortunately unavailable
up to now.

The excellent agreement found between the experimental data and dynamical
GCM-GOA calculations for Cd Sn Te isotopes has shown that a theoretical
approach must take into account long range correlations especially for γ-soft
and weakly deformed nuclei. Of course in cases of well deformed nuclei, as
Sm, the static and dynamic deformations are similar and lead to almost the
same rc values. In all the isotopic series under study, the low-energy spec-
troscopy is well reproduced by GCM-GOA calculations. In particular, this is
the case for the Xe and Ba chains. In these nuclei, the GCM-GOA rc values
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are thus expected to be also in good agreement with the experimental values.
The fact that the dynamical charge radii are in better agreement with the ex-
perimental rc values obtained using the semi-empirical FSE factor than with
those calculated using the muonic Fµ factor supports the limitation of the Fµ

determinations evocated above for the Xe and Ba nuclei.
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6 Appendix.

Table 1
Charge radii (in fm) for Cd isotopes

A N FSE
a) Fµ

b) FDF
c) HFB GCM-GOA

98 50 4.4354 4.4614
100 52 4.4487 4.4684
102 54 4.5022±0.0058 4.4763±0.0063 4.4724±0.0031 4.4709 4.4939
103 55 4.5140±0.0056 4.4904±0.0057 4.4869± 0.0031
104 56 4.5285±0.0062 4.5071±0.0053 4.5040±0.0039 4.5091 4.5162
105 57 4.5364±0.0048 4.5174±0.0046 4.5147±0.0030
106 58 4.5517±0.0010 4.5337±0.0050 4.5324±0.0026 4.5308 4.5362
107 59 4.5575±0.0042 4.5428±0.0037 4.5409±0.0029
108 60 4.5673±0.0010 4.5541±0.0039 4.5531±0.0022 4.5457 4.5545
109 61 4.5689±0.0054 4.5585±0.0030 4.5575±0.0044
110 62 4.5822±0.0010 4.5736±0.0029 4.5730±0.0018 4.5587 4.5735
111 63 4.5845±0.0010 4.5776±0.0103 4.5778±0.0016

111 m 63 4.5832±0.0119 4.5784±0.0025 4.5767±0.0111
112 64 4.5969±0.0034 4.5926±0.0019 4.5924±0.0029 4.5777 4.5929
113 65 4.5993±0.0010 4.5954±0.0076 4.5972±0.0012

113 m 65 4.5991±0.0084 4.5975±0.0016 4.5950±0.0083
114 66 4.6100±0.0010 4.6100±0.0010 4.6100±0.0010 4.5991 4.6066
115 67 4.6125±0.0059 4.6148±0.0058 4.6149±0.0060

115 m 67 4.6133±0.0023 4.6148±0.0025 4.6156±0.0024
116 68 4.6202±0.0010 4.6245±0.0018 4.6246±0.0014 4.6141 4.6184
118 70 4.6235±0.0034 4.6320±0.0044 4.6325±0.0040 4.623 4.6305
120 72 4.6283±0.0055 4.6408±0.0070 4.6416±0.0064 4.6182 4.6397
122 74 4.6301 4.6489
124 76 4.6438 4.6595
126 78 4.6548 4.6675
128 80 4.6652 4.6766
130 82 4.6751 4.6945
132 84 4.6887 4.6991
134 86 4.702 4.7178
136 88 4.7199 4.7372

a) δ <r2c > values from ref. [6] and rc(
114Cd) from ref. [1].

b) F = −4.37 ± 0.18 GHz/fm2, S
N = 2.43 ± 0.35, k = 0.977 (see text), IS taken

from ref. [12] and rc(
114Cd) from ref. [1].

c) F from Dirac-Fock calculations [10,12], S
N = 2.15 ± 0.18, k = 0.977 (see text),

IS taken from ref. [12] and rc(
114Cd) from ref. [1].
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Table 2
Charge radii (in fm) for Sn isotopes

A N FSE
a) Fµ1

b) Fµ2
c) FDF

d) HFB GCM-GOA

100 50 4.469 4.5033
102 52 4.4823 4.5034
104 54 4.497 4.5248
106 56 4.5147 4.5467
108 58 4.5337 4.5653
110 60 4.5860±0.0028 4.5801±0.0083 4.5748±0.0115 4.5833±0.0088 4.5574 4.5828
111 61 4.5916±0.0027 4.5860±0.0074 4.5804±0.0102 4.5884±0.0082
112 62 4.6013±0.0022 4.5961±0.0064 4.5928±0.0087 4.5993±0.0070 4.5763 4.6001
113 63 4.6077±0.0021 4.6028±0.0059 4.5999±0.0081 4.6057±0.0062
114 64 4.6154±0.0018 4.6108±0.0048 4.6091±0.0065 4.6139±0.0053 4.5928 4.6171
115 65 4.6203±0.0017 4.6160±0.0042 4.6138±0.0057 4.6183±0.0048
116 66 4.6295±0.0014 4.6256±0.0032 4.6257±0.0042 4.6287±0.0037 4.6084 4.6301
117 67 4.6347±0.0012 4.6310±0.0026 4.6309±0.0034 4.6335±0.0031

117m 67 4.6343±0.0013 4.6306±0.0028 4.6303±0.0038 4.6330±0.0031
118 68 4.6429±0.0010 4.6396±0.0017 4.6413±0.0021 4.6427±0.0021 4.6229 4.6451
119 69 4.6475±0.0008 4.6444±0.0012 4.6458±0.0015 4.6468±0.0017
120 70 4.6550±0.0006 4.6522±0.0006 4.6550±0.0006 4.6550±0.0006 4.6362 4.6573
121 71 4.6595±0.0008 4.6570±0.0013 4.6594±0.0015 4.6591±0.0011

121m 71 4.6589±0.0008 4.6563±0.0012 4.6584±0.0014 4.6583±0.0010
122 72 4.6658±0.0010 4.6635±0.0023 4.6668±0.0031 4.6657±0.0020 4.651 4.6693
123 73 4.6694±0.0012 4.6673±0.0025 4.6696±0.0032 4.6685±0.0021
124 74 4.6755±0.0013 4.6737±0.0035 4.6770±0.0047 4.6751±0.0030 4.6622 4.6805
125 75 4.6791±0.0016 4.6774±0.0038 4.6798±0.0052 4.6779±0.0032

125m 75 4.6775±0.0040 4.6758±0.0037 4.6773±0.0049 4.6757±0.0030
126 76 4.6846±0.0051 4.6832±0.0045 4.6862±0.0060 4.6836±0.0039 4.6736 4.6911
127 77 4.6878±0.0056 4.6866±0.0050 4.6888±0.0067 4.6862±0.0041

127m 77 4.6858±0.0053 4.6845±0.0049 4.6854±0.0065 4.6833±0.0038
128 78 4.6930±0.0063 4.6920±0.0056 4.6946±0.0076 4.6914±0.0047 4.6844 4.6992
129 79 4.6941±0.0065 4.6933±0.0060 4.6938±0.0080 4.6911±0.0047

129m 79 4.6969±0.0069 4.6962±0.0061 4.6984±0.0081 4.6950±0.0051
130 80 4.7023±0.0077 4.7018±0.0067 4.7047±0.0090 4.7006±0.0057 4.6946 4.7072

130m 80 4.6991±0.0073 4.6985±0.0065 4.6994±0.0086 4.6962±0.0052
131 81 4.7080±0.0086 4.7077±0.0073 4.7115±0.0100 4.7067±0.0064

131m 81 4.7108±0.0090 4.7105±0.0074 4.7161±0.0102 4.7105±0.0068
132 82 4.7093±0.0088 4.7091±0.0075 4.7111±0.0101 4.7067±0.0064 4.7043 4.7318
134 84 4.7179 4.7285
136 86 4.7311 4.7476

a) F, SMS and k from ref. [13], IS from refs. [13,5] and rc(
120Sn) from ref. [1].

b) F, S
N and k from ref. [5], IS from refs. [13,5] and rc(

120Sn) from ref. [15].

c) F = 2.04 ± 0.2 GHz/fm2, S
N = −0.78 ± 0.32 and k = 0.975 (see text), IS from

refs. [13,5] and rc(
120Sn) from ref. [1].

d) F from Dirac-Fock calculations, S
N and k from ref. [16], IS from refs. [13,5] and

rc(
120Sn) from ref. [1].
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Table 3
Charge radii (in fm) for Te isotopes

A N Fµ1
a) Fµ2

b) HFB GCM-GOA

102 50 4.5293 4.5476
104 52 4.5716 4.5634
106 54 4.576 4.5818
108 56 4.597 4.6014
112 60 4.6358 4.6445
114 62 4.6838 4.6709
116 64 4.7234 4.6908
118 66 4.6777 4.701
120 68 4.7046±0.0076 4.7020±0.0073 4.6865 4.7048
122 70 4.7112±0.0060 4.7098±0.0056 4.6985 4.7111
123 71 4.7127±0.0056 4.7114±0.0051
124 72 4.7183±0.0045 4.7180±0.0042 4.7082 4.7182
125 73 4.7201±0.0041 4.7200±0.0036
126 74 4.7250±0.0031 4.7258±0.0028 4.7109 4.7272
128 76 4.7319±0.0018 4.7339±0.0016 4.722 4.7371
130 78 4.7388±0.0005 4.7420±0.0005 4.7326 4.7455
132 80 4.7456±0.0029 4.7500±0.0033 4.7428 4.7539
134 82 4.7517±0.0041 4.7571±0.0045 4.7525 4.7659
136 84 4.7729±0.0077 4.7828±0.0075 4.7897 4.7803

a) F = 4.66 ± 0.86 GHz/fm2, S
N = −1.89 ± 0.33 and k = 0.974 (see text), IS from

refs. [17,18] and rc(
130Te) from ref. [19].

b) F = 3.78 ± 0.48 GHz/fm2, S
N = −1.73 ± 0.37 and k = 0.974 (see text), IS from

refs. [17,18] and rc(
130Te) from ref. [1].
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Table 4
Charge radii (in fm) for Xe isotopes

A N FSE
a) Fµ

b) HFB GCM-GOA

114 60 4.7697 4.7136
116 62 4.7362±0.0149 4.7075±0.0073 4.7759 4.7408
118 64 4.7508±0.0127 4.7291±0.0057 4.7622 4.7571
120 66 4.7610±0.0117 4.7439±0.0046 4.775 4.7698
122 68 4.7677±0.0095 4.7537±0.0039 4.8016 4.7707
124 70 4.7737±0.0085 4.7624±0.0032 4.8187 4.7733
126 72 4.7788±0.0064 4.7699±0.0023 4.7724 4.7756
128 74 4.7831±0.0053 4.7760±0.0019 4.7729 4.7799
129 75 4.7831±0.0043 4.7760±0.0019
130 76 4.7868±0.0043 4.7813±0.0015 4.7798 4.7867
131 77 4.7861±0.0032 4.7802±0.0015
132 78 4.7902±0.0022 4.7863±0.0011 4.7812 4.7926
134 80 4.7936±0.0014 4.7911±0.0007 4.7869 4.7981
136 82 4.7990±0.0001 4.7990±0.0001 4.7961 4.8117
137 83 4.8099±0.0011 4.8149±0.0014
138 84 4.8254±0.0022 4.8373±0.0029 4.8247 4.8221
139 85 4.8363±0.0032 4.8531±0.0041
140 86 4.8494±0.0042 4.8721±0.0053 4.8561 4.8464
141 87 4.8602±0.0052 4.8878±0.0065
142 88 4.8724±0.0063 4.9055±0.0079 4.8637 4.869
143 89 4.8810±0.0073 4.9178±0.0085
144 90 4.8927±0.0083 4.9346±0.0097 4.8814 4.889
146 92 4.9123±0.0103 4.9628±0.0117 4.9634 4.9141

a) δ <r2c > from ref. [20] and rc(
136Xe) from ref. [1].

b) F = −1.56 ± 0.11 GHz/fm2, S
N = 0.192 ± 0.266 and k = 0.972 (see text), IS

from ref. [20] and rc(
136Xe) from ref. [1].
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Table 5
Charge radii (in fm) for Ba isotopes

A N FSE
a) Fµ1

b) Fµ2
c) FMCDF

d) HFB GCM-GOA

116 60 4.8272 4.8007
118 62 4.8405 4.8249
120 64 4.8119±0.0053 4.8359 4.832
121 65 4.8200±0.0051
122 66 4.8179±0.0048 4.8116±0.0016 4.7966±0.0032 4.8095±0.0110 4.8031 4.8402
123 67 4.8162±0.0046 4.8090±0.0016 4.7963±0.0031 4.8073±0.0101
124 68 4.8209±0.0043 4.8165 4.8417
125 69 4.8202±0.0040 4.8132±0.0015 4.8033±0.0027 4.8128±0.0087
126 70 4.8243±0.0038 4.8180±0.0014 4.8089±0.0025 4.8184±0.0082 4.8361 4.8266
127 71 4.8226±0.0035 4.8154±0.0013 4.8085±0.0023 4.8163±0.0073
128 72 4.8275±0.0032 4.8212±0.0012 4.8149±0.0021 4.8228±0.0068 4.8184 4.8277
129 73 4.8268±0.0030 4.8200±0.0011 4.8155±0.0020 4.8221±0.0061

129m 73 4.8255±0.0030 4.8183±0.0012 4.8141±0.0021 4.8203±0.0061
130 74 4.8301±0.0027 4.8237±0.0010 4.8202±0.0017 4.8265±0.0054 4.8194 4.8304
131 75 4.8294±0.0025 4.8225±0.0010 4.8208±0.0016 4.8257±0.0047

131m 75 4.8291±0.0025 4.8220±0.0010 4.8204±0.0016 4.8252±0.0047
132 76 4.8320±0.0022 4.8254±0.0009 4.8247±0.0014 4.8292±0.0041 4.825 4.8332
133 77 4.8303±0.0020 4.8228±0.0009 4.8241±0.0013 4.8270±0.0035

133m 77 4.8316±0.0020 4.8244±0.0008 4.8254±0.0013 4.8287±0.0034
134 78 4.8339±0.0017 4.8265±0.0007 4.8287±0.0011 4.8314±0.0028 4.8265 4.8378
135 79 4.8313±0.0016 4.8227±0.0009 4.8271±0.0011 4.8279±0.0022

135m 79 4.8335±0.0014 4.8261±0.0007 4.8298±0.0010 4.8314±0.0022
136 80 4.8350±0.0011 4.8273±0.0006 4.8323±0.0008 4.8332±0.0016 4.8285 4.8403
137 81 4.8331±0.0009 4.8246±0.0007 4.8316±0.0008 4.8307±0.0010

137m 82 4.8394±0.0004 4.8329±0.0004 4.8383±0.0005 4.8395±0.0009
138 82 4.8390±0.0004 4.8320±0.0004 4.8390±0.0004 4.8390±0.0004 4.8373 4.8541
139 83 4.8517±0.0012 4.8481±0.0012 4.8534±0.0011 4.8564±0.0011
140 84 4.8676±0.0022 4.8684±0.0021 4.8713±0.0020 4.8782±0.0017 4.8674 4.8634
141 85 4.8792±0.0030 4.8829±0.0027 4.8845±0.0026 4.8940±0.0023
142 86 4.8929±0.0041 4.9002±0.0035 4.8998±0.0034 4.9126±0.0028 4.8792 4.8889
143 87 4.9055±0.0049 4.9161±0.0043 4.9140±0.0041 4.9297±0.0035
144 88 4.9195±0.0056 4.9338±0.0051 4.9297±0.0048 4.9488±0.0041 4.9115 4.9128
145 89 4.9297±0.0063 4.9466±0.0056 4.9413±0.0054 4.9626±0.0046
146 90 4.9424±0.0071 4.9625±0.0063 4.9555±0.0061 4.9797±0.0051 4.9263 4.9414
148 92 4.9660±0.0086 5.0029 4.9752

a) δ <r2c > from ref. [6] and rc(
138Ba) from ref. [1].

b) F = −3.163 ± 0.144 GHz/fm2, S
N = −0.707 ± 0.109 and k = 0.97 (see text), IS

from ref. [22] and rc(
138Ba) from ref. [21].

c) F = −3.897 ± 0.189 GHz/fm2, S
N = 2.649 ± 0.27 and k = 0.97 (see text), IS

from ref. [22] and rc(
138Ba) from ref. [1].

d) F from multiconfiguration Dirac-Fock calculations [10], S
N = 0.1 ± 1.1 and k =

0.97 (see text), IS from refs. [22] and rc(
138Ba) from ref. [1].
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Table 6
Charge radii (in fm) for Sm isotopes

A N FSE
a) Fµ1

b) Fµ2
c) Fµe−

d) HFB GCM-GOA

136 74 5.0248 4.9716
138 76 4.9564±0.0071 4.9633 4.9599
139 77 4.9521±0.0071
140 78 4.9450±0.0071 4.9554 4.9578
141 79 4.9447±0.0078
141 79 4.9497±0.0071
142 80 4.9484±0.0069 4.939 4.953
143 81 4.9447±0.0071
144 82 4.9490±0.0060 4.9520±0.0060 4.9490±0.0060 4.9490±0.0060 4.9462 4.9637
145 83 4.9614±0.0067 4.9636±0.0076 4.9608±0.0086 4.9637±0.0094
146 84 4.9758±0.0070 4.9789±0.0086 4.9768±0.0106 4.9810±0.0132 4.9583 4.9736
147 85 4.9857±0.0088 4.9867±0.0095 4.9843±0.0123 4.9927±0.0158
148 86 5.0010±0.0086 5.0035±0.0106 5.0022±0.0145 5.0110±0.0198 4.9893 5.0034
149 87 5.0101±0.0088 5.0104±0.0115 5.0086±0.0162 5.0218±0.0222
150 88 5.0312±0.0090 5.0375±0.0129 5.0382±0.0190 5.0473±0.0278 5.0381 5.0373
151 89 5.0471±0.0098 5.0560±0.0141 5.0580±0.0213 5.0664±0.0319
152 90 5.0730±0.0096 5.0916±0.0157 5.0971±0.0247 5.0979±0.0387 5.1125 5.0964
153 91 5.0825±0.0060 5.0995±0.0166 5.1049±0.0262 5.1091±0.0412
154 92 5.0956±0.0098 5.1137±0.0176 5.1198±0.0282 5.1248±0.0446 5.1215 5.1176

a) δ <r2c > from ref. [6] and rc(
144Sm) from ref. [1].

b) F = −2.82 ± 0.14 GHz/fm2, S
N = −16.37 ± 1.84 and k = 0.963 (see text), IS

from ref. [25] and rc(
144Sm) from ref. [27].

c) F = −2.48 ± 0.23 GHz/fm2, S
N = −18.79 ± 3.01 and k = 0.963 (see text), IS

from ref. [25] and rc(
144Sm) from ref. [1].

d) F and S
N from combined analysis [1] and rc(

144Sm) from ref. [1].
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and G. Schatz, Phys. Rev C 34 (1986) 1052.

[14] P.E.G. Baird et al., J. Phys. B 16 (1983) 2485.

[15] C. Piller, C. Gugler, R. Jacot-Guillarmod, L.A. Schaller, L. Schellenberg, H.
Schneuwly, G. Fricke, T. Hennemann and J. Herberz, Phys. Rev. C 42 (1990)
182.

[16] J. Eberz, U. Dinger, G. Huber, H. Lochman, R. Menges, G. Ulm, R. Kirchner,
O. Klepper, T.U. Kühl and D. Marx, Z. Phys. A 326 (1987) 121.

[17] R. Sifi et al., VII International Workshop on Application of lasers in atomic
nuclei research, LASER2006, May 29-June 01, 2006, Poznan, Poland.

[18] B. Roussière et al., ISOLDE Workshop, February 6-8, 2006, CERN, Geneva,
Switzerland.

[19] E.B. Shera, M.V. Hoehn, G. Fricke and G. Mallot, Phys. Rev. C 39 (1989)195.

[20] W. Borchers, E. Arnold, W. Neu, R. Neugart, K. Wendt and G. Ulm, Phys.
Let. B 216 (1989) 7.

[21] E.B. Shera, H.B. Wohlfahrt, M.V. Hoehn and Y. Tanaka, Phys. Let. B 112

(1982) 124.
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Fig. 1. Experimental charge radius values in the even-even Cd, Sn, Te, Xe, Ba and
Sm isotopes (see text).
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Fig. 2. Potential Energy Surfaces (left hand side) and densities of probability in
the ground state (right hand side) -see text- for magic 98Cd (N = 50) and 130Cd
(N = 82) nuclei. Equipotential lines are separated by 1 MeV. Vertical scales for
densities ρ0,1 are the same for both nuclei. Maximum value of ρ0,1 is 116 (resp. 228)
for 98Cd (resp. 130Cd).
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Fig. 3. Same as fig. 2 for the mid shell nucleus 116Sn (N = 66). Vertical scale for
potential V and density ρ0,1 are the same as in fig. 2. Maximum value of ρ0,1 is 88
for this nucleus.
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Fig. 4. Same as fig. 2 for the two prolate well deformed nuclei 126Ba and 154Sm.
Vertical scales for potentials V and densities ρ0,1 are the same as in fig. 2. Maximum
value of ρ0,1 is 65 (resp. 136) for 126Ba (resp. 154Sm).
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Fig. 5. GCM-GOA calculated quantities (full lines and triangles) are compared with
experimental values (full dots with error bars for B(E2) values) in each isotopic
chain from successively Cd (upper part), Sn, Te, Xe, Ba to Sm (lower part). This
comparison is displayed for transition probabilities B(E2; 0+

gs → 2+
gs) (left column),

excitation energy E(2+
gs) of the first excited state (central column) and the ratio

of excitation energies E(4+
gs) /E(2+

gs) as a measurement of the vibrational-rotational
character of the spectrum. The experimental data have been taken from refs. [39,40].
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Fig. 6. Experimental and calculated charge radii in even even Cd, Sn, Te, Xe, Ba
and Sm isotopes. The experimental rc values given in ref. [1] for even even nuclei
are shown as open triangles.
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Fig. 7. Same as fig. 2 for 116−118Te. Vertical scales for potentials V and densities
ρ0,1 are the same as in fig. 2. Maximum value of ρ0,1 is 38 (resp. 45) for 116Te (resp.
118Te).
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Fig. 8. Same as fig. 2 for 124−126Xe.Vertical scales in potentials V and densities ρ0,1

are the same as in fig. 2. Maximum value of ρ0,1 is 46 (resp. 59) for 124Xe (resp.
126Xe).
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Fig. 9. Theoretical (HFB and GCM-GOA) deformation parameter β for the ground
state against the neutron number N in even even Cd, Sn, Te, Xe, Ba and Sm
isotopes.
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Fig. 10. For Xe (left hand side) and Ba (right hand side) nuclei, charge radii deduced
from semi-empirical method (open squares) and with the King plot on the ground of
muonic atom results (full dots) are compared with dynamical charge radii provided
by the GCM-GOA approach (full line).
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