Inverse scattering from mixed data - IN2P3 - Institut national de physique nucléaire et de physique des particules Access content directly
Journal Articles Inverse Problems and Imaging Year : 2008

Inverse scattering from mixed data

Abstract

We first consider the fixed-$l$ inverse scattering problem. We show that the zeros of the regular solution of the Schrödinger equation, $r_{n}(E)$, which are monotonic functions of the energy, determine a unique potential when the domain of energy is such that the $r_{n}(E)$'s range from zero to infinity. This suggests that the use of the mixed data of phase-shifts $\{\delta(l_0,k), k \geq k_0 \} \cup \{\delta(l,k_0), l \geq l_0 \}$, for which the zeros of the regular solution are monotonic in both domain and range from zero to infinity, offers the possibility of determining the potential in a unique way. This will be demonstrated in the JWKB approximation.

Dates and versions

in2p3-00180881 , version 1 (22-10-2007)

Identifiers

Cite

M. Lassaut, S. Y. Larsen, S. A. Sofianos, J. C. Wallet. Inverse scattering from mixed data. Inverse Problems and Imaging , 2008, 24, pp.055014. ⟨10.1088/0266-5611/24/5/055014⟩. ⟨in2p3-00180881⟩
24 View
0 Download

Altmetric

Share

Gmail Mastodon Facebook X LinkedIn More