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Abstract

Multifragmentation properties measured with INDRA are studied for single sources
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produced in Xe+Sn reactions in the incident energy range 32-50 A MeV and quasi-
projectiles from Au+Au collisions at 80 A MeV. A comparison for both types of
sources is presented concerning Fisher scaling, Zipf law, fragment size and fluctua-
tion observables. A Fisher scaling is observed for all the data. The pseudo-critical
energies extracted from the Fisher scaling are consistent between Xe+Sn central
collisions and Au quasi-projectiles. In the latter case it also corresponds to the en-
ergy region at which fluctuations are maximal. The critical energies deduced from
the Zipf analysis are higher than those from the Fisher analysis.

Key words:
PACS: 25.70.Pq Multifragment emission and correlation, 24.60.Ky Fluctuation
phenomena, 24.10.Pa Thermal and statistical model

1 Introduction

From the radial dependence of the nucleon-nucleon interaction, containing
both repulsive and attractive parts, the nuclear phase diagram is expected
to present a first order liquid-gas phase transition and a second order phase
transition at the critical point [1]. Nuclear collisions offer a large panoply of
initial conditions that allow to probe the properties of excited nuclear systems
and to deduce the structure of the phase diagram. It is well established that
the production of many fragments is the dominant phenomenon in reactions
over a range of incident energy from the Fermi energy up to relativistic en-
ergies, both in central and semi-peripheral collisions and in reactions induced
by heavy ions or hadrons on heavy targets (see [2] for a recent and exhaus-
tive review on experimental status). In the chapter ”Systematics of fragment
observables” of this review [3], it is mentioned that fragment production is
essentially governed by excitation (dissipated) energy, dynamical effects being
responsible for the observed deviations around the general behaviour. This
universal phenomenology does not necessarily imply that the occurence of
fragmentation has to be associated with a unique mechanism, nor that a sin-
gle trajectory is systematically followed across the phase diagram.

A crucial piece of information in studies of the fragmentation process is cluster
size distributions. They inform on intrinsic properties of finite excited systems
such as scaling laws, size hierarchy or large fluctuations [4,5,6,7,8,9,10,11,12].
These behaviours are actively searched for in multifragmentation data since
on the basis of theoretical grounds they could signal that nuclear systems have
undergone a phase transition.

Extraction of a scaling law for the cluster size distribution based on Fisher
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Droplet Model has been reported in a wide variety of collisions from 8 GeV/c π
and 10.2 GeV/c proton + Au to quasi-projectile (QP) events from peripheral
35 A MeV Au+Au collisions [2,13,14,15,16,17,18]. From the fitting procedure
of fragment yield distributions with the Fisher ansatz, it is possible to ex-
tract the energy at which the cluster size distributions follow a power law,
and the associated critical exponents. In some works, the interpretation of
the observed scaling has been pushed further, claiming that thermodynamical
variables, like the temperature and density of the system at the critical point
can be extracted [13]. On the other hand, analyses on QP events have shown
that the excitation energy corresponding to this power law is associated to a
peak of abnormal fluctuation in configurational energy which rather signals
a system in a coexistence region of the phase diagram [18]. Since both in-
terpretations were derived in two different bombarding energy regimes, it is
worthwhile to investigate more deeply the scaling properties of the fragment
yields on new sets of data.

Based on Lattice Gas Model calculations, it was recently suggested [6] to ex-
amine a specific ordering of the cluster size, the so-called Zipf law [19]; in
this case, <Z2> =<Z1>/2, <Z3>=<Z1>/3, ...,<Zn>=<Z1>/n where n is
the rank of the nth cluster in an event having M clusters ordered by decreas-
ing size Z1>ZM . According to the model, such a law would be verified at or
close to the critical point, see also [20]. Experimental investigations [21,22]
on the disintegration of quasi-projectiles in violent 40Ar+27Al, 48Ti and 58Ni
collisions at 47 A MeV have shown that both critical behaviour and Zipf law
are observed at the same excitation energy E∗=5-6 A MeV. Thus, the authors
conclude that the Zipf law could be a reliable signature to reveal a critical
point. However, it has been recently pointed out [23] that the Zipf law would
be a direct consequence of a power law in the yield distribution and would
not bring more information than the observation of a power law. Since the
conclusions of [21,22] were strongly supported by the fact that a large variety
of observables shows a maximal fluctuation at an excitation energy where the
Zipf law is verified, it is interesting to perform such extensive study by com-
paring different centrality conditions and different size domains as in [21,22].

Besides these results, a large body of data has shown numerous signatures
which are compatible with a coexistence phase of the liquid-gas type: nega-
tive branches of the heat capacity [24,25,26,27]; enhancement of equal-sized
fragment partitions [28,29]; flattening of the caloric curve [30]; bimodality
of the distribution of the largest or the asymmetry of the two largest frag-
ments [31,32,33,34]. Moreover, recent experimental studies on central colli-
sions of symmetric systems at bombarding energies around the Fermi energy
have shown that data are compatible with a scenario in which a compression-
expansion cycle leads to a spinodal decomposition of the system [29,35,36,37].
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Thus, two types of interpretation could be given from the available nuclear
multifragmentation data. The first one points to a critical phenomenon and
the second one supports the picture of a system in the liquid-gas coexistence
region of the phase diagram. This may not be contradictory since various pro-
cesses might take place due to different explorations of the phase diagram and
further studies are needed to investigate such a possibility. This situation has
motivated the present analysis in terms of Fisher scaling, Zipf law and frag-
ment observable fluctuations in measurements performed with the INDRA
array. The data set used for the present analysis concerns fragmentation data
from two kinds of centrality: quasi-projectiles produced in peripheral Au+Au
reactions at 80 A MeV (denoted Au QP further on in the text) and mono-
sources formed in central Xe+Sn collisions from 32 to 50 A MeV. In both
cases, the sizes of the multifragmenting systems are comparable. Preliminary
results using Fisher and Zipf techniques have already been reported elsewhere
[38,39,40].

This paper is organized as follows: in Sec. 2, we describe succinctly the set-up
of experiments and we present the methods used to select the events; Sec. 3
shows the results of the data analysis in the framework of the Fisher Droplet
Model; in Sec. 4 the cluster size hierarchy is studied according to the Zipf law;
in Sec. 5, fluctuations of cluster size and configurational energy are presented;
in Sec. 6 we discuss the ensemble of the collected results. Conclusions are
drawn in Sec. 7.

2 Experimental setup and event selection

2.1 Experimental setup

The 4π multidetector INDRA is described in detail in [41,42], and only the
main specifications are listed here. INDRA is made of 336 detection cells ar-
ranged in 17 rings; the first one (2o-3o) is an array of phoswich scintillators.
Rings 2 to 9 (polar angle from 3o to 45o) consist of three layers comprising
an ionization chamber (IoCh) followed by a solid state silicon detector (Si)
and a cesium iodide scintillator (CsI(Tl)). The medium and backward angular
ranges (45o to 176o) are covered with IoCh/CsI ensembles. The device provides
a 90% of 4π geometrical efficiency, a charge identification from H to U, and a
mass resolution up to beryllium. Data presented here have been obtained with
INDRA installed at GANIL for Xe+Sn reactions between 32 and 50 A MeV
and at GSI for Au+Au at 80 A MeV. For the experiment performed at GSI, a
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197Au beam was impinging a 2 mg/cm2 197Au thick target. The INDRA config-
uration used at GSI differs from the one used at GANIL only by the detectors
of the first ring (2o-3o). At GSI, the phoswich scintillators were replaced with
12 Si-CsI(Tl) telescopes, each consisting of a 300 µm Si detector followed by
a CsI(Tl) scintillator of 14 cm length. Further details of the experimental and
calibration procedures can be found in [41,42,43,44].

2.2 Event selection

In Xe+Sn reactions, the set of collisions leading to multifragmenting mono-
sources has been selected requiring that at least 80% of the total charge and
momentum were measured. On this sample we have performed an event by
event shape analysis based on the 3-dimensional kinetic energy flow tensor,
calculated in the centre of mass frame of the reaction. The tensor is built with
fragments with Z≥5 and starting from Mfrag≥1. We have defined the θflow

angle between the beam axis and the eigenvector associated with the largest
eigenvalue of the diagonalized tensor. A flat cosθflow distribution is observed
for θflow≥60o indicating a strong degree of equilibration. Thus this sample was
retained for the analysis. More details are given in [45].

  flowθcos 
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Fig. 1. θflow angle distributions for QP formed in Au+Au reactions at 80 A MeV
in the QP reference frame. Full squares show the flow angle distribution for com-
plete quasi-projectile events. Triangles represent the events selected according to the
procedure explained in the text.

Events comprising at least one fragment with Z ≥5 have been considered
in the analysis of Au QP. We choose this value to be consistent with the
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Fig. 2. Excitation energy distributions for Au QP and Xe+Sn mono-source events
between 32 and 50 A MeV.

Xe+Sn mono-source analysis. The kinetic energy tensor is calculated event-
by-event and gives the main axis of the event. A forward hemisphere with
respect to this main axis can thus be defined. The total detected charge Ztot

and the pseudo total momentum Ptot collected in the forward hemisphere are
calculated by summing up all the charged products having a positive velocity
component along the main axis. Events satisfying 0.8×Zproj≤Ztot≤1.1×Zproj

and 0.6×Pbeam≤Ptot≤1.1×Pbeam are kept for the analysis and are called ”com-
plete events”. This criterion allows to keep roughly 35% of the total number
of measured events. Then in order to minimize the contribution of dynamical
component at mid-rapidity [32] and to well define a quasi-projectile, a com-
pactness criterion based on velocities is applied. This method requires that
events comprise at least 2 fragments with Z≥5 and is based on two variables
βQP and βrel defined as follows:

βQP = |
∑ ~p(i).c|/

∑

E(i)

and

βrel =
2

Mfrag(Mfrag − 1)

∑

i>j

| ~β(i) − ~β(j)|

β(i) and β(j) are defined in the centre of mass and E(i) represents the total
energy of particle (i).

At this bombarding energy, 80 A MeV, events are defined as compact if
βQP/βrel >1.5 [46,47], (24% of the measured events). Fission events, char-
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Fig. 3. Top left panel, total fragment (Z≥5) multiplicity distributions for Au
quasi-projectiles and Xe+Sn mono-sources. In the other panels, events are sampled
into bins with 1 A MeV width in excitation energy.

acterized by Z1×Z2 ≥900, where Z1 and Z2 are the first and the second largest
fragments, are rejected [48]. These events occur mainly at excitation energies
lower than 3 A MeV. We have checked that the fission fragments have been
properly excluded using a Campi plot as in [49]. Twice the charge of the light
products emitted in the QP forward hemisphere is added to the sum of the
fragment charges to obtain the charge of the quasi-projectile Zs. Finally we
keep events with 90%×Ztot≤ Zs ≤100%×Ztot. The considered sample of events
exhausts roughly 5% of the total measured events: in the whole procedure, the
requirement of having a well characterized size is the most constraining. More
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details are given in a forthcoming paper [46].

It is important to check what is the degree of equilibration reached in the en-
semble of sources under investigation. This has been deeply studied and widely
documented for Xe+Sn mono-sources [26,35,36,37,45,50], therefore only the
procedure for Au quasi-projectiles is briefly presented here. The distribution
of the flow angle θflow, recalculated in the source frame, has been chosen to
illustrate the degree of memory loss of the entrance channel in the selected
collisions. Results of the analysis are presented in figure 1. Full squares rep-
resent the flow angle θflow distribution for complete quasi-projectile events as
defined above. Here one clearly observes the typical behaviour of an ensemble
of collisions dominated by dynamical effects and strongly focused on the beam
direction. Triangles are for the θflow distribution of the selected ensemble. The
θflow distribution is flat showing that there is no longer any privileged direc-
tion in the disintegration of the system and thus the set of data is compatible
with the disintegration of an equilibrated source.

In the following, the analysis is performed as a function of the excitation en-
ergy E∗ using the calorimetric methods described in [26,47,51]. Accuracy on
the calculated excitation energy is about 10% [51]. The excitation energy dis-
tributions are plotted in figures 2 for the events selected in the present anal-
ysis. For Xe+Sn mono-sources they exhibit a Gaussian shape with a mean
value which increases with the incident energy. For Au QP, the E∗ distribu-
tion extends from 1 to 15 A MeV. The shape reflects the range of the impact
parameter with the highest yield for the peripheral collisions. However due
to the bombarding energy range (32 to 50 A MeV for Xe+Sn central colli-
sions, both types of reaction cover a very similar range in excitation energy
E∗. For each E∗ it is then possible to calculate some relevant observables such
as, for example, the size of the source Zs or the fragment multiplicity Mfrag.
We point out that the mass of the source As is derived from Zs assuming that
its N/Z ratio is the same as that of the complete system. The average size
of the source is around <Z>≃80-85 (with RMS≃8-9) for the Xe+Sn mono-
sources and <Z>≃72 (with RMS≃5 due to the selection criterion 90%×Ztot≤
Zs ≤100%×Ztot) for the selected Au QP.

Figure 3 shows the fragment multiplicity distributions for 1 A MeV E∗ bins.
The top left panel represents the whole distribution integrated over excita-
tion energy. The open symbols (full circles) are used for Xe+Sn mono-sources
(Au QP). In Xe+Sn cases, Mfrag distributions are weakly shifted towards
higher values when the excitation energy increases independently of the inci-
dent energy. For excitation energy E∗ ≥4 A MeV the fragment multiplicity
distributions in Au+Au are peaked at a slightly smaller value in comparison

8



to Xe+Sn and the difference tends to increase as E∗ increases. The same trend
persists even if Mfrag is normalized to the size of the source. On the top left
panel the fragment multiplicity distributions are clearly different just because
of the different ranges of excitation energy, (see figure 2).
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Fig. 4. Charge distributions, starting from Z≥5, for QP formed in Au+Au reactions
at 80 A MeV and selected according to the procedure explained in the text. Events
are sampled into bins with 1 A MeV width in E∗ (the bin boundary is indicated).
Light (dark) grey histograms represent the first (second) largest fragment extracted
event-by-event. Black histograms are the complete charge distributions. Removal of
fission events is explained in the text.

Figures 4 and 5 present the excitation energy dependence of the charge distri-
butions for quasi-projectiles produced in the Au+Au reactions at 80 A MeV
and for Xe + Sn mono-sources at 32 A MeV, respectively. In both figures light
(dark) grey histograms represent the first (second) largest fragment extracted
event-by-event and black histograms are the total charge distributions. In the
case of Au QP at low excitation energy one observes the typical U-shape of an
evaporation process with a big residue and lighter fragments. As the excitation
energy increases the intermediate charge range is gradually populated. At the
highest excitation energy the charge distribution falls-off exponentially. The
charge distribution in the case of Xe + Sn mono-sources presents a similar
evolution in the common range of excitation energy. Size distributions of the
two largest fragments extracted event-by-event are also shown. The qualita-
tive behaviour is similar for central and peripheral collisions, but from figures
4 and 5 it appears that the shape of distributions of the largest fragments are
different with a wider distribution in case of the QP data. This aspect will be
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Fig. 5. Charge distributions, starting from Z≥5, for Xe+Sn mono-sources at
32 A MeV. Events are sampled into bins with 1 A MeV width in excitation en-
ergy (the bin boundary is indicated). Light (dark) grey histograms represent the first
(second) largest fragment extracted event-by-event. Black histograms are the com-
plete charge distributions.

discussed in more details in Section 5.

3 Data analysis with the Fisher Droplet Model

3.1 Parameterization using Fisher Droplet Model

The Fisher Droplet Model (FDM) [11,52,53] describes a gas of noninteracting
clusters in thermal equilibrium with a liquid fraction. In this approach, the
relative abundance of a cluster containing A nucleons is given by:

ηA = q0A
−τexp(

A∆µ

T
− c0εA

σ

T
) (1)

where ηA = NA/As is the average number of clusters of mass A per event,
normalized to the system size As and q0 is the normalization factor; τ is the
topological critical exponent and σ is the critical exponent related to the ratio
of the dimensionality of the surface to that of the volume; ε = (Tc − T )/Tc

measures the distance from the critical temperature; ∆µ is the difference in
chemical potential from the liquid phase and c0 is the surface energy coeffi-
cient. Within the model, at the coexistence line ∆µ = 0 and at the critical
point (ε = 0) a power law q0A

−τ is expected for the fragment mass distribution.
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In the present work we take T =
√

8 × E∗ assuming a Fermi gas (the total
excitation energy is E∗ × As) as it is done in [18]. In the same reference it
has been shown than the values of the critical parameters do not depend
of the details of the caloric curve. ∆µ and c0 have been parameterized as
polynomials of order 4 and 1 in E∗ respectively. The parameters τ , σ, c0, ∆µ,
Ecrit = As × T 2

c /8 and the coefficients of the polynomial were allowed to vary
in order to minimize the χ2. This formulation differs slightly from the one
used by the authors of [13,14,18]. However, it was checked that Ecrit, τ and σ
parameters are not very sensitive to the details of the scaling function as shown
in [18]. Indeed this feature makes the Fisher scaling analysis a very appealing
technique to compare data samples and extract universal behaviours.

3.2 Experimental results

197Au + 197Au at 80 A MeV
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Fig. 6. Yield surface ηA as a function of A and 1/
√

8.E∗. Lines are the results of
the fitting procedure to the Fisher model for charge ranging from Z=6 to 15.

The results of the fit are shown in figure 6 where data (circles) and fits (curves)
are reported in a three dimensional plot (ηA, A, 1/

√
8.E∗). The quality of the

fit is rather good over a large range of size A and excitation energies E∗ and
the main features of the excitation functions are reproduced. The next step
consists in using the scaling properties contained in the Fisher Droplet Model
parameterization to reduce all the information. This is shown in figure 7 where
ηA/(q0A

−τ ) × exp(A∆µ/
√

8.E∗) is plotted against εAσ/
√

8.E∗. Now the ex-
perimental data from Au QP collapse in a single line. The Fisher Droplet
parameterization is applied to the fragmentation of mono-sources produced in
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Table 1
Values of the critical exponents τ , σ and of Ecrit extracted from the Fisher Model
Analysis for the experimental data studied. The value of ∆µ and Ecrit are indicated
in parentheses when they point out of the range covered by the data set.

System τ σ Ecrit(AMeV ) ∆µ at Ecrit χ2

Xe + Sn 32 A MeV 2.09±0.01 0.66±0.01 4.50±0.03 0.33 2.1

Xe + Sn 39 A MeV 2.38±0.02 0.66±0.01 4.49±0.03 0.19 2.8

Xe + Sn 45 A MeV 2.40±0.03 0.66±0.01 (3.79±0.03) (0.90) 2.7

Xe + Sn 50 A MeV 2.35±0.02 0.65±0.01 (4.23±0.04) (-0.02) 5.7

Au + Au 80 A MeV 2.56±0.02 0.66±0.01 4.20±0.03 0.24 9.7
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Fig. 7. Scaled yield distributions for Au QP events, Xe+Sn mono-sources. Bombard-
ing energies in A MeV are reported on top of each scaled distribution. A horizontal
shift is added for each Xe+Sn system (+3, +4, +5, +6 respectively) to visualize the
scaled distributions.

central Xe+Sn collisions. For each bombarding energy the scaled yields fall
on the same line (they have been shifted in figure 7 for better visualization)
meaning that they can be described with the exponential dependence of the
Fisher Droplet Model. This scaling feature was also observed in other recent
works [13,14,18,38,40,54]. The values obtained from the fit, τ , σ and Ecrit are
reported in Table 1 together with those of χ2. The value of ∆µ and Ecrit are
indicated in parentheses when they are out of the range covered by the data
set. Both τ and σ values are in the range predicted by the Fisher Model and
are consistent with other experimental works. The parameter Ecrit is around
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4-4.5 A MeV for all systems analysed here. This value is commonly obtained
in all analyses based on the Fisher scaling technique. In the present data Ecrit

are quite similar whatever the centrality of the collision and no noticeable role
of the entrance channel dynamics on the extracted parameters is observed.
This result agrees with [18] in which peripheral and central collisions were
investigated through the Fisher scaling technique.

Looking at the results in more details one sees that ∆µ is slightly positive
at Ecrit (see Tab.1), which means that the size distribution at E∗=Ecrit does
not follow exactly a power law ηA = q0A

−τ . If a two parameters (q0 and τ)
power law fit is performed on the charge distributions at the critical energy,
one obtains a τ value which is much lower (1<τ<1.5) than the one extracted
using the scaling analysis [38]. This difficulty prevents any determination of
the phase diagram, the location of the coexistence region, and the extraction
of the critical point, conversely to what has been done in [13,14]. We will come
back on the interpretation of the Fisher scaling in the general discussion of
section 6.

4 Cluster size hierarchy and Zipf law

Originally the Zipf law was used to analyze the relative population of words
in texts. The frequency of the word is inversely proportional to its rank in a
frequency list [19]. The integer rank n is defined starting from 1 for the most
probable. Later, many applications of this relationship were made in a broad
variety of areas, such as city-population distributions, sand-pile avalanches,
the distribution in strengths of earthquakes, the genetic sequence, etc. It has
been suggested that the existence of similar linear hierarchy distributions in
these very different fields indicates that the Zipf law is a fingerprint of crit-
icality. In particular, recent investigations with Lattice Gas Model [5] have
shown that the cluster distribution follows a Zipf law at the critical point. In
this case the analysis was shifted from the frequency to the cluster size. This
has raised a strong interest around this observable and a Zipf law has been
observed in the multifragmentation of a quasi-projecile of Ar in conjunction
with other signatures of critical behaviour, leading the authors to conclude
that the nuclear system has been observed at or close to the critical point [22].

In the present study we explore the applicability of the Zipf law to heavy ex-
cited systems of similar size formed either in central or peripheral collisions.
For each E∗ bin of 1 A MeV width, the value of <Zn> is calculated for each
rank n. We first consider the fragments with Z≥3. The energy dependence of
all <Zn> is fitted using the formula <Zn> ≃ n−λ for n≤6 to have a good
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statistic. This procedure provides the evolution of λ with E∗ and allows to
localize the excitation energy EZipf where the exact Zipf law is satisfied (λ=1).
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Fig. 8. For Xe+Sn at 39 A MeV, <Z> versus rank n, in decreasing charge order,
for different bins of E∗ (the mean value of the bin is indicated). The fit <Zn > ≃
n−λ is represented by the line and the λ value is indicated in the right upper part of
each panel.

Results are shown on figure 8 for Xe+Sn mono-sources at 39 A MeV. Similar
results are obtained at other incident beam energies discussed in this arti-
cle. The λ values extracted from the fit are reported in the right upper part
of each panel. Figure 9 shows the λ dependence as a function of E∗. The
main feature extracted from figure 9 is a monotonic decrease of the λ param-
eter with increasing E∗. At 32 and 39 A MeV, the Zipf law is satisfied at
EZipf=E∗≃7.5 A MeV. As the excitation energy increases λ stays below unity.
The same procedure is applied to Au QP. The obtained values do not super-
impose on the ones extracted from Xe+Sn mono-sources and λ=1 is reached
at a higher energy EZipf≃8.5 A MeV.

We have also considered the influence of the minimal value of the charge used
for the analysis. This is all the more important that the charge asymmetry
is different in both systems, see next section. With increasing minimal charge
both curves of figure 9 shift towards lower excitation energy. The shift is even
larger for Au QP. Indeed for Z≥4 both curves superimpose and we obtain
EZipf=E∗≃6.5 A MeV.
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According to [5] and based on the prediction of the Lattice Gas Model, the
Zipf energy, EZipf , would be one of the characteristics of the critical point. In
our data the ”critical energies” found, EZipf and Ecrit, using the Zipf-like and
Fisher-like analysis are not consistent.
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Fig. 9. E∗ dependence of the λ parameter extracted from the fit <Zn > ≃ n−λ for
Xe+Sn at 32, 39, 45 and 50 A MeV mono-sources and Au QP events at 80 A MeV.
The Zipf law is satisfied when λ=1 (horizontal line).

5 Cluster size and kinetic energy fluctuations

5.1 Largest and second largest fragment.

Maximal fluctuations in fragmentation data are actively searched for since it
is believed that they would be observed in the coexistence region or close to
the critical point [55]. In this part we will show new results on properties of
the largest fragment, since various experimental and theoretical works suggest
that the largest fragment can be associated with an order parameter for the
phase transition [56].

Figures 10 and 11 show the evolution of the average charge of the largest,
<Z1> and second largest, <Z2>, fragment as a function of the excitation en-
ergy E∗ for Au QP and Xe + Sn mono-sources at 32, 39, 45 and 50 A MeV.
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of the excitation energy E∗ for Xe+Sn at 32, 39, 45 and 50 A MeV mono-sources
and Au QP events.
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The source size for Au QP events is <Zs>=72 and for Xe+Sn mono-sources
it has values of <Zs>=83, 81, 79, 79 for 32, 39, 45 and 50 A MeV bombarding
energy, respectively. For Au QP, <Z1> decreases from a value very close to
the projectile charge for E∗≃1 A MeV down to <Z1>=15 at E∗=12 A MeV.
Data from Xe+Sn mono-sources are presented as open symbols in figure 10.
Although the Au source is smaller, one observes that the corresponding Z1

values are slightly larger than the Xe+Sn ones. At E∗=4 A MeV the differ-
ence is around 6 charge units and becomes negligible around 10 A MeV. Thus
there is no scaling of the charge of the largest fragment with the source size.

Figure 11 shows the evolution of the average charge of the second largest frag-
ment (including light charged particles), <Z2>, as a function of excitation
energy E∗ for Au QP (filled circles) and Xe + Sn mono-sources at 32, 39,
45 and 50 A MeV (open symbols). For the QP data, one observes a rise and
fall with a maximum at E∗≃5 A MeV. This feature is not surprising; it is
known that at very low excitation energy, in the evaporation regime, <Z2>
is close to one-two. Increasing with the opening of the fragment-evaporation
channel, <Z2> reaches a maximum when multifragmentation becomes domi-
nant. It then slowly decreases similarly to Z1 at large E∗. Thus a maximum is
expected for this observable on a range of E∗ as it is the case for Au QP. Com-
paring both data sets at the same E∗, one observes higher <Z2> values for
mono-sources, particularly at 32 A MeV. For higher bombarding energy up to
50 A MeV, all values of <Z2> roughly collapse on a single curve and decrease
linearly as E∗ increases. Finally, at a given excitation energy the asymmetry
between the two largest fragments is higher for the Au QP.

Besides this global analysis it is interesting to look at which energy <Z2>
is exactly equal to <Z1>/2. Indeed it has been shown in [22] that for the
Ar quasi-projectile, the relationship between <Z1> and <Z2> has a bell
shape. The maximum is at <Z2> = <Z1>/2 and is observed at an excita-
tion energy E∗ for which the Zipf law is verified. Figure 12 shows the rela-
tionship between the two largest fragments measured in peripheral Au QP
(filled circles) and in Xe+Sn mono-sources (open symbols). The line repre-
sents the locus where <Z2>=<Z1>/2. A bell shape is observed for Au QP
events. At the maximum <Z1>≃30 and <Z2>≃12: These values refer to an
excited source at E∗=6 A MeV (see figure 10 and figure 11) significantly below
EZipf=8.5 A MeV. However above E∗=8 A MeV, the relation <Z2> = <Z1>/2
is verified. Thus our data on Au quasi-projectiles do not lead to the coherent
picture seen in the fragmentation of an Ar quasi-projectile [22]. For Xe+Sn
mono-sources at 32 A MeV, <Z2>=<Z1>/2 is verified only at the maximum
but it corresponds to E∗= 5 A MeV, a value far below EZipf=7.5 A MeV for
mono-sources. In the other Xe+Sn mono-sources, we do not find data support-
ing the coherence seen in [22]. At this stage of the analysis, one could suggest
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Fig. 12. Average size of the second largest fragment <Z2 > as a function of the
average size of the largest fragment <Z1 > for Xe+Sn at 32, 39, 45 and 50 A MeV
mono-sources and for quasi-projectiles measured in Au+Au reactions at 80 A MeV.
The line corresponds to <Z2 > = <Z1 > /2.

a possible influence of the size of the sources between Ar quasi-projectiles and
the present systems which are more than four times larger.

5.2 Fragment size fluctuations

It is expected that close to the critical point fluctuations in the cluster size dis-
tribution are maximum. It is suggested in various models that the fluctuations
in the size of the largest fragment could be a good indicator of the distance of
the system from the critical point, even for finite systems. In the experimental
study of ref. [22] at the excitation energy where Zipf law is verified the au-
thors observe also the largest value of the normalized fluctuations . In figure 13

are reported these fluctuations, σZ1/Zs
=

√

< (Z1/Zs)2 > − < (Z1/Zs) > 2, as a
funtion of E∗ as deduced from the present data set. For Xe+Sn mono-sources
σZ1/Zs

continuously decrease. For Au QP σZ1/Zs
reaches a maximum value

around ≃4.5 A MeV. The highest value of σZ1/Zs
, ≃0.135, is in good agree-

ment with other data [14] (see also table 3 in ”Fluctuations of fragment ob-
servables” in [2]). Indeed in quasi-projectiles measured at 35 A MeV in Au+Au
collisions with Multics, a σZ1/Zs

value of 0.14 is obtained and σZ1/Zs
≃0.12-0.13

for EOS data. The maximum is observed at an excitation energy very close to
Ecrit extracted from the Fisher procedure and well below EZipf ≃8.5 A MeV
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Fig. 13. Fluctuations of the average size of the largest fragment normalized to the
source size Z1/Zs of the multifragmenting system as a function of the excitation
energy for Xe+Sn mono-sources and Au QP events.

extracted from the Zipf law fit. A striking feature is the superposition of all
Xe+Sn data whatever the bombarding energy which confirm that the frag-
mentation pattern in Xe+Sn central collisions depends only on the excita-
tion energy. Finally, the normalized fluctuations are systematically smaller for
Xe+Sn mono-sources than for Au QP. It is very interesting to remark that,
for a given value of deposited excitation energy, the Au QP data systemat-
ically show a lower degree of fragmentation. This is measured by the lower
fragment multiplicity, figure 3, the higher charge asymmetry between the two
heaviest fragments, figures 10 and 11 and the higher fluctuation, figure 13,
associated to the Au QP data. This experimental finding points towards a
different fragmentation scenario between the two data sets characterized by
different entrance channels. Different physical reasons may be invoked: a dif-
ferent thermodynamic path in the temperature-pressure plane, an influence of
the radial flow dynamics on the fragmentation pattern... Further studies will
be needed to disentangle between the different interpretations and to investi-
gate the influence of the asymmetry in the entrance channel and to explore a
different size region.
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5.3 Configurational energy and heat capacity

For a finite system in the liquid-gas coexistence zone one expects large fluc-
tuations of the total kinetic energy (supposed only thermally coupled to the
system) leading to a negative value of the heat capacity [9,10,55,57]. For equi-
librated excited nuclear systems one assumes that the total excitation energy
E∗ can be separated in two components, E∗ = Ek + Epot, where Ek and Epot

are the total kinetic energy and total configurational energy respectively. The
total heat capacity is defined as ctot = c2

k/(ck −Asσ
2
k/T

2) where ck = dEk/dT ;
the temperature T is estimated by solving the kinetic equation of state [26,58]
and As is the size of the source. In multifragmentation studies the total kinetic
energy Ek should be determined at the freeze-out stage but such configura-
tion is not experimentally accessible. However, one may deduce the heat ca-
pacity from the configurational energy of measured partitions, if side feeding
effects are properly accounted for. The general procedure has been thoroughly
checked and well developed in [27].

Results of the analysis are presented in figure 14 for Au QP. Normalized fluc-
tuations Asσ

2
k/T

2 (filled circles in figure 14) show a bell shape as a function
of the excitation energy E∗ with a maximum around ≃4 A MeV. It is worth
noticing that for Au QP events, fluctuation of the average size of the largest
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fragment, normalized to the source size Z1/Zs, is maximum at roughly the
same energy. ck (open circles in figure 14) monotonically increases with the
excitation energy and crosses the normalized fluctuations at E∗≃2.5 A MeV
and E∗≃5.5 A MeV. In the hypothesis of thermal equilibrium such crossings
are associated with two divergences and a negative branch in the total heat
capacity [9]. It has been shown in the literature, ([2] p.259 figure 8) and [32],
that the magnitude of the fluctuations decreases when dynamical effects are
present. As we have shown in figure 1, the sample selected with a compacity
criterion exhibits a flat cosθflow distribution which indicates that a strong de-
gree of equilibrium is reached. Results shown in figure 14 are compatible with
those found in Au QP for the same data at another selection of compact events
[32] and by the MULTICS collaboration [24,27,58] but at 35 A MeV. Moreover,
locations of divergences and maximal normalized fluctuations are observed at
the same excitation energies in both INDRA and MULTICS data. Figure 15
shows the result of the analysis for Xe+Sn mono-sources at 32 A MeV. Due
to the limited range of E∗, only the divergence at high excitation energy is
observed but it is worth noticing that it is roughly at the same E∗ as in the
Au QP events. As the incident energy increases the position of the second
divergence remains constant but the negative part of the total heat capacity
progressively disappears as we are exploring higher excitation energies.
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6 Discussion

6.1 Summary of experimental findings on scaling, ordering and fluctuations

of fragment observables.

Let us first recall our findings regarding pseudo-critical behaviours and fluctu-
ations of fragment observables in Xe+Sn mono-sources and Au QP events. Ap-
plying the Fisher procedure a good scaling of the cluster yields is observed, pro-
viding the pseudo-critical energy Ecrit where a power law is observed, the value
of the critical exponents τ , in the range 2.09-2.56 and σ≃2/3. For a liquid-gas
transition τ=2.21 for Ising 3D [59], for a mean field Lattice Gas τ=2+1/D
(=2.33 for a 3 dimensional Lattice). In an infinite 3D percolation τ=2.18 [60]
and τ=2.2±0.1 in a finite one [61]. The value of τ does not provide a discrim-
inating test for characterizing the universality class of the transition. In the
present work the values of the critical energy are in the range 3.8-4.5 A MeV.
Conversely, a Zipf law is observed for all systems but at an energy higher than
Ecrit: EZipf∼7.5 A MeV for Xe+Sn mono-sources and EZipf∼8.5 A MeV for
Au QP events. The normalized fluctuations of the largest fragment exhibit a
maximum around 4.5 A MeV. Finally, for the Au QP, the normalized kinetic
fluctuations Asσ

2
k/T

2 reach a maximum around 4 A MeV. Within the frame-
work of thermodynamic equilibrium, the heat capacity is negative between
E∗=2.5 and E∗=5.5 A MeV. The present results agree with many works re-
porting numerous signatures compatible with a system in a mixed phase of
liquid and vapor ([24,25,26,27,28,29,30,31,32,33,34,35,36,37,50]).

Several conclusions can be drawn out from our findings. First, for Au QP
and Xe+Sn mono-sources, the ”critical energies” extracted from Fisher and
Zipf procedures are not compatible with each other. Such a conclusion is at
variance with ref.[22]. Moreover, in our data, the Zipf law is observed at an
excitation energy well above that where the fluctuations connected to the heat
capacity are maximum. It was recently stated [23] that the Zipf law could be
deduced from the power law behaviour of the cluster size distribution and
the exponents τ and λ would roughly satisfy λ=1/(τ -1) at the critical point,
leading to τ=2, a value below our experimental values and from most of the
theoretical calculations (for example 3D percolation or Lattice Gas Model).
In our data, τ=2.2 gives λ=0.86, a value obtained at E∗=9.5 A MeV, higher
than the excitation energy where Zipf law is verified and consequently even
further from the critical energy obtained from the Fisher fitting procedure.

A more interesting remark is that the critical energy extracted from the Fisher
procedure is located in the domain where the normalized fluctuations of the
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largest fragment and the configurational energy fluctuations reach their high-
est values. This was clearly deduced from the Au QP, and could be only
extrapolated from Xe+Sn mono-sources data since in such cases low excita-
tion energies are not explored.

The Zipf law is not a reliable way to identify a system close to or at the criti-
cal point. Further investigations are needed to explain differences between our
results and those shown in [22]. Size effects might be a possible direction to
explore. Another interesting proposition from Bauer and collaborators is to
replace the Zipf law by the Zipf-Mandelbrot law [62].

The results of Fisher scaling and negative heat capacity do not show any
dependence on the type of collisions studied. Conversely, some differences ap-
pear in the energies where the Zipf law is verified and in the fluctuations of
the largest fragment. This observation points to the specific role of the largest
fragment as already observed in [37,50], which appears more sensitive to the
fragmentation mechanism. Indeed these results suggest that for Au QP and
Xe+Sn mono-sources the fragmentation mechanisms are different.

To go further in the discussion we used predictions of theoretical models as
guidelines to understand our results.

6.2 Guidelines from the Lattice Gas Model

This model is well known to describe a first as well as a second order phase
transition. Since thermodynamical conditions of the model are well defined
(temperature, energy, density, coexistence line, critical point) it is straightfor-
ward to verify whether a Fisher scaling is observed in the Lattice Gas Model,
and how to interpret the ”Fisher critical point” in such a framework. A Fisher
procedure [8] was performed at different densities (critical, subcritical and su-
percritical). A very good scaling is observed for all densities but the critical
temperature extracted from the fit is density dependent. The analysis of ref.
[8] is analogous to the one we have carried out with the data. In this case,
it would be better to describe the derived power law as a pseudo critical be-
haviour since it is not only observed at the critical point but also inside as
well as outside the coexistence region. Gathering the results in a temperature-
density plot, one finds that the locus of the pseudo-critical points is close to
the so called Kertesz’s line [63,64]. Thus the observation of a Fisher scaling
is not a tool to determine the location of the critical point. However, the
Fisher scaling is compatible with fragmentation inside the coexistence region,
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in agreement with our experimental indications from configurational energy
fluctuations. Moreover the narrow range of E∗

crit in our analysis suggests, in
the framework of the Lattice Gas Model, that a narrow range of density is
explored by the studied systems.

6.3 Guidelines from the Statistical Multifragmentation Model SMM
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Fig. 16. Fisher scaling for SMM events.

We have performed a Fisher procedure on the predictions of a well known sta-
tistical multifragmentation model (SMM). A detailed description of SMM can
be found in [65]. The basic assumption of the model is the statistical distri-
bution of the breakup channels of a decaying system at thermal equilibrium.
SMM was largely used to reproduce the characteristics of multifragmentation
events [25,48]. In the present work, calculations have been performed, for a
fixed value of the source (Z0=79, A0=197) at two freeze-out volumes (Vfo=
3V0 and 6V0) and for a flat distribution of excitation energy in the range
0.5≤E∗≤12 A MeV. The experimental filter has not been applied to the pre-
dictions of the model since our goal was not to reproduce the data.

We first applied the Fisher procedure to the calculations. The yield param-
eterization is the same as the one used to study the experimental data (see
section 3). Predictions at Vfo= 3V0 are shown in figure 16 where ηA/(q0A

−τ )×
exp(A∆µ/

√
8.E∗) is plotted against εAσ/

√
8.E∗. Here for the caloric curve

we assume the same ansatz as for the experimental data. In the framework
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Fig. 17. Zipf analysis for SMM calculations.

of SMM we have access to an average temperature corresponding to a given
excitation energy. We have observed that in our calculations the caloric curve
(similar to the one shown in figure 1 in [66]) is close to the one obtained in [18].
It was demonstrated in [18] that the values of the extracted critical parameters
do not depend on the shape of the caloric curves. Results of the calculations
fall on a single curve, which is not a straight line at variance with the experi-
mental data (indeed in SMM the c0 coefficient deduced from the fit procedure
evolves rapidly with E∗, whereas it appears roughly constant in the data) and
thus a scaling law is observed for SMM events. Fisher ”critical point” is ob-
tained at E∗ ≃5 A MeV. This model presents a phase transition of first order
[57], meaning that in this case the power law behaviour as well as the scaling
cannot be connected to the location of a critical point. They rather signal
a maximal fluctuation point. Indeed under the microcanonical constraint ki-
netic energy fluctuations are maximum when the configuration energy has the
largest spread, i.e. when the size distribution is close to a power law. Therefore,
in the statistical multifragmentation model, the Fisher ”critical point” can be
interpreted as the energy where fluctuations are maximum. This is in agree-
ment with our experimental findings. Finally, the analysis performed at Vfo=
6V0 does not indicate a noticeable freeze-out volume influence on the scaling
properties nor on the parameters extracted from the Fisher fit (Ecrit, τ and σ).

The Zipf law fit has also been performed on SMM events using the same pro-
tocol as for experimental data. Results of the analysis are presented in figure
17 for Vfo= 3V0 (filled circles) and 6V0 (open circles). For both freeze-out
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Fig. 18. Fluctuations of the average size of the largest fragment normalized to the
source size Z1/Zs as a function of the excitation energy for SMM calculations.

volumes we observe a decrease of the λ parameter as the excitation energy
E∗ increases. When Vfo= 3V0, λ=1 is reached at E∗=6.5 A MeV, a value
which falls in the region close to the second divergence of the heat capac-
ity. At variance with the Fisher fitting procedure, the Zipf law fit seems to
evolve with the freeze-out volume. As indicated in figure 17, one observes a
shift towards lower excitation energy as Vfo increases. The value found in this
case, EZipf=5 A MeV, is comparable with the one extracted from the Fisher
procedure, Ecrit≃4.5 A MeV. All the trends and values shown in figure 17 are
similar when the analysis is performed for fragments at the freeze-out stage.
We can mention that the same volume effect was seen in [5] for the occurrence
of the Zipf law as a function of the density in the Lattice Gas Model. Values
of EZipf obtained from SMM fall below the experimental ones for both sets
of data. Figure 17 however suggests that the present Au QP data may be as-
sociated with smaller freeze-out volumes. To investigate the potential role of
the freeze-out volume on the Zipf procedure, one needs other theoretical tools.

Figure 18 represents the normalized fluctuations of the charge of the largest
fragment σZ1/Zs

as a funtion of E∗ deduced from SMM calculations for the
two volumes. Because of the presence of fission, the points for Vfo=6V0 are
not displayed below 3 A MeV in figure 18. The observed trend is very similar
to the one seen in figure 13 which again indicates a smaller volume for Au QP.
It has been shown indeed that the volume influences the size of the biggest
fragment [67]. More specifically, the normalized fluctuations reach a maximum
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value at E∗=4.5 A MeV for a source at Vfo=3V0 and the magnitude is around
0.15, values very close to what has been deduced in experimental data for Au
QP.

7 Conclusions

To conclude, a study of the features of multifragmenting sources formed in
Xe+Sn mono-sources between 32 and 50 A MeV and Au QP at 80 A MeV has
been reported. Scaling law of the cluster yields, ranking in the average size of
fragment and fluctuations in cluster sizes and kinetic observables have been
used to characterize the fragmentation process over a wide range of excitation
energy.

From the analysis of cluster yields, we have shown that all data follow a Fisher
scaling which coherently points to an excitation energy of ≃4 A MeV associ-
ated with a power law distribution. This ”critical point” corresponds closely
to the region of maximum fluctuations both of the configurational energy and
the charge of the largest fragment. Theoretical models suggest that such point
may not be associated with a critical behaviour, but also be characteristic of
a subcritical behaviour (coexistence region of a first order phase transition).
The high value of configurational energy fluctuations observed in our data
set tends to confirm this interpretation. Data discussed in this work are com-
patible with a subcritical phenomenon. This interpretation of our results also
agrees with previous analyses, on the same systems, about other signals of
phase transition like spinodal decomposition and bimodality [29,32,33,34].

A Zipf-like analysis on the average cluster charge has been carried out and
indicates that the Zipf law is observed at an excitation energy which does not
coincide with the critical energy deduced from the other analyses. A coherent
picture from various criticality signals and Zipf law is not observed neither for
Xe+Sn mono-sources nor Au QP.
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