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ABSTRACT: We find the boundary action for EuclideanAdS2 D-branes inH+
3 . This action is

consistent with the D-branes’ symmetries and with theH+
3 -Liouville relation for disc correlators. It

can be used for performing free-field calculations in theH+
3 model with boundaries. We explicitly

perform the Coulomb-like integrals which appear in the free-field calculation of the bulk one-point
function, and find agreement with previously known conformal bootstrap results.
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1. Introduction and summary

TheH+
3 model on a sphere was solved ten years ago thanks to the methods of the conformal boot-

strap [1], which rely on symmetry and consistency assumptions and do not exploit the Lagrangian
definition of the model. It was later realized that concordant information on the structure con-
stants of theH+

3 model could independently be derived thanks to the so-called free-field approach
[2, 3, 4], which consists of perturbative calculations based on the Lagrangian definition. Then, after
theAdS2 D-branes inAdS3 [5], EuclideanAdS2 D-branes were discovered inH+

3 [6, 7], which
is the Euclidan version ofAdS3. The worldsheet description of strings ending on such D-branes
is theH+

3 model on a disc with maximally symmetric boundary conditions. The solution of this
model by conformal bootstrap methods was recently completed [8, 9].

These developments have left the problem of the Lagrangian definition of theH+
3 model on

the disc open. In other words, what is the boundary action forthe EuclideanAdS2 D-branes?
This action may be useful for obtaining a more synthetic perspective on the model, relating it to
other models, and solving it on higher genus Riemann surfaces with boundaries. Path-integral
calculations were indeed very helpful in the recent study oftheH+

3 model on higher genus closed
Riemann surfaces [10].

The problem of finding the boundary action was addressed by Ponsot and Silva [11], who
showed that the variations of the bulkH+

3 action already vanished by themselves in the presence of
AdS2 D-branes. They concluded that the boundary action vanished, which would be problematic
becauseAdS2 D-branes come in a one-parameter family, and results of path-integral calculations
should depend on that parameter. Here, we will propose a boundary action (2.8) which vanishes
on-shell but nevertheless contributes to path-integral calculations. We will show that the expected
boundary conditions can be derived from this action.

We will argue that the path-integral expressions of disc correlators which follow from our
boundary action agree with the known disc correlators. The argument relies on the simple relation
of the known disc correlators in theH+

3 model with disc correlators in Liouville theory [8]. It was
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recently shown that the relation betweenH+
3 and Liouville correlators on a sphere could easily be

derived by a formal path-integral calculation [10]. We willsketch a similar calculation in the case
of correlators on a disc.

We will also argue that the boundary action can be used for performing free-field calculations.
We will indeed first check that the boundary action preservesthe expected current-algebra sym-
metries. We will then compute the bulk one-point function and find agreement with the conformal
bootstrap result of [6, 7]. This free-field computation willinvolve the explicit determination of a
family of bulk-boundary Coulomb-like integrals (5.6). We will actually only use particular cases of
such integrals; the most general integrals would appear in free-field calculations of bulk-boundary
two-point functions in Liouville theory and in theH+

3 model.
We are informed that a similar setup for the boundary dynamics of theH+

3 model was found
by T. Creutzig and V. Schomerus in connection with their workon theGL(1|1) supergroup WZNW
model [12].

The basic concepts of boundary conformal field theory and non-rational conformal field theory
which we will use are explained in the review articles [13, 14].

2. Classical analysis of theH+
3 model with a boundary

Let us first define the bulkH+
3 model on the complex plane, which is conformally equivalentto the

Riemann sphere. We will parametrize the plane with a complexvariablez = τ + iσ and denote
∫∫

≡
∫

d2z; the single integration symbol
∫

will be reserved for integrals over the boundaryz = z̄

of the upper half-plane. The model is defined by the followingaction, where we adopt the notations
of [10] (while adding a “bulk cosmological constant” numerical factorλ to the interaction term)

Sbulk =
1

2π

∫∫

(

∂φ∂̄φ + β∂̄γ + β̄∂γ̄ − λb2ββ̄e2bφ
)

. (2.1)

All fields are bosonic. The fieldγ has conformal dimension zero, the holomorphic fieldβ has
conformal dimension one, andφ has conformal dimension zero but a background chargeb, so that
the interaction term

∫∫

ββ̄e2bφ is conformally invariant with respect to the holomorphic stress-
energy tensor

T = −β∂γ − ∂φ2 + b∂2φ . (2.2)

Hereb > 0 is a continuous parameter of theH+
3 model, which is related to the levelk and the

central chargec by

b2 =
1

k − 2
, c =

3k

k − 2
. (2.3)

The model actually has not only a conformal symmetry, but also an affine symmetry generated
by currents which we denote as

J− = β , J̄− = β̄ ,

J3 = βγ + b−1∂φ , J̄3 = β̄γ̄ + b−1∂̄φ ,

J+ = βγ2 + 2b−1γ∂φ − k∂γ , J̄+ = β̄γ̄2 + 2b−1γ̄∂̄φ − k∂̄γ̄ .

(2.4)
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EuclideanAdS2 D-branes are maximally symmetric in that they preserve halfof these six currents.
Strings ending on such D-branes are described by theH+

3 model on the complex upper half-plane,
with the following gluing conditions atz = z̄ [6, 11]:

J− + J̄− = 0 ,

J3 − J̄3 = 0 ,

J+ + J̄+ = 0 .

(2.5)

There is actually a one-parameter family of D-branes which satisfy such gluing conditions; namely,
for any real numberc, we can assume that atz = z̄

β + β̄ = 0 ,

γ + γ̄ = cebφ ,

(∂̄ − ∂)φ = cbβebφ .

(2.6)

These imply the gluing conditions on the currents (2.5) in the classical limitk → ∞ (thenk ∼ b−2).
To these gluing conditions, one may add the bulk equations ofmotion for theβ, β̄ fields, which
have no reason to fail at the boundaryz = z̄:

∂γ̄ = λb2βe2bφ , ∂̄γ = λb2β̄e2bφ . (2.7)

Modulo these equations, our gluing conditions are equivalent to the known gluing conditions on
(φ, γ, γ̄) [11].

Now consider the bulk actionSbulk (2.1) on the upper half-plane. Cancelling the variations
of this action implies the bulk equations of motion, plus some constraints on the behaviour of the
fields at the boundaryz = z̄. It was found in [11] that these constraints are satisfied by the gluing
conditions (2.6) for all values ofc. (The calculations in [11] were actually performed using the
equivalent action obtained by integrating out the fieldsβ, β̄ in the path integral.) However, the bulk
action by itself cannot be enough for defining the quantum dynamics of the model, because it does
not know the value ofc. It is however still possible to add a boundary term to the action provided
it vanishes when the gluing conditions (2.6) are obeyed, andwe propose

Sbdy =
i

4π

∫

β
(

γ + γ̄ − cebφ
)

, β + β̄ =
z→z̄

0 , (2.8)

where the single integral
∫

=
∫

dτ means the integral over the boundaryz = z̄ of the upper half-
plane. We therefore propose that in path-integral calculations the first gluing condition is imposed
as a constraint, while the last two should follow from the variational principle applied to the action
S = Sbulk + Sbdy.

Let us now study the variations of the action. Using an integration by parts and∂ = 1
2(∂τ −

i∂σ), the action is rewritten as

S = Sbulk + Sbdy =
1

2π

∫∫

(

∂φ∂̄φ − γ∂̄β − γ̄∂β̄ − λb2ββ̄e2bφ
)

− c
i

4π

∫

βebφ . (2.9)

Taking into account the constraintδ(β + β̄) =
z→z̄

0, the boundary terms in the variations of the

action are therefore

(δS)bdy =
i

4π

∫

[

−δφ
(

(∂ − ∂̄)φ + cbβebφ
)

+ δβ
(

γ + γ̄ − cebφ
)]

. (2.10)
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Requiring the vanishing of the coefficients of the independent variationsδφ andδβ therefore yields
the last two gluing conditions in eq. (2.6). This shows that our proposal for the boundary action is
classically sound. Not only it does not spoil the compatibility of the desired gluing conditions with
the variational principle, but also it singles out a value for the parameterc.

3. Path-integral derivation of the relation with Liouville theory

Let us now consider the path-integral representation of a generalH+
3 correlator on the upper half-

plane (which is conformally equivalent to the disc), with a number of bulk and boundary operator
insertions. We will show how this correlator is related to a Liouville theory correlator by integrating
out the fieldsγ, γ̄ and thenβ, β̄. The calculation follows closely that of Hikida and Schomerus in
the case of the sphere [10], so we will only sketch the few mostrelevant points.

The relevant bulk and boundary operators, with spinsj andℓ, isospinsµ andν and worldsheet
positionsz andτ respectively, are

Φj(µ|z) = |µ|2j+2eµγ(z)−µ̄γ̄(z̄)e2b(j+1)φ(z,z̄) , (3.1)

Ψℓ(ν|τ) = |ν|ℓ+1e
1
2
ν(γ(τ)−γ̄(τ))eb(ℓ+1)φ(τ) . (3.2)

The correlator to be computed is

Ω =

∫

Dφ Dβ Dβ̄ Dγ Dγ̄ e−S
n
∏

i=1

Φji(µi|zi)

m
∏

a=1

Ψℓa(νa|τa) , (3.3)

where the constraintβ + β̄ =
z→z̄

0 is implicitly understood, and the actionS is given in eq. (2.9),

where the boundary parameterc can actually jump at the insertion points of boundary operators.
Note that the sign of the action is such that the Gaussian integral overβ, β̄ is convergent providedβ
andβ̄ are complex anticonjugates. Integrating outβ, β̄ would produce the well-knownH+

3 sigma
model [15], plus an extra boundary action.

As an aside, recall that largek limits of H+
3 correlators can then be determined thanks to so-

called minisuperspace computations. In such computations, the functional integrals
∫

Dφ Dγ Dγ̄

are replaced with ordinary integrals over the zero-modes
∫

dφ d2γ. Due to factors∂γ̄ or ∂̄γ, the
bulk and boundary interaction terms then vanish. This provides an a posteriori justification for the
minisuperspace calculations of the bulk one-point function [6], bulk-boundary two-point function
[8], and boundary three-point function [9], which did not involve any contributions from the then-
unknown boundary action. (The results of such minisuperspace calculations nevertheless depend
on the boundary parameterc because the zero-modes have to be integrated only over the D-brane’s
world-volume.)

Let us perform the path integral overγ, γ̄. This yields delta-function constraints on derivatives
of the fieldsβ, β̄, namely

Ω =

∫

Dφ Dβ Dβ̄ δ

(

1

2π
∂̄β(z) −

∑

i

µiδ
(2)(z − zi) −

1

2

∑

a

νaδ
(2)(z − τa)

)

× δ

(

1

2π
∂β̄(z̄) +

∑

i

µ̄iδ
(2)(z − z̄i) +

1

2

∑

a

νaδ
(2)(z − τa)

)

× · · · . (3.4)
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Now, performing the path integral overβ, β̄ (subject toβ + β̄ =
z→z̄

0) will yield a nonzero result

only provided
∑

i(µi + µ̄i) +
∑

a νa = 0, and will forceβ, β̄ to adopt the values

βs(z) =
∑

i

µi

z − zi
+
∑

i

µ̄i

z − z̄i
+
∑

a

νa

z − τa
, (3.5)

β̄s(z̄) = −
∑

i

µi

z̄ − zi
−
∑

i

µ̄i

z̄ − z̄i
−
∑

a

νa

z̄ − τa
. (3.6)

Notice that the
∑

i
µ̄i

z−z̄i
terms ofβ(z) do not contribute tō∂β(z), which is defined only in the

upper half-plane whereas̄zi belong to the lower half-plane. However, such terms are required by
the assumed conditionβ+ β̄ =

z→z̄
0. Note also the subtlety in definingδ(2)(z−τa) whenτa belongs

to the boundary; the correct treatment of this subtlety (forinstance by slightly movingτa into the
upper half-plane) leads to the correct numerical factor of the term

∑

a
νa

z−τa
in βs(z).

After replacing the fieldsβ, β̄ by their valuesβs, β̄s in the path integral, we should relateφ to
the Liouville field so thatΩ can be interpreted as a Liouville theory correlator (plus some simple
factors). This is achieved by performing a change of variable on the fieldφ so thatβsβ̄se

2bφ =

−e2bφ̃, whereφ̃ is the Liouville field. In the case of the sphere, the effect ofthis change of variable
on the kinetic term

∫∫

∂φ∂̄φ could be interpreted as the introduction of degenerate Liouville oper-
ators at the zeroes ofβs, and the situation is the same in our case of the disc. We referto [10] for
the details. The new feature in our case is the presence of theboundary term−c i

4π

∫

βse
bφ. The

change of variableφ → φ̃ will only absorbβs into the exponential up to an overall sign:

−c
i

4π

∫

βse
bφ = −c

i

4π

∫

(sgnβs) ebφ̃ . (3.7)

The value of the Liouville boundary cosmological constant (i.e. of the coefficient of
∫

ebφ̃) is
therefore

µB = −c
i

4π
sgnβs (3.8)

This relation between theH+
3 and Liouville boundary parameters, and the rest of theH+

3 -Liouville
relation on the disc whose derivation we just sketched, fully agree with the knownH+

3 -Liouville
relation on the disc [8], which was originally derived by conformal bootstrap methods. In particular,
µB is pure imaginary for physical (i.e. real) values ofc, and its sign is determined by the sign of
βs. This agreement amounts to an additional heuristic argument in favour of our boundary action
Sbdy (2.8).

4. Free-field formalism

The total actionS (2.9) can be split into free terms, plus bulk and boundary interaction terms
corresponding to the Lagrangians

Lbulk = ββ̄e2bφ, Lbdy = βebφ . (4.1)
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The free theory is subject to the simple gluing conditions (which coincide with the gluing condi-
tions (2.6) atc = 0)

β + β̄ = 0 ,

γ + γ̄ = 0 ,

(∂ − ∂̄)φ = 0 .

(4.2)

The non-vanishing pairings of the basic fields in the presence of such gluing conditions are

〈φ(z)φ(w)〉 = − log |z − w||z̄ − w| ,

〈β(z)γ(w)〉 = 1
w−z ,

〈

β̄(z̄)γ(w)
〉

= − 1
w−z̄ ,

〈β(z)γ̄(w̄)〉 = − 1
w̄−z ,

〈

β̄(z̄)γ̄(w̄)
〉

= 1
w̄−z̄ .

(4.3)

These correlators are consistent with the fieldsβ, γ being holomorphic, and the fields̄β, γ̄ being
antiholomorphic, as implied by their respective bulk equations of motion in the free theory. They
also agree with the gluing conditions, in the sense that

lim
z→z̄

〈

(β(z) + β̄(z̄)) · · ·
〉

= lim
z→z̄

〈(γ(z) + γ̄(z̄)) · · ·〉 = 0 . (4.4)

(For most purposes, theβγ system with conformal weights(1, 0) is actually equivalent to a suitably
normalized complex free bosonω such thatβ = ∂ω, β̄ = ∂̄ω, γ = ω∗

L, γ̄ = ω∗

R, whereωL, ωR

are the holomorphic and antiholomorphic terms ofω respectively, and the star denotes complex
conjugation.)

Let us check that the bulk and boundary interaction terms preserve the affine symmetries (2.5).
Our treatment of this problem is inspired from [16], where more general results and references on
perturbed boundary conformal field theories can be found. Tofirst order in the boundary coupling
constantc, theJ+ + J̄+ symmetry condition is

lim
z→z̄

〈

(J+(z) + J̄+(z̄))

∫

Lbdy(τ) · · ·

〉

= 0 . (4.5)

Notice thatlim
z→z̄

〈

(J+(z) + J̄+(z̄))Lbdy(τ) · · ·
〉

vanishes for allτ due to the symmetries of the free

theory. The symmetry condition we just wrote might nevertheless fail because of the singularities
which appear as the operatorsJ+ + J̄+ andLbdy come close, and which might prevent the inte-
gration overτ from commuting with the limitlim

z→z̄
. Using the contractions (4.3), the singular terms

coming fromJ+ are1

J+(z)Lbdy(τ) ∼
b−2

(z − τ)2
ebφ(τ) +

2b−1

z − τ
∂φ(τ)ebφ(τ) = b−2∂τ

ebφ(τ)

z − τ
−

i

z − τ
∂σφ(τ)ebφ(τ) .(4.6)

The first term is a totalτ -derivative and will therefore not contribute to theτ -integral. The second
term vanishes due to the Neumann gluing condition onφ, namely∂σφ = 0. Similar calculations

1Notice thatJ̄+(z̄)Lbdy(τ ) ∼ −
b−2

(z̄−τ)2
ebφ(τ)

−
2b−1

z̄−τ
∂φ(τ )ebφ(τ), which is in accordance with the vanishing of

lim
z→z̄

〈

(J+(z) + J̄+(z̄))Lbdy(τ ) · · ·
〉

for any givenτ .
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show that the singular terms coming from̄J+ also vanish, and therefore the symmetry condition
(4.5) holds. TheJ3 − J̄3 andJ− + J̄− symmetry conditions can similarly be checked.

Of course, this is not enough for fully establishing the current symmetries of the theory. One
would need to check that saylim

z→z̄
(J+(z)+ J̄+(z̄)) vanishes when inserted into correlators with ar-

bitrary numbers of insertions of both the bulk and the boundary interaction terms
∫∫

Lbulk,
∫

Lbdy.
The case with just one bulk interaction term can be treated along the same lines as above, but is a
bit more tedious. We abstain from displaying such calculations, because our main aim is only to
check the correctness of the boundary action.

5. Free-field calculation of the bulk one-point function

Let us demonstrate the validity of the free-field formalism by computing the bulk one-point func-
tion. The calculation is quite similar to the free-field calculation of the bulk one-point function in
Liouville theory with Neumann boundary conditions, which was sketched in [17]. The new fea-
tures of theH+

3 case are the contribution of theβγ system, and the resulting dependence of the
one-point function on the isospinµ of the bulk field. In this section we will explicitly give the
values of the relevant integrals over the worldsheet positions of the bulk and boundary interaction
terms in theH+

3 model Lagrangian, which might also be useful for other applications.
The one-point function of a bulk fieldΦj(µ|z) (3.1) in the presence of anAdS2 D-brane with

parameterc is expected to be amenable to a free-field calculation only for certain quantized values
of the spinj, namely

2j + 1 = −n ∈ −N . (5.1)

The one-point function actually has simple poles at such values of the spinj, whose residues are
expressed as

Res
2j+1=−n

〈

Φj(µ|z)
〉H+

3

c
=

1

2b
|µ|2j+2

∞
∑

m,ℓ=0
2m+ℓ=n

1

m!ℓ!

m
∏

i=1

∫∫

d2wi

ℓ
∏

k=1

∫

dxk

〈

eµγ(z)−µ̄γ̄(z̄)e2b(j+1)φ(z,z̄)
m
∏

i=1

λ
b2

2π
ββ̄e2bφ(wi)

ℓ
∏

k=1

ic

4π
βebφ(xk)

〉

, (5.2)

where the correlator on the second line is computed in the free theory described in the previous
section.

This correlator factorizes into independentβγ andφ correlators. Remembering that the field
φ has a background chargeb, theφ correlator is non-vanishing provided2j + 1 + 2m + ℓ = 0; this
is the origin of the condition (5.1). Theφ correlator is then

〈

e2b(j+1)φ(iy)
m
∏

i=1

e2bφ(wi)
ℓ
∏

k=1

ebφ(xk)

〉

=

[

ℓ
∏

k=1

(y2 + x2
k)

m
∏

i=1

|y2 + w2
i |

2

]b2(n−1)

× |2y|−
b2

2
(n−1)2 ×





∏

i,k

|wi − xk|
2
∏

i<i′

|wi − wi′ |
2
∏

i,i′

|wi − w̄i′ |
∏

k<k′

|xk − xk′ |





−2b2

. (5.3)
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In theβγ correlator, integrating over the zero-modes of the fieldγ yields a factor2πδ(µ + µ̄). The
rest of the computation follows from the contractions (4.3), which in particular imply

〈

eµγ(z)−µ̄γ̄(z̄)β(w)
〉

=
µ

w − z
+

µ̄

w − z̄
=

µ(z − z̄)

(w − z)(w − z̄)
. (5.4)

The actual correlator is a product of such factors,

〈

eµγ(iy)−µ̄γ̄(−iy)
m
∏

i=1

λ
b2

2π
ββ̄(wi)

ℓ
∏

k=1

ic

4π
β(xk)

〉

= 2πδ(µ + µ̄)(−)m
(

λ
b2

2π

)m

|2yµ|n
(

−
ic

4π
sgnℑµ

)ℓ m
∏

i=1

1

|y2 + w2
i |

2

ℓ
∏

k=1

1

y2 + x2
k

. (5.5)

It is already clear that, after combining the factors (5.3) and (5.5), the remainder of the calculation
is identical to the free-field calculation of the one-point function

〈

e2αφ(iy)
〉Liouville

µB
of a Liouville

field with parameterα = b(j +1)+ 1
2b , in the presence of a Neumann boundary with cosmological

constantµB = c i
4π sgnℑµ. The integral in eq. (5.2) amounts to taking the special value a =

1 + b2 − b2n in the following integral:

Jn,m(a|y) =
1

m!(n − 2m)!

∫∫ m
∏

i=1

d2wi

|y2 + w2
i |

2a

∫ n−2m
∏

k=1

dxk

(y2 + x2
k)

a





∏

i,k

|wi − xk|
2
∏

i<i′

|wi − wi′ |
2
∏

i,i′

|wi − w̄i′ |
∏

k<k′

|xk − xk′ |





−2b2

, (5.6)

where as before the double integrals are over the upper half-plane, and the single integrals over
the real line. This integral can be evaluated explicitly. With the notationss(x) ≡ sin πx and
Ci

n = n!
i!(n−i)! , the result is

Jn,m(a|y) =
|2y|n(1−2a−(n−1)b2)

n!

(

2π

Γ(1 − b2)

)n 2−2m

(s(b2))m
In(a)Jn,m(a) , (5.7)

where

In(a) =

n−1
∏

i=0

Γ(1 − (i + 1)b2)Γ(2a − 1 + (n − 1 + i)b2)

Γ2(a + ib2)
, (5.8)

and

Jn,m(a) =

m
∑

i=0

(−)iCm−i
n−m−i

s((n + 1 − 2i)b2)

s((n + 1 − i)b2)

i−1
∏

r=0

s((n − r)b2)s(a + (n − r)b2)

s((r + 1)b2)s(a + rb2)
. (5.9)

Let us introduce new notations for the boundary parameterc:

c = −

√

λ
8πb2

sin πb2
sinh r = −isgnℑµ

√

λ
8πb2

sinπb2
cosh σ , (5.10)

where σ = r − i
π

2
sgnℑµ . (5.11)
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We now sum over the numbers of screening chargesm, ℓ while keeping2m+ℓ = n fixed like in eq.
(5.2). This summation reduces to the following formula, which can be proved by the application of
standard trigonometric identities:

[n/2]
∑

m=0

(−)m(2 cosh σ)n−2mJn,m(a) =

n
∑

i=0

cosh((n − 2i)σ)
[−nb2]i[−(n − 1)b2 − a]i

[b2]i[a]i
, (5.12)

where we use the notation[x]i ≡
∏i−1

r=0 s(x + rb2).

Actually, our calculation involves a relatively simple case of these formulas, because it only
uses particular values of the parametera, namely the valuesa = 1 + b2 − b2n with n ∈ N. In
this case, only the termi = 0 survives in eq. (5.12). The bulk-boundary two-point functions in
Liouville theory and inH+

3 would involve the general case. And the integral (5.6) mightbe useful
for other applications.

The result of the free-field calculation is therefore:

Res
2j+1=−n

〈

Φj(µ|iy)
〉H+

3

c
= |2y|

b2

2
(n2

−1)δ(µ + µ̄)|µ| × πb−1

(

2

λ

Γ(1 − b2)

Γ(1 + b2)

)

−
n
2

×
(−)n

n!
Γ(1 − b2n) cosh n

(

r − iπ
2 sgnℑµ

)

, (5.13)

This should be compared to the conformal bootstrap result [6, 7], which in the notations of [18]
reads:

〈

Φj(µ|iy)
〉H+

3

c
= |2y|2b2j(j+1)δ(µ + µ̄)|µ| × π(8b2)−

1
4

(

π
Γ(1 − b2)

Γ(1 + b2)

)j+ 1
2

× Γ(2j + 1)Γ(1 + b2(2j + 1)) cosh(2j + 1)
(

r − iπ
2 sgnℑµ

)

. (5.14)

We thus find agreement, provided the bulk cosmological constant is chosen asλ = 2
π , so that

the normalizations of the bulk interaction term agree. The remaining discrepancy is just an overall
numerical factor. The numerical normalization factor in eq. (5.14) was derived in [6] by a “modular
bootstrap” calculation of the annulus amplitude, whereas we did not impose such a normalization
here.

This agreement provides another test of the proposed boundary action of theH+
3 model.
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