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Block circulant matrices with circulant blocks, weil sums and mutually unbiased bases, II. The prime power case M.

INTRODUCTION

The Mutually Unbiased Bases in dimension d are a set {B 1 , ..., B N } of orthonormal bases in C d such that for any b

(k) j ∈ B k , b (k ′ ) j ′ ∈ B k ′ one has b (k) j • b (k ′ ) j ′ = 1 √ d , ∀j, j ′ = 1, ..., d, ∀k ′ = k = 1, ..., N
where b • b ′ = d j=1 b * j b ′ j is the usual scalar product in C d . This notion of mutually unbiased bases emerged in the seminal work of Schwinger 1 [START_REF] Schwinger | Unitary Operator Bases[END_REF] and turned out to be a cornerstone in the theory of quantum information. Furthemore it is strongly linked with the theory of Hadamard matrices [START_REF] Hadamard | Résolution d'une question relative aux déterminants[END_REF] and to the Gauss Sums properties.

An important problem is the maximum number of mutually unbiased bases (MUB) in dimension d. The problem has been completely solved for d = p n where p is a prime number, and n any integer, in which case one can find N = d + 1 MUB's [START_REF] Bandyopadhyay | A new proof of the existence of mutually unbiased bases[END_REF][16] [START_REF] Wootters | Optimal State-Determination by Mutually Unbiased Measurements[END_REF] [10] [START_REF] Chaturvedi | Aspects of mutually unbiased bases in odd-prime-power dimensions[END_REF].

In a previous paper [START_REF] Combescure | Circulant matrices, Gauss sums and the Mutually Unbiased Bases[END_REF] (hereafter refered to as I) we have provided a construction of d + 1 MUB's for d a prime number using a new method involving circulant matrices. Then the MUB problem reduces to exhibit a circulant matrix C which is a unitary Hadamard matrix, such that its powers are also circulant unitary Hadamard matrices. Then using the Discrete Fourier Transform F d which diagonalizes all circulant matrices, we have shown that a MUB in that case is just provided by the set of column vectors of the set of matrices F d , 1l, C, C 2 , ..., C d-1 . Properties of quadratic Gauss sums follow as a by-product of the method.

The present paper is a continuation of I, where we consider d = p n . Here circulant matrices are replaced by a set of block-circulant with circulant blocks matrices. Again the discrete Fourier transform which in this case will be simply F ≡ F p ⊗ F p ⊗ ... ⊗ F p will play a central role since it diagonalizes all block-circulant with circulant blocks matrices. We follow an idea of [START_REF] Klimov | Geometrical approach to the discrete Wigner function[END_REF] to define them. The new result developed here is that these block-circulant matrices with circulant blocks together with F will solve the MUB problem in that case.

Let B k = b (k) 0 , b (k) 1 , ..., b (k) d-1
be orthonormal bases. Then in any given base, they are represented by unitary matrices B k . Taking B 0 to be the natural base, we have that b

(k) j • b (k ′ ) j ′ = (B * k B k ′ ) j,j ′
Thus in order that the bases B k be unbiased, we just need that all the unitary matrices B * k B k ′ , k = k ′ have matrix elements of modulus d -1/2 . Such matrices are known as unitary Hadamard Matrices ([9]).

THE SQUARE OF A PRIME

Let p be a prime number. One defines a primitive p-th root of unity :

ω = exp 2πi p
The Discrete Fourier Transform in C p is Thus it can be written as :

F p = 1 √ p       1 1 1 . . 1 1 ω ω 2 . . ω p-1 1 ω 2 ω 4 . . ω 2(p-1) . . . . . . 1 ω p-1 ω 2(p-1) . . ω (p-1)(p-1)       Definition 2.
C =     a 0 a 1 a 2 . . a d-1 a d-1 a 0 a 1 . . a d-2 . . . . . . a 1 a 2 a 3 . . a 0    
(iii) A diagonal and circulant matrix must be a multiple of the identity matrix 1l. (iv) A d 2 × d 2 matrix is said to be block-circulant if it is of the form

C = circ(C 0 , C 1 , ..., C d-1 )
where the C j are d × d matrices. (v) It is block-circulant with circulant blocks if furthermore the C j are circulant. (vi) A d × d matrix H is a unitary Hadamard matrix if

|H j,k | = d -1/2 , and d-1 k=0 H * j,k H k,l = δ j,l
We define the following p × p unitary matrices X = circ(0, 0, ..., 1)

Z = diag(1, ω, ..., ω p-1 )
They obey the ω-commutation rule :

Lemma 2.2 (i) X p = Z p = 1l (ii) ZX = ωXZ (iii) Furthemore one has F p XF * p = Z
(i) and (ii) are obvious. For a proof of (iii) see [START_REF] Davis | Circulant matrices[END_REF].

Proposition 2.3 Let C = circ(a 0 , ..., a p-1 ).

(i) One has

C = p-1 k=0 a k X p-k
(ii)The discrete Fourier transform diagonalizes the circulant matrices :

F p CF * p = diag(ã 0 , ..., ãp-1 ) where ãj = p-1 k=0 a k ω -jk (iii)
The set of circulant p × p matrices is a commutative algebra.

Proof :

F p CF * p = p-1 k=0 a k Z p-k But Z -k = diag(1, ω -k , ..., ω -k(p-1) ), hence (ii) follows. (iii) is a consequence of (i). Corollary 2.4 If the sequence {a k } k∈F d is such that |a k | = d -1/2 and |ã k | = 1
then C is a circulant unitary Hadamard matrix.

Proof : C is unitarily equivalent to an unitary matrix if

|ã k | = 1. Furthemore |a k | = d -1/2 ,
hence the result follows (see [START_REF] Combescure | Circulant matrices, Gauss sums and the Mutually Unbiased Bases[END_REF]).

The discrete Fourier transform in C p 2 is defined as follows

F = F p ⊗ F p (2.1)
It has the following important property (similar to the property that the discrete Fourier transform diagonalizes all circulant matrices) : Proposition 2.5 (i) F is an unitary Hadamard matrix. (ii) All block-circulant matrices C with circulant blocks are diagonalized by F :

F CF * = D where D is a p 2 × p 2 diagonal matrix.
For a proof of this result see [START_REF] Davis | Circulant matrices[END_REF].

We shall be interested in finding block-circulant with circulant blocks unitary matrices in C p 2 that are Hadamard matrices. An example is of course C ⊗ C ′ where C, C ′ are unitary circulant Hadamard matrices.

For p a prime number, denote by F p the field of residues modulo p. The corresponding Galois field GF (p 2 ) is defined as follows. For any p there exists an irreducible polynomial of degree two, with coefficients in F p so that if we denote by α a root of this polynomial,

GF (p 2 ) = {mα + n} m,n∈Fp
The product θ

• θ ′ ∈ GF (p 2 ) for θ, θ ′ ∈ GF (p 2
) is obtained using the irreducible polynomial which expresses α 2 in terms of α and 1.

The additive characters χ(θ) in GF (p 2 ) are defined as follows:

Definition 2.6 The additive characters on GF (p 2 ) are :

χ(θ) = exp 2iπ p trθ where trθ = θ + θ p Lemma 2.7 They satisfy : (i) χ(θ + θ ′ ) = χ(θ)χ(θ ′ ) (ii) One has : θ∈GF (p 2 ) χ(θ) = 0 (iii) θ ′ ∈GF (p 2 ) χ(θ • θ ′ ) = p 2 δ θ,0 (2.2) 
We take as natural basis in C p 2 the set of states labelled by θ ∈ GF (p 2 ), in the following order :

B ≡ {|0 , |α , |2α , ..., |1 , |1 + α , ..., |p -1 , ..., |p -1 + (p -1)α }
Labelled by θ ∈ GF (p 2 ) we define a set of unitary operators in C p 2 such that :

Definition 2.8 (i) The set of operators F ≡ {X θ } θ∈GF (p 2 ) obeys X θ |θ ′ = |θ + θ ′ , ∀θ ′ ∈ GF (p 2 ) (2.3) (ii) The set of diagonal operators F ′ ≡ {Z θ } θ∈GF (p 2 ) obeys Z θ |θ ′ = χ(θ • θ ′ )|θ , ∀θ ′ ∈ GF (p 2 ) (2.4)
They obey :

Proposition 2.9 (i) Z θ X θ ′ = χ(θ • θ ′ )X θ ′ Z θ (2.5) (ii)
The operators in F , F ′ obey the group commutative property :

X θ+θ ′ = X θ X θ ′ = X θ ′ X θ , Z θ+θ ′ = Z θ Z θ ′ = Z θ ′ Z θ (2.6) (iii) Z 0 = X 0 = 1l
Proof : Take any ϕ ∈ GF (p 2 ). Then

Z θ X θ ′ |ϕ = χ(θ • (θ ′ + ϕ))|θ ′ + ϕ = χ(θ • θ ′ )X θ ′ Z θ |ϕ = χ(θ • θ ′ )χ(θ • ϕ)|θ ′ + ϕ
We also have (ii) :

Z θ+θ ′ |ϕ = χ((θ + θ ′ ) • ϕ)|ϕ = χ(θ • ϕ)χ(θ ′ • ϕ)|ϕ = Z θ Z θ ′ |ϕ ⊓ ⊔ Theorem 2.10 (i) F = {X m ⊗ X n } m,n∈Fp
More precisely one has

X mα+n = X n ⊗ X m (2.7) 
(ii) All operators in F are represented by unitary block-circulant with circulant blocks p 2 × p 2 matrices.

(iii)

F ′ = {Z m ⊗ Z n } m,n∈Fp
(iv) All operators in F ′ are represented by diagonal p 2 × p 2 matrices. (v) For any θ ′ ∈ GF (p 2 ) there exists a θ ∈ GF (p 2 ) such that

F X θ ′ F * = Z θ (2.8)
Proof of (i) : It is enough to see that X α = 1l ⊗ X and X 1 = X ⊗ 1l since the other matrices X mα+n will be given by the chain rule :

X mα+n = X m α X n 1
But these are obviously block-circulant with circulant blocks matrices. One has for θ ′ = mα + n : 

F X mα+n F * = F X m α X n 1 F * = (F p ⊗ F p )(X n ⊗ X m )(F * p ⊗ F * p ) = Z n ⊗ Z m which is Z θ for some θ ∈ GF (p 2
F CF * = θ ′ ∈GF (p 2 ) λ θ ′ F X θ ′ F * = θ ′ ∈GF (p 2 ) λ θ ′ Z f (θ ′ )
which is a diagonal matrix.

To find the MUB's in dimension p 2 it is enough to exhibit a partition of the set of unitary operators :

E ≡ {Z θ X θ ′ } θ,θ ′ ∈GF (p 2 )
into a set of commutant families : We define

F 0 = F \ {1l}
One wants :

E = F 0 θ∈GF (p 2 ) C θ ∪ {1l}
The family C θ will be defined as follows :

Definition 2.12 Let for any θ ∈ GF (p 2 )

E θ = {Z θ ′ X θ•θ ′ } θ ′ ∈GF (p 2 ) Define C θ = E θ \ {1l} Proposition 2.13 (i) E 0 = F ′ (ii) E θ is a commuting family ∀θ ∈ GF (p 2 ). (iii) E = F 0 θ∈GF (p 2 ) C θ ∪ {1l} is a partition of E. Proof : (i) is obvious. (ii) ∀θ ′ , θ ′′ ∈ GF (p 2 ) one has Z θ ′ X θ•θ ′ Z θ ′′ X θ ′′ •θ = χ(-θ • θ ′ • θ ′′ )Z θ ′ +θ ′′ X θ•(θ ′ +θ ′′ ) = Z θ ′′ X θ•θ ′′ Z θ ′ X θ•θ ′′ (iii) C θ and F 0 contain p -1 elements. The classes C θ for different θ are disjoint. Therefore θ∈GF (p 2 )
C θ contains p(p -1) elements. One has :

p -1 + p(p -1) + 1 = p 2
which is the total number of elements in E.

Since all the unitary operators in C θ commute, they can be diagonalized by the same operator R θ . In the above cited work [START_REF] Klimov | Geometrical approach to the discrete Wigner function[END_REF] they are defined as "rotation operators". In fact we shall see that they are represented in the basis B by block-circulant with circulant block matrices. The first main result of this paper is the following : Theorem 2.14 (i) There exists a set {R θ } θ∈GF (p 2 ) of unitary operators which diagonalize all the operators of the class C θ , ∀θ ∈ GF (p 2 ). (ii) The operators R θ for θ = 0 are represented in the basis B by block-circulant with circulant block matrices which are unitary Hadamard matrices. (iii) For p ≥ 3 they obey the group law :

R θ+θ ′ = R θ R θ ′ , ∀θ, θ ′ ∈ GF (p 2 ) Proof : It is enough to show that for any θ ∈ GF (p 2 )\ {0} the R θ can be expanded as R θ = θ ′ ∈GF (p 2 ) λ (θ) θ ′ X θ ′ (2.9)
since they will automatically represented in the basis B by block-circulant with circulant blocks matrices. One has to check that

R -1 θ Z θ ′ X θ•θ ′ R θ = µ θ,θ ′ Z θ ′ , ∀θ ′ ∈ GF (p 2 )
Since the operators Z θ ′ X θ•θ ′ are unitary, the µ θ,θ ′ are necessarily complex numbers of modulus one. But

Z θ ′ X θ•θ ′ θ ′′ λ (θ) θ ′′ X θ ′′ = Z θ ′ θ ′′ λ (θ) θ ′′ X θ ′′ +θ•θ ′ = µ θ,θ ′ θ ′′′ λ (θ) θ ′′′ X θ ′′′ Z θ ′ = µ θ,θ ′ Z θ ′ θ ′′′ χ(-θ ′ •θ ′′′ )λ (θ) θ ′′′ X θ ′′′
Equating the coefficients of X θ ′′′ in both sides we get

λ (θ) θ ′′′ -θ•θ ′ = µ θ,θ ′ χ(-θ ′ • θ ′′′ )λ (θ) θ ′′′
Taking θ ′′′ = 0 and assuming that λ

(θ) 0 = p -1 , ∀θ ∈ GF (p 2 ) we get λ (θ) -θ•θ ′ = p -1 µ θ,θ ′ or equivalently, since θ = 0 λ (θ) θ ′ = p -1 µ θ,-θ -1 •θ ′ This proves that all the λ (θ) θ ′ must be of modulus p -1 .
Therefore since all the X θ are represented by unitary matrices that have non-zero elements (actually 1) where all the others have zeros, and since every matrix element of R θ is of the form λ (θ) θ ′ for some θ ′ ∈ GF (p 2 ), this proves that all the R θ are represented by Hadamard matrices. Now we have to check the compatibility condition. We reexpress it in terms of µ θ,θ ′ . Supressing the index θ in the µ θ,θ ′ for simplicity, we need to have ∀θ ′ , θ ′′ ∈ GF (p 2 )

µ -θ -1 (θ ′′ -θθ ′ ) = µ θ ′ µ -θ -1 θ ′′ χ(-θ ′ • θ ′′ ) or in other terms µ θ ′ +θ ′′ = µ θ ′ µ θ ′′ χ(θ • θ ′ • θ ′′ ) (2.10)
But this results easily from the group property of the X θ 's and Z θ 's (2.3, 2.4) : [START_REF] Klimov | Geometrical approach to the discrete Wigner function[END_REF] it is shown that for p ≥ 3 the solution of (2.10) with µ θ,0 = 1 is

R -1 θ Z θ ′ +θ ′′ X θ•(θ ′ +θ ′′ ) R θ = χ(θθ ′ θ ′′ )R -1 θ Z θ ′ X θθ ′ R θ R -1 θ Z θ ′′ X θθ ′′ R θ = χ(θθ ′ θ ′′ )µ θ,θ ′ µ θ,θ ′′ Z θ ′ +θ ′′ In
µ θ,θ ′ = χ(2 -1 θ • θ ′2 ) (2.11)
Thus we deduce that λ (θ)

θ ′ = p -1 χ(2 -1 θ -1 • (θ ′ ) 2 ) (2.12)
We now prove the unitarity of R θ . For θ = 0 this is obvious since R 0 = 1l. It is enough to check that for θ = 0 one has :

θ ′ ∈GF (p 2 ) (λ (θ) θ ′ ) * λ (θ) θ ′ +θ ′′ = δ θ ′′ ,0
One has :

θ ′ ∈GF (p 2 ) (λ (θ) θ ′ ) * λ (θ) θ ′ +θ ′′ = 1 p 2 θ ′ ∈GF (p 2 ) µ * θ,-θ -1 •θ ′ µ θ,-θ -1 •(θ ′ +θ ′′ ) = 1 p 2 θ ′ ∈GF (p 2 ) |µ θ,-θ -1 •θ ′ | 2 µ θ,-θ -1 •θ ′′ χ(θ -1 θ ′ θ ′′ ) = µ θ,-θ -1 •θ ′′ 1 p 2 θ ′ ∈GF (p 2 ) χ(θ -1 θ ′ θ ′′ ) = δ θ ′′ ,0
where we have used (2.10) and (2.2), together with the fact that θ -1 • θ ′′ = 0 implies θ ′′ = 0 due to the field property of GF (p 2 ). Thus one has [START_REF] Klimov | Geometrical approach to the discrete Wigner function[END_REF]. For p = 2 it has to be suitably modified as shown in [START_REF] Klimov | Geometrical approach to the discrete Wigner function[END_REF] (see remark below). Let us see how it works for p ≥ 3 :

R -1 θ = R * θ , ∀θ ∈ GF (p 2 ) (iii) The group law R θ+θ ′ = R θ R θ ′ for p ≥ 3 has been established in
(R * 1 ) n (R * α ) m Z θ ′ X (n+mα)•θ ′ R n 1 R m α = (R * 1 ) n (R * α ) m Z θ ′ X θ ′ •mα R m α X nθ ′ R n 1 = µ(mα, θ ′ )(R * 1 ) n Z θ ′ X nθ ′ R n 1 = µ mα,θ ′ µ n,θ ′ Z θ ′ = µ mα+n,θ ′ Z θ ′ holds for p ≥ 3 since µ mα+n,θ ′ = µ mα,θ ′ µ n,θ ′ , ∀θ ′ ∈ GF (p 2 )
which easily follows from (2.11) for p ≥ 3, and the additivity of the characters. For any θ ∈ GF (p n ) the operators X θ , Z θ , R θ are defined in [START_REF] Klimov | Geometrical approach to the discrete Wigner function[END_REF] and the R θ obey a group law (resp. a modified group law) if p ≥ 3 (resp. p = 2). As previously we have X θ ∈ X k 1 ⊗ X k 2 ⊗ ... ⊗ X kn , with k j ∈ F p and

Z θ ∈ Z k 1 ⊗ Z k 2 ⊗ ... ⊗ Z kn k i ∈Fp and R θ = θ ′ ∈GF (p n ) λ (θ) θ ′ X θ ′ with λ (θ) θ ′ of modulus 1 √ p n . The λ (θ) 
θ ′ are given for p ≥ 3 similarly to (2.12) by λ (θ)

θ ′ = p -n/2 χ(2 -1 θ -1 (θ ′ ) 2 ) (3.13)
All the results of the previous section are easily generalized. 4 Weil sums for d = p n , p ≥ 3

The Weil sums in dimension p n are the equivalent of the Gauss sums for d = p (p prime number). The characters χ(θ), θ ∈ GF (p n ) replace the powers ω n , n ∈ F p . Usually in the literature (see for example [START_REF] Wootters | Optimal State-Determination by Mutually Unbiased Measurements[END_REF]), the Weil sums properties are used to solve the MUB problem. Here, as in [START_REF] Combescure | Circulant matrices, Gauss sums and the Mutually Unbiased Bases[END_REF], we do the converse. In the previous sections we have constructed the d + 1 bases, and we shall deduce the Weil sums properties from this construction. 

  power n, with coefficients in F p . Thus elements of the Galois field GF (p n ) are of the form i where c i ∈ F p and α is a root of the characteristic polynomial. The characters areχ(θ) = exp 2iπ p tr(θ)where tr(θ) = θ + θ p + ... + θ p n-1

Theorem 3 . 1

 31 The unitary Hadamard matrices F, R θ for θ ∈ GF (p n ) define a set of p n + 1 MUB's in C p n .

Theorem 4 . 1

 41 Let p ≥ 3. Then for any θ ∈ GF (p n )\ {0} and any θ ′ ∈ GF (p n ) we haveθ ′′ ∈GF (p n ) χ(θ • (θ ′′ ) 2 + θ ′ • θ ′′ ) = √ p n (4.14)

1

  Consider a d-periodic sequence a 0 , a 1 , ..., a d-1 , a 0 , a 1 , ....

	(i) A d × d matrix D is diagonal and called diag(a 0 , ..., a d-1 ) if its matrix elements satisfy
	D j,k = a k δ j,k , ∀j, k = 0, 1, ..., d -1 (ii) A d × d matrix C is called circulant and denoted C = circ(a 0 , ..., a d-1 ) if its matrix elements satisfy
	C j,k = a (d-1)j+k

  Proposition 2.11 All block-circulant matrices with circulant blocks commute and are diagonalized by F . Proof : It follows from (2.8) that if C = θ ′ λ θ ′ X θ ′ is a block-circulant matrix with circulant blocks, one has

	One recalls a famous result [8] :	). ⊓ ⊔

Remark 2.15 For p = 2 the group law is not satisfied (see [START_REF] Klimov | Geometrical approach to the discrete Wigner function[END_REF]). One has instead a very similar property (modified group law ) :

The second main result of this paper is the following :

Proof : Each R θ is represented by an unitary Hadamard matrix, and so is F . Due to the group property,

with D θ an unitary diagonal matrix, since F diagonalizes all block-circulant matrices with circulant blocks. The product of D θ with the unitary Hadamard matrix F * is obviously an unitary Hadamard matrix.

In the case of dimension 2 2 one has instead of the group property that

Since X θ ′′ has exactly one non-vanishing element ( 1) on each line and column, the product R θ ′ -θ X θ ′′ is indeed an unitary Hadamard matrix. ⊓ ⊔

THE CASE d = p n

The case d = p n with general power n can be treated similarly. There is a notion of block-circulant matrices with block-circulant blocks and building block p×p matrices which are circulant which generalizes the case n = 2. These are diagonalized by the Discrete Fourier Transform F in C p n which is

(n times) which is obviously an unitary Hadamard matrix. The Galois field GF (p n ) is defined through the irreducible polynomial which is of Proof : The matrix elements of a given row in F are of the form

the matrix elements of the first column of the matrices R θ , θ = 0 are of the form

where we have used (3.13). But the elements (2θ) -1 when θ ∈ GF (p n )\ {0} span all θ 1 ∈ GF (p n )\ {0}. We have established that the matrix F R θ is Hadamard. This implies that all its matrix elements have modulus p -n/2 . All matrix elements of the first column of F R θ are thus of the form

with θ 1 = (2θ) -1 . Writing that its modulus is p -n/2 yields equ. (4.14).