Circulant matrices, gauss sums and mutually unbiased I. The prime number case - IN2P3 - Institut national de physique nucléaire et de physique des particules Access content directly
Preprints, Working Papers, ... Year : 2007

Circulant matrices, gauss sums and mutually unbiased I. The prime number case

Abstract

In this paper, we consider the problem of Mutually Unbiased Bases in prime dimension $d$. It is known to provide exactly $d+1$ mutually unbiased bases. We revisit this problem using a class of circulant $d \times d$ matrices. The constructive proof of a set of $d+1$ mutually unbiased bases follows, together with a set of properties of Gauss sums, and of bi-unimodular sequences.
Fichier principal
Vignette du fichier
circulant1.pdf (147.89 Ko) Télécharger le fichier
Origin Files produced by the author(s)
Loading...

Dates and versions

in2p3-00184035 , version 1 (30-10-2007)

Identifiers

  • HAL Id : in2p3-00184035 , version 1
  • ARXIV : 0710.5642

Cite

M. Combescure. Circulant matrices, gauss sums and mutually unbiased I. The prime number case. 2007. ⟨in2p3-00184035⟩
23 View
55 Download

Altmetric

Share

Gmail Mastodon Facebook X LinkedIn More