Block circulant matrices with circulant blocks, weil sums and mutually unbiased bases, II. The prime power case - IN2P3 - Institut national de physique nucléaire et de physique des particules Access content directly
Journal Articles Journal of Mathematical Physics Year : 2009

Block circulant matrices with circulant blocks, weil sums and mutually unbiased bases, II. The prime power case

Abstract

In our previous paper \cite{co1} we have shown that the theory of circulant matrices allows to recover the result that there exists $p+1$ Mutually Unbiased Bases in dimension $p$, $p$ being an arbitrary prime number. Two orthonormal bases $\mathcal B,\ \mathcal B'$ of $\mathbb C^d$ are said mutually unbiased if $\forall b\in \mathcal B, \ \forall b' \in \mathcal B'$ one has that $$\vert b\cdot b'\vert = \frac{1}{\sqrt d}$$ ($b\cdot b'$ hermitian scalar product in $\mathbb C^d$). In this paper we show that the theory of block-circulant matrices with circulant blocks allows to show very simply the known result that if $d=p^n$ ($p$ a prime number, $n$ any integer) there exists $d+1$ mutually Unbiased Bases in $\mathbb C^d$. Our result relies heavily on an idea of Klimov, Munoz, Romero \cite{klimuro}. As a subproduct we recover properties of quadratic Weil sums for $p\ge 3$, which generalizes the fact that in the prime case the quadratic Gauss sums properties follow from our results.
Fichier principal
Vignette du fichier
powerofprime.pdf (140.16 Ko) Télécharger le fichier
Origin Files produced by the author(s)
Loading...

Dates and versions

in2p3-00184037 , version 1 (30-10-2007)

Identifiers

Cite

M. Combescure. Block circulant matrices with circulant blocks, weil sums and mutually unbiased bases, II. The prime power case. Journal of Mathematical Physics, 2009, 50, pp.032104. ⟨10.1063/1.3078420⟩. ⟨in2p3-00184037⟩
54 View
195 Download

Altmetric

Share

Gmail Mastodon Facebook X LinkedIn More