Physics-level job configuration - IN2P3 - Institut national de physique nucléaire et de physique des particules Access content directly
Conference Papers Year : 2006

Physics-level job configuration

D. Rousseau
P. Calafiura
  • Function : Author
W. Lavirijsen
  • Function : Author
P. Loch
  • Function : Author
A. Salzburger
  • Function : Author


The offline and high-level trigger software for the Atlas experiment has now fully migrated to a scheme which allows large tasks to be broken down into many functionally independent components. These components can focus, for example, on conditions or physics data access, on purely mathematical or combinatorial algorithms or on providing detector-specific geometry and calibration information. In addition to other advantages, the software components can be heavily re-used at different levels (sub-detector tasks, event reconstruction, physics analysis) and on different running conditions (LHC data, trigger regions, cosmics data) with only little adaptations. A default setting therefore has to be provided for each component allowing these adaptations to be made. End-user jobs contain many of these small components, most of which the end-user is totally unaware. There is therefore a big semantic discrepancy between how the end-user thinks about a specific job's configuration and how the configuration is packaged with the individual components making up the job. This paper presents a partly automated system which allows component developers and aggregators to build a configuration ranging over all the above levels, such that e.g. component developers can use a low-level configuration, sub-detector coordinated work with functional sequences and the end-user can think in physics processes. this system of pyton-based job configurations is flexible but easy to keep internally consistent and avoids possible clashes whien a component is re-used in a different context. The paper also presents a working system used to configure the new Atlas track reconstruction software.
Fichier principal
Vignette du fichier
access.pdf (92.71 Ko) Télécharger le fichier
Origin Files produced by the author(s)

Dates and versions

in2p3-00168300 , version 1 (27-08-2007)


  • HAL Id : in2p3-00168300 , version 1


W. Liebig, D. Rousseau, P. Calafiura, W. Lavirijsen, P. Loch, et al.. Physics-level job configuration. XV International Conference on Computing in High Energy and Nuclear Physics (CHEP-06), Feb 2006, Mumbai, India. pp.446-449. ⟨in2p3-00168300⟩
29 View
87 Download


Gmail Mastodon Facebook X LinkedIn More