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Ray-tracing based methods for 3-D modeling of magnetic field and particle motion in spiral scaling FFAG accelerators have been developed. They allow efficient simulation of particle motion in presence of the strong field non-linearities proper to FFAG magnets, and of possible field overlapping in configurations of neighboring magnets, thus yielding a performing tool for spiral FFAG lattice design and optimizations, and for 6-D tracking studies. It is applied for illustration to a principle design of a 200 MeV medical class proton FFAG now under study in the frame of the RACCAM hadrontherapy project.

Introduction

Fixed field alternating gradient accelerators are nowadays subject to intense activities [START_REF] Craddock | The rebirth of the FFAG[END_REF] in various domains as the acceleration of unstable beams [START_REF]A feasibility study of a neutrino factory in Japan[END_REF][START_REF]Feasibility Study-II of a Muon-Based Neutrino Source[END_REF][START_REF] Ruggiero | Non-Scaling FFAGs for Radio-Isotopes Production[END_REF], high power beams [START_REF] Adsr | Accelerator Design and Construction for FFAG-KUCA[END_REF], neutron production [6], BNCT [START_REF]Development of FFAG accelerators and their applications for intense secondary particle production[END_REF] as well as hadrontherapy uses [START_REF] Misu | Study of Compact Medical FFAG Accelerators[END_REF].

In the context of these collaborations, and in particular that of the RACCAM FFAG project [START_REF] Méot | Proc. EPAC 2006 Conf. IN2P3 LPSC[END_REF][START_REF] Raccam | [END_REF], works have recently been undertaken concerning ray-tracing code developments regarding spiral FFAG lattice, in view of medical machine design in the short term, and possible application to muon rings for the scaling FFAG based neutrino factory, as well as high-power beams, in the longer term.

A good knowledge of FFAG accelerator parameters can only be drawn from stepwise ray-tracing in realistic field models. In particular this is the only method that allows computation of the dynamical acceptance of the ring. The developments presented here concern the implementation of such FFAG dedicated tools in the computer code Zgoubi [START_REF]The ray-tracing code Zgoubi, F. Méot, NIM A[END_REF][START_REF] Méot | Developments in the ray-tracing code Zgoubi for 6-D multiturn tracking in FFAG rings[END_REF]. This has various outcomes, as offering means for fast optimization of magnet geometry and fields as constrained by accelerator design parameters ; providing correct computation of periodic motion, tunes, amplitude and momentum detunings, time of flight, etc. ; yielding precision tool for 6-D multiturn tracking, resonance and dynamic aperture studies. In addition, preliminary adjustments of magnet/field parameters can be performed thanks to the built-in fitting procedure, whereas optimizations based on 3-D magnet code calculations have the inconvenience of being slow and lacking flexibility in that matter.

The paper is organized as follows. Section 2 describes the main ingredients and methods in the modeling of spiral FFAG magnets. Section 3 shows an application to design issues, from determination of first order parameters to dynamic aperture scan. Section 4 discusses longitudinal dynamics and 6-D simulations.

A spiral magnet procedure

This Section describes the way the vertical field component B z (r, θ) and derivatives at all position in the median plane of a magnet composed of neighboring spiral sectors (Fig. 1) with possibly overlapping fields are calculated, thus allowing the calculation of the field vector and its derivatives, as involved in the ray-tracing numerical method [START_REF]The ray-tracing code Zgoubi, F. Méot, NIM A[END_REF].

The various magnetic sectors are positioned within an angular domain AT , in the cylindrical frame with origin O at the center of the ring, using a reference radius R 0 and positioning angles ACN i (Fig. 1).

The B z (r, θ) calculation method is derived from an existing procedure regarding radial type FFAG magnets, presented in an earlier works [START_REF] Méot | Developments in the ray-tracing code Zgoubi for 6-D multiturn tracking in FFAG rings[END_REF], and yields a new routine, referred to as "FFAG-SPI" in the following.

The main ingredients are as follows. The magnetic field in the median plane (z = 0) of a spiral sector, in cylindrical coordinates (r, θ) (Fig. 2), is written

B z (r, θ) = B z 0 F(r, θ) R(r) (1) 
wherein B z 0 is a reference field taken at reference radius R 0 . The factor R(r) models the r dependence of the field, and can be expressed under either form

R(r) = r R 0 k(r) or R(r) = b 0 + b 1 r -R 0 R 0 + b 2 r -R 0 R 0 2 + ... (2) 
with k(r) being the field index. Note that in the classical scaling FFAG optics k is in principle a constant, however in the present numerical approach it is allowed to be dependent of r : this permits designing possible compensation of the alteration of scaling properties under the effects of fringe field shape and extent, see below. The magnet EFBs have a spiral geometry with equation r = R 0 e b(r)θ , with b(r) = 1/ tan ξ(r) and ξ(r) the spiral angle. In principle again ξ is constant, however FFAG-SPI allows r-dependence, so to provide a mean for recovering scaling properties in case of perturbating effects as fringe fields, r-dependence of k, etc. The ensuing axial field form factor F(r, θ) (sometimes modelled in analytical approaches by 1 + f sin(N (θ -tan ξ ln(r/r 0 ))), for a N sectors ring, with f the "flutter" [START_REF] Symon | [END_REF]), gives the spiral azimuthal dependence of the field, and in the present ray-tracing tools is modelled in the way detailed below.

Field fall-offs

The field fall-off (Fig. 3) at a particular effective field boundary (EFB) is written [14, p. 240]

F EFB (d) = 1 1 + exp[p(d)]) , p(d) = C 0 + C 1 d/g + ... + C 5 (d/g) 5 (3) 
wherein d is the distance to that EFB and depends on r and θ (d En. and d Ex. for respectively the entrance and exit EFBs in Fig. 2), and the coefficient g is normally homogeneous to the gap and can be a function of r, see below. The distance d is computed by numerically solving for θ the equation [START_REF]Optics and magnetic field map for a spiral FFAG[END_REF] 

(X m -e bθ R 0 cos(ω + θ)) (b e bθ R 0 cos(ω + θ) -e bθ R 0 sin(ω + θ)) + (4) 
(Y m -e bθ R 0 sin(ω + θ)) (e bθ R 0 cos(ω + θ) + b e bθ R 0 sin(ω + θ)) = 0
which tells that the normal to the spiral EFB at location θ contains the observation point, i.e. m = (X m , Y m ) (therein the angle ω is the EFB angular position in the reference frame). The numerical coefficients C 0 -C 5 are supposed to be known, for instance from prior matching with realistic fringe field data. 

F_EFB vs. d/g

Figure 3: Typical fringe field shape, F EFB (d/g) (Eq. 3).

Noteworthy, an adequate positioning of the EFB makes possible to satisfy (referring to the frame as defined in Fig. 3)

0 d=-∞ F EFB (u) du = ∞ d=0 (1 -F EFB (u)) du
which entails that varying g (as ensuing from r dependence, for instance, see Eq. 5) will not change the magnetic length, it will only change the fall-off steepness. This has the convenient consequence of allowing the simulation of various gap geometries as

g(r) = g 0 (R 0 /r) κ , κ ≈ k gap shaping (5) g(r) = C st (κ = 0) parallel gap g(r) = g 0 r/R 0 (κ = -1) linear gap
From a practical point of view, the first g(r) dependence simulates the case where the field law B z (r) = B z 0 (r/R 0 ) k ensues from the gap shape (so called "gap-shaping" method), whereas in the second and third cases B z (r) is supposed to be obtained from coil distributions in the gap. Note that the linear gap case ensures r-invariant vertical tune, as addressed in Section 3. Both entrance and exit EFBs have their own fringe field factors, F En. , F Ex. . The form factor at particle position (r, θ) is thus written

F(r, θ) = F En. (r, θ) × F Ex. (r, θ) (6) 
Full field at arbitrary position Now, accounting for n neighboring sectors (for instance, a main dipole and field clamps as schemed in Fig. 1), the mid-plane field and derivatives are computed by addition of the contributions of the i = 1, n sectors taken separately, namely

Bz(r, θ) = X i=1,n
Bz 0,i Fi(r, θ) Ri(r) and

∂ k+l Bz(r, θ) ∂θ k ∂r l = X i=1,n ∂ k+l Bz i (r, θ) ∂θ k ∂r l (7) 
Note that, in doing so it is not meant that linear field superposition actually applies, it is just meant to provide the possibility of obtaining a realistic field shape, that would for instance closely match (using adequate C 0 -C 5 sets of coefficients, Eq. 3) 3-D field distributions obtained from magnet codes or from measurements. This procedure is illustrated in (i) Fig. 4 that shows the field distribution in the median plane of a spiral magnet with field index k ≈ 4 and spiral angle ξ ≈ 50 degrees, (ii) Fig. 5 that shows the field resulting from the superposition of a central dipole and of field clamps (simulated as powered thin magnets) as schemed in Fig. 1.

The 6-D field B(r, θ, z) and derivatives ∂ k+l+m B/∂r k ∂θ l ∂z m at particle location are eventually deduced by z-extrapolation accounting for Maxwell equations [START_REF]The ray-tracing code Zgoubi, F. Méot, NIM A[END_REF][START_REF] Méot | Developments in the ray-tracing code Zgoubi for 6-D multiturn tracking in FFAG rings[END_REF].

Calculation of the mid-plane derivatives (Eq. 7) can be performed using one or the other of the following methods, upon option, (i) numerical interpolation from a "flying mesh". In this case B z (r, θ, Z = 0) is computed at the n * n nodes (n = 3 or 5 in practice) of a "flying" interpolation mesh centered on the actual (r, θ, z = 0) particle position projection (m in Fig. 2). (ii) use of a 2-D mid-plane magnetic field map (Fig. 4) that encompasses the all magnet, computed beforehand using the procedure above.

In addition, a third method is under installation, fully based on analytical expressions of B z (r, θ) and derivatives ∂ i+j B z (r, θ)/∂r i ∂θ j , as was done for the radial FFAG magnet [START_REF] Méot | Developments in the ray-tracing code Zgoubi for 6-D multiturn tracking in FFAG rings[END_REF].

The first method has the merit of allowing parameter optimization using the built-in fit procedure. The second one has the merit of faster tracking. Both feature excellent symplecticity -dependent upon mesh size, integration step size. The third method has all the merits, speed, symplecticity, and its allowing automatic parameter fits.

Beam dynamics in a spiral ring

In this Section the numerical techniques described above are tested, with the goal of showing that this spiral magnet modelling allied with stepwise ray-tracing methods provide an efficient design tool. For that purpose a particular spiral FFAG geometry, representative of a protontherapy class machine, is submitted to various numerical experiments, as follows.

Magnet and ring geometry

The geometry and parameters of the N -sector lattice of concern are shown in Fig. 6. The magnets occupy a fraction ("packing factor") pf = 0.38 of the circumference, independent of radius, a scaling property. The extreme radii and rigidities satisfy, another scaling property, Bρ 2 / Bρ 1 = (r 2 /r 1 ) k+1 . In the smooth approximation, the dipole sector angle A (Fig. 2) and bend angle β = 2π/N are in the ratio pf ; the sector radius r and curvature radius ρ satisfy r sin(A/2) = ρ sin(β/2). The smooth approximation allows deriving the optical functions on an arbitrary closed orbit (Fig. 7) with reasonable accuracy from matrix representation, with optical elements being the two end drifts r sin(π/N -A/2), dipole ends wedge angles En. Ex. = π/N -A/2 ± ξ, and the dipole body ρ, β.

A scan of the (k, ξ) space in the smooth approximation yields the stability region shown in Fig. 8 (circles), and the corresponding tune domain shown in Fig. 9. A similar (k, ξ) scan using the ray-tracing method and field modelling described in Section 2 has been superimposed (triangles in Figs. 8,9). The agreement between both methods is good for lower k and ξ values and deteriorates with increasing k and with increasing ξ -this behavior will be devoted further investigation, however it could be attributed to (i) the loss of validity of the constant orbit radius assumption in the smooth approximation, i.e. closed orbits in the dipole sensibly depart from an arc of a circle, and to (ii) the increasing perturbative effect of fringe fields, as they are traversed over an increasingly long distance for larger ξ values.

It can be concluded at that stage that the consistency of the two types of results is good, so confirming the efficiency of the smooth approximation for a first approach of the magnet and lattice parameters, whereas the precision of ray-tracing is necessary for further insight into ring design and beam dynamics.

First order behavior

In the beam dynamics studies that follow we consider for illustration the particular optics (k, ξ) = (4.415, 50.36deg.), subject to extensive studies in the frame of the RACCAM project [START_REF] Méot | Proc. EPAC 2006 Conf. IN2P3 LPSC[END_REF][START_REF] Raccam | [END_REF] (the working point materialized by a square solid marker in Fig. 8). The corresponding tune values, using the FFAG-SPI method (respectively, in the matrix approximation) are (ν r , ν z ) = (2.817, 1.793) (respectively (ν r , ν z ) = (2.896, 1.952), square marker in Fig. 9). Fig. 7 displays the ensuing optical functions in the matrix approximation. This optics accounts for fringe field extent at magnet ends as represented in Fig. 3, with gap proportional to radius (g 0 = 3 cm at R 0 ≡ r 2 = 3.48 m, κ = -1 in Eq. 5) thus yielding very weak sensitivity of vertical tune to radius 1 in addition to quasi-constant horizontal tune as ensuing from the property of zero chromaticity. Namely, the ray-tracing yields (ν r , ν z ) = (2.817, 1.793) at better than ±3 10 -4 (relative) over the full radial extent [r 1 , r 2 ] = [2.78m, 3.48m].

Fig. 10 shows the radius value (taken to the center of the ring) along closed orbits over the 2π/8 cell extent, at various momenta. It can be observed that the scaling rule r/R 0 = (p/p 0 ) 1/(k+1) is satisfied with good precision ; indeed, inside the dipole (the θ regions with non-zero magnetic field, see Fig. 11), the closed orbit radius departs by no more than about ±3% from the theoretical, r = C st smooth approximation value. Fig. 11 shows the magnetic field along those closed orbits.

The momentum compaction α = dL/L / dp/p can be numerically computed from ∆p induced difference in closed orbit lengths. Sample values are given in Fig. 12, they are close to the theoretical value α ≈ 1/(1 + K).

All these results show good consistency and reasonable agreement between the smooth approximation data and numerical results, a property useful in preliminary design stages.

Large amplitude motion

The main goal in this section is to show the satisfactory behavior of the numerical spiral magnet modelling, and of the large amplitude multiturn tracking.

Fig. 13 shows horizontal phase space trajectories at the limit of stable motion in the ring, for various energies, as observed along a radial direction in the drift region ; the triangle shape of phase space motion is related to the presence of strong sextupole component in B(r) (Eq. 2) and to the proximity to third integer cell tune ; the triangles rotate due to the change of focusing conditions along a radius (the focusing is invariant by a displacement ∆r, ∆θ = tan(ξ) ln((r + ∆r)/r)). Fig. 14 shows vertical phase space trajectories at the limit of stable motion in the ring, for three different energies, and with cell tune close to quarter integer.

Fig. 15 and Fig. 16 show horizontal and vertical phase space motion at 60 MeV, observed at the center of the drift ; the symplecticity is very good, up to stability limit. Another feature in these Figures is the large dynamical acceptance characteristic of FFAG optics : the surface of the 60 MeV stability limit portraits are r ≈ 1000π mm.mrad, r ≈ 200π mm.mrad. The corresponding amplitude detuning resulting from the non-linear field is shown in Fig. 17.

Fig. 18 shows the tune footprint of a monochromatic beam with size r ≈ z ≈ 100 π mm.rad, together with right and skew systematic resonance lines up to 6th order. Automatized tracking tools have been developed to scan the dynamic aperture in the vicinity of the working point in the tune diagram [START_REF]Ray-tracing simulations in spiral sector FFAG magnets using Zgoubi code[END_REF], typical results are shown in Fig. 19. This method is now routinely used in the design of the spiral magnet in the frame of the RACCAM project [START_REF] Méot | Proc. EPAC 2006 Conf. IN2P3 LPSC[END_REF][START_REF] Raccam | [END_REF]. 1 In the smooth approximation, this can be understood from the vertical wedge focusing, namely (z /z 0 ) = tan( -ψ)/ρ), given the correction for the fringe field extent ψ = I g ρ 1+sin 2 cos , wherein I is a form factor, so that g ρ = pf × r yields r-independent ψ correction. 
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Longitudinal motion

An RF gap is now introduced in the ring, as represented in Fig. 20. 

Stationary bucket

The RF gap is located in a drift, along a radius, orthogonal to the maximum energy closed orbit (r ≈ 3.4 m, see Fig. 20). Injection orbit, 17 MeV, γ = 1.01812, r ≈ 2.75 m, 17.33 m circumference, is considered. The peak RF voltage is V = 20 kV, a value rather large for the sake of faster tracking. Other RF parameters are, f RF = 3.249 MHz, harmonic=1, synchronous phase φ s = 0. These conditions yield theoretical momentum acceptance

± ∆p p = ± 1 β s 2q V πhηE s 1/2 ≈ ±2.18 % (8) 
given E s = 955.27 MeV synchronous energy, slippage factor η = 1 γ 2 -α = 1 γ 2 -1 1+K ≈ 0.78 with K = 4.415. The theoretical small amplitude synchrotron tune is

ν s = 1 β hη cos φ s q V 2πE s 1/2 ≈ 8.52 10 -3 (9) 
Both ∆p/p and ν s values are in excellent agreement with values of bucket height and RF cycles per turn obtained from numerical simulations as shown in Fig. 21, namely ±∆p/p = ±2.20% and ν s = 1/117 turns.

A full acceleration cycle

A particle is now launched with all starting coordinates zero except for z 0 = 3 mm. From 17 to 180 MeV, the RF frequency is increased linearly with turn number from 3.25 to 7.51 MHz, at constant synchronous phase φ s = 30 degrees, V = 20 kV, which means about 16000 turns to complete the cycle.

Fig. 22 shows the first synchrotron oscillation cycles, from 17 to 18.47 MeV, of ±1% off-momentum particles around a quasi-synchronous one. From the figure, the synchrotron period appears to be in agreement with Eq. 9, given the working hypothesis above. Sample vertical motion is displayed in Figs. 23, 24 and shows excellent behavior. Regular damping can be observed, of the form (Bρ 170 MeV /Bρ 17 MeV ) 1/2 ≈ √ 3.3 from start to end of the cycle. Referring to Fig. 24, it yields a surface ratio of about 0.55 between the outer (17 MeV) ellipse and the inner one (170 MeV). Note that the ellipse rotates, since the observation is at fixed azimuth, as already pointed out concerning Figs. 13, 14.

Admittance at injection

Acceleration of 8000 particles over about 300 turns (from 17 MeV to about 18.1 MeV) is now performed. Acceleration conditions are the same as previously, Sec. 4.2. A 4-D mono-energetic bunch is considered, with transverse emittances far beyond dynamical aperture and non-correlated x -z coordinates. In these conditions the bunch will be cleaned from all particles beyond 4-D dynamical aperure ; a few hundred turns is sufficient to ensure that cleaning, particle loss beyond that will not be significant, given that the optics does not strongly change in the course of acceleration as can be seen in Figs. [START_REF] Symon | [END_REF][START_REF] Deflecting Magnets | Focusing of charged particles[END_REF]. The about 2003/8000 surviving particles give a reasonable image of the ring admittance at injection, which can be observed, in Figs. 25, 26, to be about A r ≈ 900 10 -6 π m.rad, horizontal, A z ≈ 190 10 -6 π m.rad, vertical not so far from single energy estimates in Sec. . 

Conclusion

The developement of precision tracking tools presented here, a follow-on of an earlier work concerning radial FFAG lattice design [START_REF] Méot | Developments in the ray-tracing code Zgoubi for 6-D multiturn tracking in FFAG rings[END_REF], yields computing means now extensively used for spiral FFAG design [START_REF] Raccam | [END_REF].

In particular, they allow (i) providing benchmarking data in magnet design studies, and (ii) automatized matching of magnet and lattice parameters. Not addressed here, automatized procedures for the injection of various type of defects (field, alignement, etc.) have been developped that allow statistical analysis and tolerance evaluations [START_REF]Defect studies in the NuFact bow-tie muon storage ring, F. Méot[END_REF].

The code developped for this purpose, Zgoubi [START_REF]The ray-tracing code Zgoubi, F. Méot, NIM A[END_REF], also provides ray-tracing in 2-D and 3-D magnetic field maps, it can therefore as well be used as the ultimate design and beam dynamics studies tool prior to construction.
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 1 Figure1: Definition of a spiral FFAG magnet, using the "FFAG-SPI" procedure. Several sectors with overlapping fields (clamps, here) can be accounted for.

Figure 2 :

 2 Figure 2: Ingredients entering in the computation of the mid-plane field B z (r, θ) in a spiral sector magnet.
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 45 Figure 4: Spiral magnet field map as obtained from Eqs. 1-6.

Figure 6 :

 6 Figure 6: Spiral ring and a set of closed orbits taken between 0.6 T.m (17 MeV proton) and 2 T.m (180 MeV).

Figure 7 :

 7 Figure 7: Typical optical functions in the smooth approximation, on innermost, 0.6 T.m orbit. Optical functions on outermost, 2 T.m orbit are similar with about 10% larger amplitude.

Figure 8 :

 8 Figure 8: k, ξ stability domain. Circles : from matrix transport, triangles : from ray-tracing.

Figure 9 :

 9 Figure 9: Tune diagram showing the periodic stability region. Circles : from matrix transport, triangles : from stepwise ray-tracing.
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 1011 Figure 10: Radius value (taken to the center of the ring) along closed orbits, in a cell.

Figure 12 :

 12 Figure 12: Momentum compaction behavior.

Figure 13 :Figure 14 :

 1314 Figure 13: Horizontal stability limits, at 1 mm precision, 1000 cells, for various energies.

Figure 15 :Figure 16 :

 1516 Figure 15: 60 MeV horizontal phase-space, up to ≈ 1000 π mm.mrad maximum stable amplitude.

Figure 18 :

 18 Figure 18: Beam occupation in tune diagram, due to amplitude detuning (given δp/p ≡ 0, r ≈ z ≈ 100 π mm.rad). Right + skew lines mν r + nν z = p as well as |m| + |n| values are shown ; the two thick lines are neighboring systematic resonances, 3ν r = 8, 4ν r -2ν z = 8, .

Figure 19 :

 19 Figure 19: A scan of the dynamic aperture in the (ν r , ν z ) = (2.8, 1.8) region, (a) in case of horizontal motion with infinetisimal starting vertical emittance, (b) in case of pure vertical starting emittance.

Figure 20 :

 20 Figure 20: Positioning of the RF gap in a drift.

Figure 22 :

 22 Figure 22: First 400 turns of an acceleration cycle in the 8-cell spiral ring. dp/p ≈ 10 -3 and ±1%.

Figure 23 :Figure 24 :

 2324 Figure 23: Adiabatic damping of vertical motion over an acceleration cycle.

Figure 25 :Figure 26 :

 2526 Figure 25: Horizontal admittance, 4-D case. Surface : A r /π ≈ 900 10 -6 m.rad.

Table 1 :

 1 Parameters of the spiral ring.

	number of cells N field index k spiral angle ξ packing factor pf min.-max. radius r 1 , r 2 min.-max. proton rigidity Bρ 1 , Bρ 2 corresponding kinetic energy field at r 2 dipole sector angle A dipole bend angle β	8 4.415 50.36 0.38 2.78 -3.48 (m) (deg.) 0.6 -2. (T.m) 17 -180 (MeV) 1.5 (T) 17.1 (deg.) 45.0 (deg.)

  Amplitude detuning, from paraxial motion up to maximum stable amplitude. 60 MeV case.

		3 3.2		Amplitude detuning	Qx vs. Em_x Qz vs. Em_z Qz vs. Em_x
		2.8			
		2.6			
	Tunes	2.4			
		2.2			
		2			
		1.8			
		1.6	0.2	0.4 Emittance/Emittance_max 0.6 0.8	1
	1.6 1.65 1.7 1.75 1.8 1.85 1.9 1.95 Figure 17: 2.6 2.		2.7	2.8	2.9	3.

  Stationary bucket on injection orbit.

	Zgoubi|Zpop 18-Nov-06	E_k (MeV) vs. Phase (rad)
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		*	Data generated by geneMap. K= 3.5 xi= 50. deg *
	Min-max. Hor.: -3.141 Part# 1-40000 (*) ; Lmnt# 100 150 200 250 300 17. 17.5 18. 18.5 Figure 21: 50 Zgoubi|Zpop 28-Apr-07 KinEnr (MeV) vs. Pass# Zgoubi|Zpop 28-Apr-07 KinEnr (MeV) vs. Pass# Zgoubi|Zpop 28-Apr-07 KinEnr (MeV) vs. Pass#	3.141 1; pass# ; Ver.: 350 400	15.98 1-604; 30
		* Data generated by searchCO * Data generated by searchCO * Data generated by searchCO			* * *
	Min-max. Hor.: Part# 1-Min-max. Hor.: Part# 2-Min-max. Hor.: Part# 3-	1.000 1 (*) ; Lmnt# 1.000 2 (*) ; Lmnt# 1.000 3 (*) ; Lmnt#	400.0 1; pass# ; Ver.: 400.0 ; Ver.: 1; pass# 400.0 ; Ver.: 1; pass#	1-1-1-	16.67 400; 16.67 400; 16.67 400;	18.72 400 points 18.72 400 points 18.72 400 points