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σ la ième grandeur rms suivant x ou y, dans le plan transverse. Deux méthodes de minimisation sont testées, la méthode de Powell et la méthode du Simplex. Dans un premier temps, pour réduire la durée de calcul, un code matriciel est utilisé pour la simulation du transport du faisceau. Dans un deuxième temps on utilise un code particulaire prenant en compte les effets non linéaires de la force de charge d'espace. Le résultat obtenu par la première méthode pourra être utilisé comme point de départ de la deuxième méthode.

Figure 1 2 Procédure utilisée A l'aide de N profils obtenus en modifiant le gradient dans un des quadripôles, on détermine N couples de dimensions transverses ( 
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les paramètres de Twiss et les émittances transverses. Soient une fonction f à plusieurs variables, un point P, une direction définie à partir du vecteur u r , λ un scalaire et la fonction g définie par :
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, une coupe de la fonction f suivant la direction u passant par le point P. La méthode de Powell consiste à minimiser f de la manière suivante :

-on part d'un point P 0 et d'une direction u 0 , -par minimisation dans l'espace à une dimension suivant la direction u 0 , on obtient un point P 1 , -on change de direction pour regarder ce qui se passe suivant u 1 , -par itération, on crée P 2 , u 2 …. jusqu'à convergence de l'itération.

Lorsque les vecteurs u i sont les vecteurs unitaires du repère, on parlera d'implémentation de base de la méthode de Powell. Selon la méthode utilisée pour le changement de direction on parlera de méthode de la plus grande pente ou du gradient conjugué. C'est cette dernière qui est prise dans la méthode de Powell et qui est utilisée pour la minimisation.

Méthode du Simplex

La méthode du simplex n'est pas la méthode la plus puissante lorsque l'on veut calculer un minimum d'une fonction à plusieurs variables, mais la méthode la plus simple à mettre en oeuvre. Un simplex dans un espace de dimension N est une figure géométrique composée de N+1 points reliés entre eux par des segments. Par exemple en dimension 2 le simplex est un triangle. Soit f la fonction à minimiser, on calcul les N+1 valeurs f(P i ) et on les ordonne. L'idée est d'encadrer un volume d'espace et de le réduire autour d'un minimum trouvé (ne se trouvant pas forcément dans le volume initial). Pour cela on essaye de projeter le plus mauvais point du simplex de l'autre coté de l'hyperplan que constituent les N autres points et éventuellement appliquer une expansion de ce coté. Ces réflexions sont faites de manière à essayer de conserver le volume du simplex. On peut aussi avoir contraction du volume le long de l'axe du plus mauvais point, ou bien même des contractions selon toutes les dimensions vers le point dont la valeur de la fonction est la plus petite. A chaque itération on recalcule un nouveau simplex en générant un nouveau point pour remplacer le point le plus mauvais. On s'arrête lorsque la dimension du simplex est suffisamment petite.

Validation de la procédure en utilisant un code matriciel pour le transport

Pour juger de la validité de la méthode utilisée et accélérer le calcul, un code matriciel a été développé. Les deux méthodes sont testées avec ce programme. Dans un premier temps, avec les caractéristiques initiales du faisceau données par le code Toutatis [START_REF] Duperrier | TOUTATIS, a RFQ code[END_REF], on simule le transport en faisant varier le gradient dans un des quadripôles et on détermine N couple ) , ( B' T/m -4.9 -4 -3.5 -3 -2.5 -2 -1.5 -1 -0.1

x σ (mm) 11.02 8.22 6.71 5.24 3.80 2.40 1.06 0.55 2.77 y σ (mm) 2.74 0.30 1.77 3.42 5.12 6.86 8.63 10.44 13.80

Tableau 2

La procédure utilisée est la suivante : On génère aléatoirement les conditions initiales dans un ellipsoïde centré en P c tel que :

1 ) ( 2 , , 0 , 6 1 ≤ - ∑ = c i c i i i x x x
, avec 0 , i

x la ième coordonnée du point initial et c i

x , la ième coordonnée du point recherché. Après minimisation, on obtient un point P f de coordonnées x i,f . Comme il est difficile de représenter les points P 0 , P c et P f dans un espace à 6 dimensions,

c'est la norme N f = 2 , , , 6 1 ) 
( c i c i f i i x x x - ∑ = qui est représentée en fonction de la norme N i = 2 , , 0 , 6 1 ) ( c i c i i i x x x - ∑ = .
La routine de minimisation converge vers la solution à déterminer lorsque l'on a N f = 0. La figure 4 représente

) ( i f N F N =
. On peut voir que pour la quasi totalité des points, l'objectif est atteint c'est à dire que la routine de minimisation permet de retrouver les conditions initiales. La figure 5 représente α x,f en fonction de α x,i , et montre que l'on converge vers la bonne valeur pour 104 points sur 110. Pour déterminer chaque paramètre initial, on fait une moyenne sur les N1 valeurs trouvées et l'on affine le calcul en déterminant les écarts types et en éliminant les valeurs qui sont en dehors de 3 écarts types. On peut vérifier sur la figure 6 que la méthode de Powell permet de retrouver avec une grande précision, les valeurs des dimensions rms du tableau 2 Sur cette figure sont représentées les dimensions rms obtenues pour les 110 point P 0 générés aléatoirement. -6,00E+00 -5,00E+00 -4,00E+00 -3,00E+00 -2,00E+00 -1,00E+00 0,00E+00 

Prise en compte des non linéarités dans la simulation du transport

Dans les cas précédents, les mesures simulées sont obtenues à partir du transport de faisceau calculé par un code matriciel. Pour tenir compte des non linéarités de la force de charge d'espace nous allons maintenant utiliser le code particulaire, Tracewin [START_REF] Uriot | TraceWin Documentation[END_REF] Les valeurs du gradient dans le dernier quadripôle et les dimensions rms transverses du faisceau correspondantes sont présentées dans le tableau 7. On remarque des écarts maxima de +20 % sur les valeurs en y entre les tableaux 7 et 2. Les dimensions suivant x sont assez proches, l'écart est inférieur à 5 % (excepté pour le minimum).

B' T/m -4.9 -4 -3.5 -3 -2.5 -2 -1.5 -1 -0.1

x σ (mm) 10.70 8.00 6.50 5.06 3.66 2.30 1.03 0.67 2.77 y σ (mm) 

  exp σ est la valeur de sigma suivant l'axe des x, obtenue expérimentalement pour la ièmemesure et i x sim ,σ la valeur du sigma équivalent obtenue par la simulation.

Figure 2 :

 2 Figure 2 : Procédure utilisée

  endroit du wire scanner. Dans un second temps, avec les couples précédents de minimisation on recherche les caractéristiques initiales. Celles-ci sont définies par le point P c dans l'espace à 6 dimensions. Pour quantifier la sensibilité des deux routines aux conditions initiales P 0 (point de départ pour la routine de minimisation) et déterminer le point P c , on recommence la minimisation pour N 1 points P 0 générés aléatoirement dans un sphéroïde de centre P c . Pour toutes ces études, les enveloppes du faisceau sont celles représentées sur la figure3, à la modification prête en fin de ligne, due à la variation du gradient dans le dernier quadripôle.

Figure 3 :

 3 Figure 3 : Enveloppes du faisceau dans la ligne d'analyses

Figure 4 :

 4 Figure 4 : Influence des conditions initiales sur la minimisation

Figure 10 :

 10 Figure 10 : b x obtenues après minimisation en fonction des valeurs de b x initiales générées aléatoirement.

  Cette étude à pour but de caractériser transversalement le faisceau de protons en sortie du RFQ du projet IPHI. On suppose connues les caractéristiques longitudinales du faisceau. En modifiant le gradient dans un des quadripôles de la ligne d'analyse du projet IPHI, différents profils transverses du faisceau sont mesurés à l'aide d'un wire scanner, voir figure 1. Les effets de la charge d'espace sur la dynamique du faisceau étant importants, il n'est plus possible d'utiliser la méthode de variation des gradients (appelée communément « méthode des 3 gradients ») pour déterminer les caractéristiques du faisceau, c'est à dire les paramètres de Twiss et les émitances. C'est pourquoi un programme de minimisation est développé à partir de travaux entrepris pour d'autres besoins[1]. Les caractéristiques initiales du faisceau sont déterminées en minimisant la distance comprise entre la courbe définie par les points de
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  Figure 5: Valeurs de α x obtenues après minimisation en fonction des valeurs de α x initiales générées aléatoirement.Comme le montrent les figures 7 et 8, même si la dispersion des points pour la figure 8 est plus importante que pour le cas précédent, les résultats obtenus sont encore satisfaisants, le tableau 4 le confirme. En filtrant au plus 5 points, l'écart entre les différentes valeurs obtenues et les valeurs recherchées est de l'ordre du pourcent. Les écarts types sont inférieurs à 10 %. Sur la figure 10 est représentée β x,f en fonction de β x,i . Les deux figures montrent que cette méthode donne aussi de bons résultats. Ceci est conforté par le tableau 5.

		3,50E+01	Mesures du Wire scanner simulées et obtenues par la minimisation
		3,00E-01				
		1,60E-02 3,00E+01				
		1,40E-02 2,50E-01				
		2,50E+01				
	Dimension rms (m) Ecart relatif final Beta_x,f	6,00E-03 8,00E-03 1,00E-02 1,20E-02 1,00E+01 écart type Points utilisés 1,00E-01 1,50E+01 2,00E+01 2,00E-01 cond. initiales valeurs exactes 0.991 0.08 107 α x valeurs calculées 0.983 1,50E-01	0.01 107 β x (m/rad) ε x (m.rad) 2.03 e -7 105 0.238 3.477 e -6 -2.039 0.09 106 α y 0.240 3.503e -6 -2.066	obtenues par la simulation suivant y 2.77 e -7 107 simulées suivant x obtenues par minimisation suivant x simulées suivant y Dimensions rms à l'endroit du Wire scanner β y (m/rad) ε y (m.rad) 0.03 106 0.507 3.516 e -6 0.518 3.446 e -6
		4,00E-03 5,00E+00 5,00E-02				Tableau 4
		2,00E-03 0,00E+00				
	0,00E+00 0,00E+00 0,00E+00 4.2 Méthode du simplex 2,00E-01 0,00E+00 5,00E-02 1,00E-01	4,00E-01 1,50E-01	6,00E-01 Ecart relatif initial 2,00E-01 2,50E-01	8,00E-01 3,00E-01	1,00E+00 3,50E-01 4,00E-01	1,20E+00 4,50E-01
	-6,00E+00 Figure 7 : Influence des conditions initiales sur la minimisation -5,00E+00 -4,00E+00 -3,00E+00 -2,00E+00 -1,00E+00 0,00E+00 Gradient du champ magnétique (T/m) 4.2.1 Influence des conditions initiales Beta_x,i
	2,00E-01 cond. initiales valeurs exactes 0.991 4,00E-01 α x valeurs calculées 0.991 écart type ≈ 0 Points utilisés 104 110 points P 0 sont générées aléatoirement, pour chaque paramètre il y a 6 points sur les 110 6,00E-01 8,00E-01 1,00E+00 1,20E+00 1,40E+00 1,60E+00 1,80E+00 Alpha_x,i Alpha_x,f β x (m/rad) ε x (m.rad) α y β y (m/rad) ε y (m.rad) 0.238 3.477 e -6 -2.039 0.507 3.516 e -6 0.238 3.477e -6 -2.039 0.507 3.516 e -6 ≈ 0 ≈ 0 ≈ 0 ≈ 0 ≈ 0 104 104 104 104 104 Tableau 3 hors des 3 écarts types. On peut remarquer les très bons résultats obtenus. 0,00E+00 2,00E-01 4,00E-01 6,00E-01 8,00E-01 1,00E+00 1,20E+00 4.1.2 Prise en compte des erreurs faites sur les mesures 0,00E+00 5,00E-07 1,00E-06 1,50E-06 2,00E-06 2,50E-06 3,00E-06 3,50E-06 4,00E-06 4,50E-06 0,00E+00 1,00E-06 2,00E-06 3,00E-06 4,00E-06 5,00E-06 6,00E-06 De même que pour la méthode de Powell, ) ( i f N F N = 2,00E-01 4,00E-01 6,00E-01 1,20E+00 1,40E+00 1,60E+00 1,80E+00 est représentée sur la figure 9. 0,00E+00 8,00E-01 1,00E+00 Ecart relatif final
						Ecart relatif initial
			Figure 9 : Influence des conditions initiales sur la minimisation

Figure 6 : Dimensions rms du faisceau simulées et obtenues par minimisation à l'endroit du wire scanner La figue 6 montre l'excellent accord entre les valeurs des dimensions rms simulées et obtenues par la minimisation en x et y. Les valeurs obtenues par la minimisation ont été reportées pour les les 110 cas générés aléatoirement. Dans le tableau 3, sont reportées les conditions initiales recherchées, celles déterminées statistiquement après minimisation et les différents écarts types correspondants.

Dans le cas précédent nous supposions que les mesures étaient connues exactement. Pour tenir compte des erreurs faites sur celles-ci, on génère aléatoirement une erreur comprise entre plus ou moins 5% des valeurs précédentes, ceci pour chaque jeu de conditions initiales. Figure 8 : ε y obtenues après minimisation en fonction des valeurs de ε y initiales générées aléatoirement.

  Les remarques faites pour la figure 6 sont de nouveau valable pour la figure 11. On remarquera une fois de plus l'excellent accord entre les valeurs simulées et celles obtenues par la minimisation. Prise en compte des erreurs faites sur les mesures Les résultats étant proches de ceux donnés par la méthode de Powell je ne reporterai ici que le tableau 6 donnant les valeurs moyennes des caractéristiques du faisceau déterminées et les écarts types associés.

	cond. initiales valeurs exactes 0.991 α x	β x (m/rad) ε x (m.rad) 0.238 3.477 e -6 -2.039 α y	β y (m/rad) ε y (m.rad) 0.507 3.516 e -6
	valeurs calculées 0.991	0.238	3.477e -6 -2.039	0.507	3.516 e -6
	écart type	≈ 0	≈ 0	≈ 0	≈ 0	≈ 0	≈ 0
	Points utilisés	107	107	107	107	107	107
				Tableau 5			
	4.2.2 Tableau 6			
							Dimensions rms à l'endroit
	obtenues par minimisation suivant x simulées suivant y obtenues par minimisation suivant x du Wire scanner Les résultats sont satisfaisants et les erreurs sont de l'ordre du pourcent et des écarts types Dimension rms (m) simulées suivant x inférieurs à 10 %.
			Gradient du champ magnétique (T/m)			

Figure 11 : Dimensions rms du faisceau simulées et obtenues par minimisation à l'endroit du wire scanner

  et simuler le transport jusqu'au wire scanner L'optimisation est faite avec le code matriciel.

	cond. initiales	α x	β x (m/rad) ε x (m.rad)	α y	β y (m/rad) ε y (m.rad)
	valeurs exactes 0.991	0.238	3.477 e -6 -2.039	0.507	3.516 e -6
	valeurs calculées 0.982	0.240	3.503e -6 -2.066	0.518	3.438 e -6
	écart type	0.08	0.01	2.03 e -7	0.09	0.03	2.79 e -7
	Points utilisés	108	109	107	107	107	108

Dans un premier temps la routine PICNIR est utilisée pour déterminer la force de charge d'espace. Le calcul du champ généré par la charge d'espace se fait en considérant que la charge est distribuée dans un anneau circulaire. La section transverse elliptique du faisceau est prise en compte lorsque l'on calcul le rayon effectif de l'anneau chargé

  Pour prendre en compte la composante non linéaire de la force de charge d'espace, l'optimisation est faite avec un code particulaire, PARTRAN. Les méthodes du simplex et de Powell sont utilisées. La simulation du transport est faite avec la routine PICNIC et l'optimisation utilise la routine PICNIR. Figure 12 : Dimensions rms du faisceau simulées et obtenues par minimisation à l'endroit du wire scanner Sur la figure 12, pour chaque mesure nous avons représenté les 110 points simulés, chaque point représente une mesure avec une erreur générée aléatoirement. Naturellement les 110 points obtenus par la minimisation sont aussi représentés. On remarquera que la dispersion est plus grande pour les points simulés. Il semblerait que la minimisation corrige une partie des erreurs dues aux mesures. D'autre part il y a un bon accord entre les valeurs simulées et obtenues par la minimisation.Dans le but de caractériser le faisceau en sortie du RFQ du projet IPHI, un programme d'optimisation a été développé. La détermination de ces caractéristiques s'appuie sur les mesures faites avec le wire scanner. N'ayant pas à l'heure actuelle d'acquisitions de données, ce programme est testé avec des valeurs obtenues par la simulation. Deux méthodes de minimisation sont regardées. Les résultats obtenus avec les deux méthodes en utilisant un code matriciel pour la simulation et pour la minimisation sont excellents. Dans l'étape suivante, des erreurs de ±5% sur les dimensions transverses du faisceau sont prises en compte. Les écarts entre les valeurs recherchées et obtenues par la minimisation sont inférieurs à 3%. Pour tenir compte des effets non linéaires de la charge d'espace lors du transport du faisceau dans la ligne d'analyse, la simulation a été faite avec le code Tracewin, l'optimisation prend toujours en compte des erreurs faites sur les mesures. Les valeurs obtenues s'éloignent des valeurs recherchées et l'écart peut aller jusqu'à 50%. Pour remédier à ceci et accroitre la qualité des résultats, la simulation et l'optimisation se font avec le code particulaire. Ceci permet d'avoir des écarts inférieurs à 30% entre les caractéristiques recherchées et obtenues par la minimisation. Il n'apparaît pas nécessaire de développer d'autres méthodes de minimisation pour essayer d'accroitre la précision des résultats vu que ce qui est limitatif est l'ensemble des erreurs faites sur les mesures.

	Mesures du Wire scanner simulées et obtenues par la minimisation	
	cond. initiales valeurs exactes 0.991 α x 1,60E-02 1,80E-02	β x (m/rad) ε x (m.rad) 0.238 3.478 e -6 -2.039 α y	0.507 β y (m/rad) ε y (m.rad) 3.516 e -6
				Powell			
	valeurs calculées 1.007 1,40E-02	0.270	4.584 e -6 -1.178	0.302	5.936 e -6
	écart type	0.06	0.01	2.02 e -7	0.06	0.01	3.66 e -7 Dimensions rms à l'endroit
	Tableau 7 Les résultats présentés dans le tableau 8 pour les deux méthodes montrent que ce qui est dit Simplex valeurs calculées 1.003 0.270 4.600e -6 -1.179 0.303 5.933 écart type 0.06 0.009 1.85 e -7 0.06 0.01 3.68 e -7 Points utilisés 109 108 108 106 106 106 8,00E-03 1,00E-02 simulées suivant x obtenues par minimisation suivant x simulées suivant y obtenues par minimisation suivant y Dimension rms (m) 3.16 0.51 2.21 4.16 6.16 8.21 10.31 12.44 16.41 Points utilisés 110 110 110 110 110 110 1,20E-02 du Wire scanner
	ci-dessus se traduit par une certaine dissymétrie dans la qualité des résultats obtenus horizontalement et verticalement. On remarquera l'excellent accord entre les deux routines Tableau 10 6,00E-03
	d'optimisation. 4,00E-03						
	2,00E-03						
	cond. initiales valeurs exactes 0.991 α x 0,00E+00 5 Utilisation d'un code particulaire β x (m/rad) ε x (m.rad) 0.238 3.478 e -6 -2.039 α y -6,00E+00 -5,00E+00 -4,00E+00 -3,00E+00 -2,00E+00 -1,00E+00 β y (m/rad) ε y (m.rad) 0.507 0,00E+00 3.516 e -6 Gradient du champ magnétique (T/m)
				Powell			
	valeurs calculées 0.939	0.261	4.332e -6 -0.937	0.235	6.696 e -6
	écart type	0.06	0.01	2.01 e -7	0.05	0.008	5.06 e -7
	Points utilisés	110	110	110	110	110	110
				Simplex			
	valeurs calculées 0.937 écart type 0.06 cond. initiales α x Points utilisés 105 valeurs exactes 0.991	0.262 0.01 β x (m/rad) ε x (m.rad) 4.338e -6 -0.939 2.01e -7 0.05 α y 98 107 92 0.238 3.478 e -6 -2.039 Powell	0.235 0.09 β y (m/rad) ε y (m.rad) 5.209e -6 2.02e -7 94 0.507 3.516 e -6 110
	valeurs calculées 1.10 écart type 0.18	0.240 0.02	3.807e -6 -1.400 Tableau 8 6.6 e -7 0.23	0.458 0.08	3.656 e -6 .9 e -7
	Ceci peut être dû à la routine de charge d'espace prenant assez mal en compte les dimensions Le tableau 9, obtenu avec la routine PICNIC, montre que les valeurs suivant l'axe y se écart type 0.13 0.019 4. e -7 0.23 0.09 1 e -6 routine PICNIC déterminant la force de charge d'espace en 3 dimensions. valeurs calculées 1.054 0.260 4.46e -6 -1.543 0.479 3.47 e -6 transverses. Pour essayer d'accroitre la précision du calcul dans le plan vertical, on utilise la Points utilisés 94 95 99 85 98 100 Simplex 6 Conclusion
	rapprochent de celle du tableau 2. En ce qui concerne la variable y, le tableau 10 donne de Points utilisés 97 97 95 85 98 100
	meilleurs résultats que le tableau 7				
				Tableau 11			
	B' T/m Le tableau 11 montre les résultats obtenus avec les deux routines de minimisations et en -4.9 -4 -3.5 -3 -2.5 -2 -1.5 -1	-0.1
	σ (mm) 11.06 tenant compte d'une erreur sur les mesures de ± 5%. 8.26 6.75 5.27 3.83 x y σ (mm) 2.94 0.47 2.01 3.80 5.64 Les résultats sont meilleurs que ceux obtenus avec le code matriciel, surtout suivant l'axe des 2.43 1.12 0.66 2.81 7.53 9.46 11.43 15.08 y. Le tableau montre des résultats qui diffèrent des valeurs simulés de 30% au plus.
				Tableau 9