. Let us summarize here the essential ingredients. We will use here quantum mechanics notations. Classical approaches can immediately be defined as a classical limit of the
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Abstract. In this paper, we present the issues we consider as essential as far as the statistical mechanics of finite systems is concerned. In particular, we emphasis our present understanding of phase transitions in the framework of information theory. Information theory provides a thermodynamically-consistent treatment of finite, open, transient and expanding systems which are difficult problems in approaches using standard statistical ensembles. As an example, we analyze is the problem of boundary conditions, which in the framework of information theory must also be treated statistically. We recall that out of the thermodynamical limit the different ensembles are not equivalent and in particular they may lead to dramatically different equation of states, in the region of a first order phase transition. We recall the recent progresses achieved in the understanding of first-order phase transition in finite systems: the equivalence between the Yang-Lee theorem and the occurrence of bimodalities in the intensive ensemble and the presence of inverted curvatures of the thermodynamic potential of the associated extensive ensemble. We come back to the concept of order parameters and to the role of constraints on order parameters in order to predict the expected signature of first-order phase transition: in absence of any constraint (intensive ensemble) bimobality of the event distribution is expected while an inverted curvature of the thermodynamic potential is expected at a fixe value of the order parameter (extensive ensemble) in between the phases (coexistence zone). We stress that this discussion is not restricted to the possible occurrence of negative specific heat, but can also include negative compressibility's and negative susceptibilities, and in fact any curvature anomaly of the thermodynamic potential.

INTRODUCTION: UNUSUAL MESOSCOPIC WORLDS

Everybody knows that when a liquid is heated, its temperature increases until the moment when it starts to boil. The increase in temperature then stops, all heat being used to transform the liquid into vapor. What is the microscopic origin of such a strange behavior? Does a liquid drop containing only few molecules behave the same? Recent experimental and theoretical developments seem to indicate that at the elementary level of very small systems, this anomaly appears in an even more astonishing way: during the change of state -for example from liquid to gas -the system cools whereas it is heated, i.e. its temperature decreases while its energy increases. This phenomenon is only one example of the fact that small systems when heated or compressed do not behave like the macroscopic systems we are used to. This paper presents a review of key issues about the thermodynamics of small systems in particular in presence of phase transition. In many different fields of physics, finite systems properties, non extensive thermodynamics, and phase transitions out of the thermodynamic limit are strongly debated issues(see for example [START_REF] Dauxois | Dynamics and Thermodynamicsof Systems with Long Range Interactions[END_REF]). This may be the case of non saturating forces such as the gravitational [2,3,4,5] or the Coulombic forces. The system may be too small, as in the case of clusters and nuclei [6,7,8,9]. The physics of finite systems is even more complicated since often they are not only small but also open and transient. This implies that the various concepts of thermodynamics and statistical mechanics [START_REF] Landau | Statistical Physics[END_REF][START_REF] Huang | Statistical Mechanics[END_REF][START_REF] Tolman | Principles of statistical mechanics[END_REF][START_REF] Rasetti | Modern methods in statistical mechanics[END_REF] have to be completed and revisited [START_REF] Dauxois | Dynamics and Thermodynamicsof Systems with Long Range Interactions[END_REF][START_REF] Jaynes | Information theory and statistical mechanics[END_REF][START_REF] Gross | Microcanonical thermodynamics:phase transitions in finite systems[END_REF][START_REF] Balian | From microphysics to macrophysics[END_REF][START_REF] Hill | Thermodynamics of small systems[END_REF][START_REF] Abe | Non extensivestatistical mechanics and its applications[END_REF][START_REF] Ph | topical volume "Dynamics and thermodynamics with nuclear degrees of freedom[END_REF].

A consistent framework to address those issues is the information theory approach to statistical mechanics [START_REF] Jaynes | Information theory and statistical mechanics[END_REF][START_REF] Balian | From microphysics to macrophysics[END_REF]. This formalism allows to address in a consistent way the statistical mechanics of open systems evolving in time, independent of their interaction range and number of constituents. After a short summary of the statistical physics concepts, we will first address the essential question of boundary conditions, which cannot be avoided when dealing with finite systems with continuum states. Recalling that the exact knowledge of a boundary requires an infinite information, we will show that a consistent treatment of unbound systems can still be achieved if boundary conditions are treated statistically, leading to new statistical ensembles. Then we will recall that for finite systems the different ensembles are not equivalent [START_REF] Abe | Non extensivestatistical mechanics and its applications[END_REF][START_REF] Bouchet | [END_REF]22,23,24] In particular, two ensembles which put different constraints on the fluctuations of the order parameter lead to qualitatively different equations of state close to a first order phase transition [23].

As an example, when energy is the order parameter, the microcanonical (at fixed energy) heat capacity diverges to become negative while the canonical (at fixed temperature) one remains always positive and finite [25,26,27,28,29,30,31,32,33,34,35,36,37]. If the magnetization is the order parameter, it is the magnetic susceptibility, or if the volume (or density) is the order parameter, it is the compressibility, or if the number of particle is the order parameter, it is the chemical susceptibility which are expected to present a negative branch in between two divergences in the fixed order parameter ensemble while in the ensemble in which the order parameter has only a mean value constrained by a Lagrange intensive parameter (magnetic field or pressure or chemical potential) should remain positive. This difference between ensembles can be of primordial importance for microscopic and mesoscopic systems undergoing a phase transition. Such systems are now studied in many fields of physics, from Bose condensates [START_REF] Pethick | Bose Einstein condensation in dilute gases[END_REF][START_REF] Minguzzi | [END_REF] to the quark-gluon plasma [40,41], from cluster melting [6,42] to nuclear fragmentation [7]. Moreover, such inequivalences may survive at the infinite size limit for systems involving long range forces such as self-gravitating objects [3,4,5].

Then, going deeper insight the formalism, we will summarize the mathematical equivalence between the Yang-Lee approach [43] through the zeroes of the partition sum in the space of complex intensive parameters associated with an order parameter, the bimodality of the order parameter distribution in this intensive ensemble, and the anomalous (inverted) curvature of the thermodynamic potential of the ensemble where the order parameter is fixed [44,45,46]. The best documented example in the literature is the bimodality of the canonical energy distribution and its equivalence to negative microcanonical heat capacity [47,48,49]. As far as the time evolution problem is concerned, we stress the need to take into account time odd constraint in the statistical picture. Finally, we conclude about the important challenges related finite-systems thermodynamics.

STATISTICAL MECHANICS DESCRIPTION OF FINITE SYSTEM

When discussing thermodynamics, people often implicitly refer to macroscopic systems. Indeed, when it is possible to take the thermodynamical limit of infinite systems the statistical physics simplifies since all statistical ensembles are equivalent. However, when this limit is not taken because it does not exist for the considered system (e.g. self-gravitating systems) or because the considered system is simply finite, one may think that the thermodynamics concept are becoming vague or even ill-defined. Are concepts like equilibrium, temperature, pressure etc. applicable to objects as tiny as nuclei. How large must be a system for a temperature to be defined? These questions originates from a confusion between a possible uncertainty about the statistical ensemble corresponding to the studied system and a fundamental problem on thermodynamical concepts. Only the former is a real issue. Indeed, when a statistical ensemble is defined all thermodynamical quantities are clearly mathematically defined. At the basis of this discussion, the concept of equilibrium is also well defined since in the Gibbs spirit it is nothing but the ensemble of events maximizing the entropy under the considered constraints. Then, a concept like the temperature is well define the problem being that it is not the same definition in the various ensemble. then the question is what is the physical meaning of thermodynamic quantities -say, temperature -evaluated through different ensembles? is there a "'correct"' ensemble to be used?

This discussion becomes even stronger when phase transitions are concerned. Indeed, when the thermodynamical limit can be taken phase transitions are well defined in all text book as non-analytical properties of thermodynamical potentials. However, this anomalous behavior being generated when taking the limit of infinite systems this definition of phase transition cannot be operational for finite systems. However, we all know finite systems can change state or shape, a typical example being the case of isomerization; how many degrees of freedom do we need in order to call this change of state a phase transition?

To start answering those questions about the thermodynamics concepts applied to finite systems we can first look at simple systems. Let us consider a system that can exist in two single microstates of different energy (a single spin in a magnetic field, a two-level atom in a bath of radiation...) The system being much smaller than its environment, let us consider the case for which the interaction between system and environment can be neglected and we have no reason to believe that the environment will be in any specific state. Then the distribution of the system microstates is simply given by the number of states of the environment

p (n) = W (E t -e n )/(W (E t -e 1 ) +W (E t -e 2 )) ∝ exp (S(E t -e n )) (1) 
where E t is the total energy (system + environment) and S = logW is the (microcanonical) entropy associated to the environment. Since e n ≪ E t , a Taylor expansion of the entropy gives

S(E t -e n ) ≈ S(E t ) -e n ∂ S ∂ E (E t ) ; p (n) ∝ exp (-β e n ) (2) 
where we have introduce β = ∂ S∂ E, the temperature of the environment. This very simple textbook exercise gives us a number of interesting information:

• thermodynamic concepts like temperature can be defined for systems having an arbitrary number of degrees of freedom (the minimum being 2 levels) • Boltzmann-Gibbs statistics naturally emerges as soon as we observe a limited information constructed from a reduced number of degrees of freedom

If we now take into account a slightly more complicated system with energy states associated to a degeneracy w(e), the energy distribution will be modified to

p(e) = w(e)W (E t -e) ∑ n w(e n )W (E t -e n ) ≈ w(e)exp (-β e) Z β (3) 
where the canonical approximation is still correct if the system is associated to a much smaller number of degrees of freedom than its environment. Eq.( 3) gives for instance the energy distribution of a thermometer loosely coupled to an otherwise isolated system. Temperature is defined as the response of the thermometer in the most probable energy state e; if we maximize the distribution (3) we get, assuming that energy can be treated as a continuous variable

∂ logW ∂ E | E t -e = ∂ log w ∂ E | e (4) 
We then learn that the quantity shared at the most probable energy partition is the microcanonical temperature. This shows that there is no ambiguity in the definition of temperature (and any other thermodynamic quantity) when dealing with small systems.

It is important to note that eq.( 3) is not limited to the observation of energy, but can apply to the distribution of any generic observable A = Â . We can then expect that canonical-like ensembles (i.e. ensembles where distributions are given by Boltzmann factors) will arise each time that we are isolating a small number of degrees of freedom from a more complex system. More generally, we will recall in the next section that a statistical description is in order each time that the system is complex enough to have a large number of microstates associated to a given set of relevant observables. If the relevant observables are recognized, equilibrium is therefore a very generic concept of minimum information theory. The proper statistical ensemble i.e. the relevant observables depend on the dynamics of the considered system and the way it is prepared. 

Liouville Space

Such a "macro-state" can be represented by its density matrix

D = ∑ (n) Ψ (n) p (n) Ψ (n) , (5) 
where the states ("micro-states", or "partitions", or "replicas", or simply "events") Ψ (n) pertain to the considered Fock or Hilbert space. p (n) is the occurrence probability of the event Ψ (n) . The result of the measurement of an observable  is

<  > D= Tr  D, (6) 
where Tr means the trace over the quantum Fock or Hilbert space of states {|Ψ }. In the space of Hermitian matrices, the trace provides a scalar product [51, 52]

<< Â|| D >>= Tr  D. ( 7 
)
It is then possible to define an orthonormal basis of Hermitian operators { Ôl } in the observables space, and to interpret the measurement < Ôl > D as a coordinate of the density matrix D (see fig. 1). The size of the observables space is the square of the dimension of the Hilbert or Fock space, which are in general infinite; therefore in order to describe the system, one is forced to consider a reduced set of (collective) observables { Âℓ } which are supposed to contained the relevant information.

Maximum Entropy State and Generilized Gibbs Equilibrium

The Gibbs formulation of statistical mechanics can then be derived if the least biased"macro-state" is assumed to be given by the maximization of the entropy 1

S[ D] = -Tr D log D, (8) 
which is nothing but the opposite of the Shannon information [START_REF] Balian | From microphysics to macrophysics[END_REF][START_REF] Jaynes | Information theory and statistical mechanics[END_REF]. It is important to notice that this formalism can be generalized introducing alternative entropies such as the Tsallis entropy. Eq.( 8) is a definition of entropy valid for any density matrix which coincides with the standard thermodynamic entropy only after maximization, see eq. ( 13) below.

If the system is characterized by L (relevant) observables (or "extensive" variables 2 ), Â = { Âℓ }, known in average < Âℓ >= Tr D Âℓ , the variation of the density matrix is not free. The standard way to solve this maximization of the entropy under constraints is to maximize with no constraints the constrained entropy

S ′ = S -∑ ℓ λ ℓ < Âℓ >, (9) 
where the λ = {λ ℓ } are L Lagrange multipliers associated with the L constraints < Âℓ >.

A maximization of the entropy under constraints gives a prediction for the minimum biased density matrix (or "'event distribution"') which can be viewed as a generalization of Gibbs equilibrium:

Dλ = 1 Z λ exp -λ . Â, (10) 
where λ . Â = ∑ L ℓ=1 λ ℓ Âℓ and where Z λ is the associated partition sum insuring the normalization of Dλ :

Z λ = Trexp -λ . Â (11) 
Using this definition, we can compute the associated equations of state (EoS):

< Âℓ >= ∂ λ ℓ log Z λ . (12) 
The entropy associated with Dλ is: 1 In this article we implicitly use units such that the Boltzmann constant k = 1. 2 In this paper the word "extensive" is used in the general sense of resulting from an observation, i.e. the < Âℓ >, and not in the restricted sense of additive variable. Intensive variables are conjugate to extensive variables i.e. Lagrange multipliers λ ℓ imposing the average value of the associated extensive variable.

S[ Dλ

] = log Z λ + ∑ ℓ λ ℓ < Âℓ >, (13) 
which has the structure of a Legendre transform between the entropy and the thermodynamic potential.

Ergodicity and Microcanonical Ensemble

To interpret the Gibbs ensemble as resulting from the contact with a reservoir or to guarantee the stationarity of eq.( 10), it is often assumed that the observables Âℓ are conserved quantities such as the energy Ĥ, the particle (or charge) numbers Ni or the angular momentum L [START_REF] Gross | topical volume "Dynamics and thermodynamics with nuclear degrees of freedom[END_REF]. However, there is no formal reason to limit the state variables to constants of motion. Even more, the introduction of not conserved quantities might be a way to take into account some non ergodic aspects. Indeed, an additional constraint reduces the entropy, limiting the populated phase space or modifying the event distribution. This point will be developed at length in the next sections.

It should be noticed that microcanonical thermodynamics also corresponds to a maximization of the entropy (8) in a fixed energy subspace. In this case the maximum of the Shannon entropy can be identified with the Boltzmann entropy

max (S) = logW (E) , (14) 
where W is the total state density with the energy E. The microcanonical case can also be seen as a particular Gibbs equilibrium [START_REF] Landau | Statistical Physics[END_REF] for which both the energy and its fluctuation are constrained. This so called Gaussian ensemble in fact interpolates between the canonical and microcanonical ensemble depending upon the constrain on the energy fluctuation [25,53], and the same procedure can be applied to any conservation law. In this sense the Gibbs formulation (10) can be considered as the most general. The ensemble of extensive variables constrained exactly or in average completely defines the statistical ensemble. This means that many different ensembles can be defined, and the most appropriate description of a finite system may be different from the standard microcanonical, canonical or grand-canonical.

Problem of the Finite Size

Moreover,the microcanonical, canonical or grand-canonical ensembles require the definition of boundary condition. As discussed below, this definition is an infinite information incompatible with the Gibbs ideas. One can rather introduce boundaries through additionalconstraints Âℓ taking advantage of the general formalism above. It should be noticed that the definition of statistical ensemble forwhich the boundaries are defined using constraints such as < r2 > or more complex moments of the matter distribution can also be used for opensystems considered at a finite time as discussed in reference [START_REF] Gulminelli | Proc. VI Latin-American Symp. on Nucl. Phys. and Applic[END_REF][START_REF] Gulminelli | [END_REF]. FIGURE 2. Illustration of three different ensembles for a finite system: a system in a cubic box with a fixed volume which can be seen as an isochore ensemble; a system constrained by its average size playing the role of a confining pressure, which can be therefore called an isobar ensemble; and a quadrupole deformation.

Figure 2 illustrates this diversity of statistical ensembles concerning the size observables of a finite system with three cases: a fixed volume with a specific shape, a size known only in average and a quadrupole deformation. Many other ensembles can be defined using higher multipoles as well as other observables, including time odd quantities such as angular momentum l = r ∧ p or radial flow r • p. Such constraints are an explicit way to describe statistical ensembles associated with time evolution [START_REF] Gulminelli | Proc. VI Latin-American Symp. on Nucl. Phys. and Applic[END_REF][START_REF] Gulminelli | [END_REF].

Finite size and boundary conditions

The above discussion stresses the important problem when considering finite size systems which is the need to define boundary conditions to define the finite size. This is only a mathematical detail for "condensed" systems, i.e. finite size self-bound systems in a much larger container, or particles trapped in an external confining potential [56]. In the other cases, finite size systems can only be defined when proper boundary conditions are specified. Conversely to the thermodynamic limit which, when it exists, clearly isolates bulk properties independent of the actual shape of the container, finite size systems explicitly depend on boundary conditions.

From a mathematical point of view the system Hamiltonian Ĥ is not defined until boundary conditions are specified. For example for a particle problem a boundary can be the definition of a surface given by the implicit equation σ (x, y, z) = 0. (see figure 3). Since the Hamiltonian Ĥσ explicitly contains the boundary, the entropy S σ also directly depends upon the definition of this boundary, according to FIGURE 3. Schematic representation of the boundary condition around a nucleus computed with a mean-field approach as a surface defined by the implicit equation σ (x, y, z) = 0 which can be any shape.

S σ (E) = log trδ (E -Ĥσ ). (15) 
The first conclusion is then that for a finite system the microcanonical ensemble is illdefined and so the thermodynamic properties of finite systems directly depend upon the boundary conditions, i.e. the size and shape and all small details of the considered container.

This brings an even more severe conceptual problem; the knowledge of the boundary requires an infinite information: the values of the function σ defining the actual surface in each space point. This is easily seen introducing the projector Pσ over the surface and its exterior. Indeed the boundary conditions applied to each microstate Pσ Ψ (n) = 0 [START_REF] Balian | From microphysics to macrophysics[END_REF] is exactly equivalent to the extra constraint

< Pσ >= Tr D Pσ = 0 . ( 17 
)
If we note again  the observables characterizing a given equilibrium, the density matrix including the boundary condition constraints reads

Dλσ = 1 Z λ σ exp -λ . Â -b Pσ ( 18 
)
which shows that the thermodynamics of the system does not only depend on the Lagrange multiplier b, but on the whole surface. For the very same global features such as the same average particle density or energy, we will have as many different thermodynamics as boundary conditions. More important, to specify the density matrix, the projector Pσ has to be exactly known and this is in fact impossible in actual experiments. Moreover, the nature of Pσ is intrinsically different from the usual global observables Âℓ . At variance with the Âℓ , Pσ is a many-body operator which does not correspond to any physical measurable observable. The knowledge of Pσ requires the exact knowledge of each point of the boundary surface while no or few parameters are sufficient to define the Âℓ . If we consider statistical physics as founded by the concept of minimum information [START_REF] Jaynes | Information theory and statistical mechanics[END_REF][START_REF] Balian | From microphysics to macrophysics[END_REF], it is incoherent to introduce an exact knowledge of the boundary.

One should rather apply the minimum information concept also to the boundaries, for example introducing a hierarchy of collective observables which define the size and shape of the considered system. This amounts to introduce statistical ensembles treating the boundaries as additional extensive variables fixed by conjugated Lagrange parameters [START_REF] Gulminelli | [END_REF]. If for instance we consider that the relevant size information for an unbound system is its global square radius < R2 >, the adequate constraint

-λ R2 ( 19 
)
should be introduced in the statistical treatment while all boundary conditions should be removed to infinity.

MAXIMUM ENTROPY STATES

As we have discussed in the previous sections, a statistical treatment is best suited whenever a very large number of microstates exists for a given set of observables. An ensemble of events coming from similary prepared initial systems and/or selected by sorting the final states using experimental observations always constitutes a statistical ensemble. Indeed, if we are able to recognize all the relevant degrees of freedom (i.e. the observations with a strong information content) the ensemble of replicas is by construction a statistical ensemble, i.e. a Gibbs equilibrium in the extended sense of section above. Indeed, if we are able to show that the observed ensemble deviates from the maximum entropy state this means that at least one observable give a different observation in the actual state and in the maximum entropy state. Then, one should introduce this observable as a relevant information and modify a maximum entropy state. Then, iteratively, one is extracting the relevant observable space and at the end of the process the actual state is then identical to the maximum entropy state. Of course nothing is preventing that at the end of the process the whole Liouville space is needed as a relevant information space. Then the maximum entropy state is nothing but a complete description of any state and in this case the statistical mechanics tools are not useful. 3However the whole idea behind the second principle of thermodynamics and the Gibbs ansatz and the information theory is that in most physical system the relevant information is only a small subset of the possible observations. The fundamental problem is then the recognition of the relevant observables. A generic procedure is to make assumptions for the relevant information and then to compare the maximum entropy state prediction for other observables with the actual observations. Any important observation signals a missing part of the information to be possibly introduced as a constraint correcting the observed deviation.

The theoretical justification of this minimal statistical picture comes from the fact that complex classical systems subject to a non linear dynamics are generally mixing [START_REF] Mc Cauley | Chaos dynamics and fractals[END_REF]. In such a case the statistical ensemble is created by the propagation in time of initial fluctuations. The averages are averages over the initial conditions and the mixing character of the dynamics (if it can be proved) insures that the initial fluctuations are amplified in such a way that the ensemble of events covers the whole phase space uniformly. 4 For a classical dynamics which conserves the phase space volume of the ensemble of events, this means that the initial distribution is elongated and folded in such away that it gets close to any point of the phase space (the so-called baker transformation). This classical picture can be replaced in the quantum case by the idea of projection of irrelevant correlations [52]. The phase space can be described as a subspace of all possible observations. The regular quantum dynamics in the full space is transformed into a complex dynamics by the projection in the relevant observation sub-space. Then two different realizations corresponding to the same projection, i.e. the same point in the relevant space, may differ in the full space (and consequently in their successive evolution) because of the unobserved correlations. This ensemble of correlations may lead to a statistical ensemble of realizations after a finite time. This phenomenon is often described introducing stochastic dynamics, i.e.assuming that the unobserved part of the dynamics which is averaged over is a random process [61,62].

Distance to equilibrium

An important point to be discussed is the justification of the statistical description. As we have just mentioned, the applicability of a statistical picture is in most cases an hypothesis (or a principle like in the thermodynamics second law). Therefore, the equilibrium hypothesis should be a posteriori controlled. Different properties can provide tests of equilibration such as • the comparison with statistical models, • the consistency of thermodynamical quantities, namely the compatibility of the different intensive variables measurements (e.g. of the different thermometers) or the fulfillment of thermodynamic relations between averages and fluctuations (e.g.

σ 2 A ℓ = ∂ 2 log Z λ /∂ λ 2 ℓ = -∂ < A ℓ > /∂ λ ℓ since < A ℓ >= -∂ log Z λ /∂ λ ℓ )
• the memory loss or the independence of the results on the preparation method of the considered ensemble.

However, it should be stressed that the real question is not whether the system is at equilibrium, but rather how far is it from a given equilibrium? Indeed, equilibrium is a theoretical abstraction which cannot be achieved in the real world 5 . To answer this question we should define a distance. The first idea could be to use the Liouville metric

d 2 eq = tr D -Dλ 2 ( 20 
)
between the actual ensemble characterized by the density matrix D, and the equilibrium one Dλ computed for the same collective variables < A ℓ > . This is a nice theoretical tool, but a rather difficult definition as far as experiments are concerned.

Another possibility is to introduce entropy as a metric [61] 

d S = S[ D] -S[ Dλ ] /S[ Dλ ] (21) 
This is a way to measure how far the system is from the maximum entropy state (or in other words to measure how much information on the actual system is included in the collective variables {< A ℓ >} and how much is out of the considered equilibrium looking at (1d S ). This is a more physical distance but again it is difficult to implement in real experimental situations.

A more practical measurement of the distance to equilibrium is to focus on the information used to deduce physical properties. Since the information about the actual system is contained in the observations < Ôi >, the natural space to introduce this distance is the observation space. This is a formally well defined problem since considering Tr Ôi Ô j as the scalar product between observables, the observation space has a well defined topology. Then, when orthogonal observables are considered 6 , the distance to equilibrium is simply

d i = < Ôi > -< Ôi > eq ( 22 
)
Of course the considered observables should not be the one used to describe the statistical equilibrium. A typical example is given by the difference between the measured fluctuations σ 2 A ℓ =< A 2 ℓ > -< A ℓ > 2 and the expected ones σ 2 A ℓ = -∂ < A ℓ > /∂ λ ℓ in the ensemble controlled by the λ ℓ .

FINITE SYSTEMS AND ENSEMBLE INEQUIVALENCE

The Van Hove theorem [63] is a fundamental theorem in statistical mechanics, since it guarantees the equivalence between different statistical ensembles at the thermodynamic limit of systems presenting only finite range interactions. In finite systems, this equivalence can be strongly violated in particular in first order phase transitions regions. This violation can persist up to the thermodynamic limit in the case of long range forces. The non-equivalence of statistical ensembles has important conceptual consequences. It implies that the value of thermodynamic variables for the very same system depends on the type of experiment which is performed (i.e. on the ensemble of constraints which are put on the system), contrary to the standard thermodynamic viewpoint that water heated in a kettle is the same as water put in an oven at the same temperature. Ensemble inequivalence is the subject of an abundant literature (see for example refs. [23,24,26,27,28,29,30,31] for a discussion in a general context, and refs. [32,33,34,35,36,37] concerning phase transitions ).

Generally speaking, for a given value of the control parameters (or intensive variables) λ ℓ , the properties of a substance are univocally defined, i.e. the conjugated exten- sive variables < Âℓ > have a unique value unambiguously defined by the corresponding equation of state

< A ℓ >= -∂ λ ℓ log Z({λ ℓ } (23) 
In reality, this fixes only the average value and the event by event value of the observation of Âℓ produces a probability distribution. The intuitive expectation that extensive variables at equilibrium have a unique value therefore means that the probability distribution is narrow and normal, such that a good approximation can be obtained by replacing the distribution with its most probable value. The normality of probability distributions is usually assumed on the basis of the central limit theorem. However, in finite systems the probability distributions has a finite width and moreover it can depart from a normal distribution. We will discuss in particular the case of a bimodal distribution [44]: in this case two different properties (phases) coexist for the same value of the intensive control variable.

The topological anomalies of probability distributions and the failure of the central limit theorem in phase coexistence imply that in a first order phase transition the different statistical ensembles are in general not equivalent and different phenomena can be observed depending on the fact that the controlled variable is extensive or intensive. In the following we will often take as a paradigm of intensive ensembles the canonical ensemble for which the inverse of the temperature β -1 is controlled, while the archetype of the extensive ensemble will be the microcanonical one for which energy is strictly controlled.

Laplace versus Legendre Transformations

The relation between the canonical entropy and the logarithm of the partition sum is given by a Legendre transform eq.( 13). It is important to distinguish between transformations within the same ensemble, as the Legendre transform, and transformations between different ensembles, which are given by non linear integral transforms [36]. Let us consider energy as the extensive observable and inverse temperature β as the conjugated intensive one. The definition of the canonical partition sum is

Z β = ∑ n exp(-β E (n) ), (24) 
where the sum runs over the available eigenstates n of the Hamiltonian. Here, we assume that the partition sum converges; this is not always the case as discussed in ref. [START_REF] Chavanis | [END_REF]. The possible divergence of the thermodynamic potential of the intensive ensemble is already a known case of ensemble inequivalence [START_REF] Gross | topical volume "Dynamics and thermodynamics with nuclear degrees of freedom[END_REF][START_REF] Chavanis | [END_REF]. Computing the canonical (Shannon) entropy we get

S can (< E >) = log Z β + β < E >, (25) 
which is an exact Legendre transform since the EoS reads < E >= -∂ β log Z β . If energy can be treated as a continuous variable, eq.( 24) can be written as:

Z β = ∞ 0 dE W (E) exp(-β E), ( 26 
)
where energies are evaluated from the ground state. Eq.( 26) is a Laplace transform between the canonical partition sum and the microcanonical density of states linked to the entropy by S E = lnW (E). If the integrand f (E) = exp(S E -β E) is a strongly peaked function, it can be approximated by a gaussian (saddle point approximation) so that the integral can be replaced by the maximum f ( Ē) times a Gaussian integral. Neglecting this factor we get

Z β ≈ W ( Ē) exp(-β Ē), (27) 
which can be rewritten as

ln Z β ≈ S Ē -β Ē; (28) 
or introducing the free energy

F T = -β -1 ln Z β F T ≈ Ē -T S Ē . (29) 
Eq.( 28) has the structure of an approximate Legendre transform similar to the exact espression (25). This shows that in the lowest order saddle point approximation eq.( 27), the ensembles differing at the level of constraints acting on a specific observable (here energy) lead to the same entropy, i.e. they are equivalent. We will see in the next section that however the saddle point approximation eq.( 27) can be highly incorrect close to a phase transition for the simple reason that the integrand is bimodal making a unique saddle point approximation inadequate. In this case eq.( 28) cannot be applied, eq.( 26) is the only correct transformation between the different ensembles, and ensemble inequivalence naturally arises.

To summarize one should not confuse

• the link between the thermodynamical potential of the intensive (e.g.log of canonical partition sum) and of the extensive ensemble (e.g. themicrocanonical entropy) which are always related with a Laplace transform.This Laplace transform may lead to an approximate Legendre transformationfor normal distributions but we know that this Legendre transformation isonly approximate and might be present strong deviations if the distributionis abnormal.

• with the exact Legendre transform between the entropy of theintensive ensemble and the corresponding thermodynamical potential.

This simply corresponds to the fact that the microcanonical and canonicalentropies can be very different.

Ensemble Inequivalence in Phase Transition Regions

Let us consider the case of a first order phase transition where the canonical energy distribution

P β 0 (E) = W (E) exp(-β 0 E)/Z β 0 ( 30 
)
has a characteristic bimodal shape [44,47,48] at the temperature β 0 with two maxima E

(1)

β , E (2) 
β that can be associated with the two phases. It is easy to see that eq.( 26) can also be seen as a Laplace transform of the canonical probability P β 0 (E)

Z β = Z β 0 ∞ 0 dE P β 0 (E) exp(-(β -β 0 )E). (31) 
A single saddle point approximation is not valid when P β 0 (E) is bimodal; however it is always possible to write

P β = m (1) 
β P

(1)

β + m (2) β P (2) β , (32) 
with

P (i)
β mono-modal normalized probability distribution peaked at

E (i)
β . The canonical mean energy is then the weighted average of the two energies

E β = m(1) β E (1) β + m(2) β E (2) β , (33) 
with m(i)

β = m (i) β dEP (i) β (E)E/E (i) β ≃ m (i) β . (34) 
Since only one mean energy is associated with a given temperature β -1 , the canonical caloric curve is monotonous, and the microcanonical one is not. Indeed it is immediate to see from eq.( 30) that the bimodality of P β implies then a back bending of the microcanonical caloric curve T -1 = ∂ E S, meaning that in the first order phase transition region the two ensembles are not equivalent. If instead of looking at the average E β we look at the most probable energy E β , this (unusual)canonical caloric curve is identical to the microcanonical one, up to the transition temperature β -1 t for which the two components of P β (E) have the same height. At this point the most probable energy jumps from the low to the high energy branch of the microcanonical caloric curve.

The question arises whether this violation of ensemble equivalence survives towards the thermodynamic limit. This limit can be expressed as the fact that the thermodynamic potentials per particle converge when the number of particles N goes to infinity :

f N,β = β -1 log Z β N → fβ ; s N (e) = S(E) N → s (e) (35) 
where e = E/N. Let us also introduce the reduced probability p N,β (e) = P β (N, E)

1/N which then converges towards an asymptotic distribution p N,β (e) → pβ (e) ; pβ (e) = exp s(e) -β e + fβ .

Since P β (N, E) ≈ pβ (e) N , one can see that when pβ (e) is normal, the relative energy fluctuation in P β (N, E) is suppressed by a factor 1/ √ N. At the thermodynamic limit P β reduces to a δ -function and ensemble equivalence is recovered. To analyze the thermodynamic limit of a bimodal p N,β (e), let us introduce as before β -1 N,t the temperature for which the two maxima of p N,β (e) have the same height. For a first order phase transition β -1 N,t converges to a fixed point β -1 t as well as the two maximum energies e (i)

N,β → ē(i)
β . For all temperatures lower (higher) than β -1 t only the low (high) energy peak will survive at the thermodynamic limit, since the difference of the two maximum probabilities will be raised to the power N. Therefore, below ē(1) β and above ē(2) β the canonical caloric curve coincides with the microcanonical one in the thermodynamic limit. In the canonical ensemble the temperature β -1 t corresponds to a discontinuity in the state energy irrespectively of the behavior of the entropy between ē(1) β and ē(2) β . The microcanonical caloric curve in the phase transition region may either converge towards the Maxwell construction, or keep a backbending behavior [22], since a negative heat capacity system can be thermodynamically stable even in the thermodynamic limit if it is isolated [26]. Examples of a backbending behavior at the thermodynamic limit have been reported for a model many-body interaction taken as a functional of the hypergeometric radius in the analytical work of ref. [3], and for the long range Ising model [4]. This can be understood as a general effect of long range interactions for which the topological anomaly leading to the convex intruder in the entropy is not cured by increasing the number of particles [4,65]. Conversely, for short range interactions [START_REF] Gross | Microcanonical thermodynamics:phase transitions in finite systems[END_REF] the backbending is a surface effect which should disappear at the thermodynamic limit. This is the case for the Potts model [33], the microcanonical model of fragmentation of atomic clusters [66] and for the lattice gas model with fluctuating volume [49] . The interphase surface entropy goes to zero as N → ∞ in these models, leading to a linear increase of the entropy in agreement with the canonical predictions. Within the approach based on the topology of the probability distribution of observables [44] it was shown that ensemble inequivalence arises from fluctuations of the order parameter [23]. Ensembles putting different constraints on the fluctuations of the order parameter lead to a different thermodynamics. In the case of phase transitions with a finite latent heat, the total energy usually plays the role of an order parameter except in the microcanonical ensemble which therefore is expected to present a different thermodynamics than the other ensembles [START_REF] Gross | topical volume "Dynamics and thermodynamics with nuclear degrees of freedom[END_REF]. This inequivalence may remain at the thermodynamic limit if the involved phenomena are not reduced to short range effects. 38). Right panels: total caloric curves (symbols) corresponding to the left panels and thermodynamic limit of eq.( 42) (dashed lines).

Temperature jump at constant energy

In particular, it may happen that the energy of a subsystem becomes an order parameter when the total energy is constrained by a conservation law or a microcanonical sorting. This frequently occurs for Hamiltonians containing a kinetic energy contribution [3,4,67]: if the kinetic heat capacity is large enough, it becomes an order parameter in the microcanonical ensemble. Then, the microcanonical caloric curve presents at the thermodynamical limit a temperature jump in complete disagreement with the canonical ensemble.

To understand this phenomenon, let us consider a finite system for which the Hamiltonian can be separated into two components

E = E 1 + E 2 , that are statistically inde- pendent (W (E 1 , E 2 ) = W 1 (E 1 )W 2 (E 2 )
) and such that the associated degrees of freedom scale in the same way with the number of particles; we will also consider the case where S 1 = logW 1 has no anomaly while S 2 = logW 2 presents a convex intruder [START_REF] Gross | Microcanonical thermodynamics:phase transitions in finite systems[END_REF] which is preserved at the thermodynamic limit. Typical examples of E 1 are given by the kinetic energy for a classical system with velocity independent interactions, or other similar one body operators [4]. The probability to get a partial energy E 1 when the total energy is E is given by

P E (E 1 ) = exp (S 1 (E 1 ) + S 2 (E -E 1 ) -S (E)) (37) 
The extremum of P E (E 1 ) is obtained for the partitioning of the total energy E between the kinetic and potential components that equalizes the two partial temperatures

T 1 -1 = ∂ E 1 S 1 (E 1 ) = ∂ E 2 S 2 (E -E 1 ) = T 2 -1 . ( 38 
)
If E 1 is unique, P E (E 1 ) is mono-modal and we can use a saddle point approximation around this solution to compute the entropy

S (E) = log E -∞ dE 1 exp (S 1 (E 1 ) + S 2 (E -E 1 )) . ( 39 
)
At the lowest order, the entropy is simply additive so that the microcanonical temperature of the global system ∂ E S(E) = T

-1 is the one of the most probable energy partition.

Therefore, the most probable partial energy E 1 acts as a microcanonical thermometer. If E 1 is always unique, the kinetic thermometer in the backbending region will follow the whole decrease of temperature as the total energy increases. Therefore, the total caloric curve will present the same anomaly as the potential one. If conversely the partial energy distribution is double humped [68], then the equality of the partial temperatures admits three solutions, one of them

E (0)
1 being a minimum. At this point the partial heat capacities

C -1 1 = -T 2 ∂ 2 E 1 S 1 (E (0) 1 ) ; C -1 2 = -T 2 ∂ 2 E 2 S 2 (E -E (0) 1 ) (40) 
fulfill the relation

C -1 1 +C -1 2 < 0 (41) 
This happens when the potential heat capacity is negative and the kinetic energy is large enough (C 1 > -C 2 ) to act as an approximate heat bath: the partial energy distribution P E (E 1 ) in the microcanonical ensemble is then bimodal as the total energy distribution P β (E) in the canonical ensemble, implying that the kinetic energy is the order parameter of the transition in the microcanonical ensemble. In this case the microcanonical temperature is given by a weighted average of the two estimations from the two maxima of the kinetic energy distribution

T = ∂ E S(E) = P (1)
σ (1) /T (1) + P

(2)

σ (2) /T (2) P (1) 
σ (1) + P

(2)

σ (2) (42) 
where

T (i) = T 1 (E (i)
1 ) are the kinetic temperatures calculated at the two maxima,

P (i) = P E (E (i)
1 ) are the probabilities of the two peaks and σ (i) their widths. At the ther- modynamic limit eq.( 41) reads c -1 1 + c -1 2 < 0, with c = lim N→∞ C/N . If this condition is fulfilled, the probability distribution P β (E) presents two maxima for all finite sizes and only the highest peak survives at N = ∞ . Let E t be the energy at which ) ). Because of eq.( 42), at the thermodynamic limit the caloric curve will follow the high (low) energy maximum of P E (E 1 ) for all energies below (above) E t ; there will be a temperature jump at the transition energy E t . Let us illustrate the above results with two examples for a classical gas of interacting particles. For the kinetic energy contribution we have S 1 (E) = c 1 ln(E/N) N with a constant kinetic heat capacity perparticle c 1 = 3/2. For the potential part we will take two polynomial parametrization of the interaction caloric curve presenting a back bending which are displayed in the left part of figure 4 in units of an arbitrary scale ε. If the decrease of the partial temperature T 2 (E 2 ) is steeper than -2/3 (figure 4a ) [3] eq.( 41) is verified and the kinetic caloric curve T 1 (E -E 1 )(dot-dashed line) crosses the potential one T 2 (E 2 ) (full line) in three different points for all values of the total energy lying inside the region of coexistence of two kinetic energy maxima. The resulting caloric curve for the whole system is shown in figure 4b (symbols) together with the thermodynamic limit (lines) evaluated from the double saddle point approximation (4). In this case one observes a temperature jump at the transition energy. If the temperature decrease is smoother (figure 4c) the shape of the interaction caloric curve is preserved at the thermodynamic limit (figure 4d).

P E t (E (1) ) = P E t (E ( 2 
The occurrence of a temperature jump in the thermodynamic limit is easily spotted by looking at the bidimensional canonical event distribution P β (E 1 , E 2 ) shown at the transition temperature β = β t in the left part of figure 5 for the two model equation of states of figure 4. In the canonical ensemble the kinetic energy distribution is normal. These same distributions are shown as a function of E and E 1 , P β (E, E 1 ) ∝ exp S 1 (E 1 ) exp S 2 (E -E 1 ) exp(-β E) in the right part of figure 5. The microcanonical ensemble is a constant energy cut of P β (E, E 1 ), which leads to the microcanonical dis-tribution P E (E 1 ) within a normalization constant. If the anomaly in the potential equation of state is sufficiently important, the distortion of events due to the coordinate change is such that one can still see the two phases coexist even after a sorting in energy.

DEFINITIONS OF PHASE TRANSITIONS IN FINITE SYSTEMS

Phase transitions are universal properties of matter in interaction. In macroscopic physics, they are singularities (i.e. non-analitical behaviors) in the system equation of state (EoS) and hence classified according to the degree of non-analyticity of the EoS at the transition point. Then, a phase transition is an intrinsic property of the system and not of the statistical ensemble used to describe the equilibrium. Indeed, at the thermodynamic limit all the possible statistical ensembles converge towards the same EoS and the various thermodynamic potentials are related by simple Legendre transformations leading to a unique thermodynamics. On the other side for finite systems, as discussed above, two ensembles which put different constraints on the fluctuations of the order parameter lead to qualitatively different EoS close to a first order phase transition [25,[START_REF] Gross | Microcanonical thermodynamics:phase transitions in finite systems[END_REF]. Thermodynamic observables like heat capacities can therefore be completely different depending on the experimental conditions of the measurement. Moreover, such inequivalences may survive at the thermodynamic limit if forces are long ranged as for self gravitating objects [3,4]. In fact the characteristic of phase transitions in finite systems, and in particular the occurrence of a negative heat capacity, have first been discussed in the astrophysical context [2,31,26,69,70,71,72,73]. Since these pioneering works in astrophysics, an abundant literature is focused on the understanding of phase transition in small systems from a general point of view [START_REF] Gross | Microcanonical thermodynamics:phase transitions in finite systems[END_REF]30,36,74,75,76,77,78,79] or in the mean-field context [4,80] or for some specific systems such as metallic clusters [48,68] or nuclei [81] and even DNA [82].

Phase transitions in infinite systems

Let us first recall the definition of phase transitions in infinite systems. At the thermodynamic limit for short range interactions the statistical ensembles are equivalent and it is enough to reduce the discussion to the ensemble where only one extensive variable A L is kept fixed, all the others being constrained through the associated Lagrange parameters. The typical example is the grandcanonical ensemble where only the volume A L = V is kept as an extensive variable. Then all the thermodynamics is contained in the associated potential log Z λ 1, ...,λ L-1 (A L ). Since it is extensive, the potential is proportional to the remaining extensive variable

log Z λ 1, ...,λ L-1 (A L ) = A L λ L (λ 1, ..., λ L-1 ) (43) 
so that all the non trivial thermodynamic properties are included in the reduced potential i.e. the intensive variable

λ L = ∂ A L log Z λ 1, ...,λ L-1 (A L ) = log Z λ 1, ...,λ L-1
A L (44) associated with A L . In the grand canonical case A L = V , the reduced potential is the pressure, λ L ∝ P, which is then a function of the temperature and the chemical potential(s).

In this limit all the thermodynamics is included in the single function λ L (λ 1, ..., λ L-1 ), and this is why in the literature p(V ) is often loosely refered to as "'the"' EoS, and the existence of many EoS is ignored. If this EoS is analytical, all the thermodynamic quantities which are all derivatives of the thermodynamic potential, present smooth behaviors, and no phase transition appears. A phase transition is a major modification of the macrostate properties for a small modification of the control parameters (λ 1, ..., λ L-1 ). Such an anomalous behavior can only happen if the thermodynamic potential presents a singularity. This singularity can be classified according to the order of the derivative which presents a discontinuity or a divergence. According to Ehrenfest this is the order of the phase transition. In modern statistical mechanics, all the higher order are called under the generic name of continuous transitions. Figure 6 schematically illustrates a first order phase transition in the canonical ensemble.

Phase transitions in finite systems

As soon as one considers a finite physical system, all the above discussion does not apply. First the thermodynamic potential and observables are not additive, therefore we cannot introduce a reduced potential and we get

λ L (λ 1, ..., λ L-1, A L ) ≡ ∂ log Z λ 1, ...,λ L-1 (A L ) ∂ A L = log Z λ 1, ...,λ L-1 (A L )
A L (45) i.e. the grand potential per unit volume does not give the pressure any more, and presents a non-trivial volume dependence. Moreover the analysis of the singularities of the thermodynamic potential has no meaning, since it is an analytical function. The standard statistical physics textbooks thus conclude that rigourously speaking there is no phase transitions in finite systems. However, as we have already mentioned, first for self-gravitating objects [2,26,31,69,70,71,72,73] and then in small systems [3,[START_REF] Gross | Microcanonical thermodynamics:phase transitions in finite systems[END_REF]30,48,36,74,75,76,79,81] it was shown that phase transitions might be associated with the occurrence of negative microcanonical heat capacities. This can be generalized to the occurence of an inverted curvature of the thermodynamic potential of any ensemble keeping at least one extensive variable A L not orthogonal to the order parameter 7 [36,83]. In the following we call this ensemble an extensive ensemble. Then, negative compressibility or negative susceptibility should be, like negative heat capacity, observed in first order phase transitions of finite systems. In the microcanonical ensemble of classical particles, it was proposed that anomalously large fluctuations of the kinetic energy, i.e. larger then the the expected canonical value, highlight a negative heat capacity [84]. It was then demonstrated that those two signals of a phase transition, negative curvatures and anomalous fluctuations, observed in extensive ensemble where the order parameter is fixed, are directly related to the appearance of bimodalities in the distribution of this order parameter in the intensive ensemble where the order parameter is only fixed in average through its conjugated Lagrange multiplier [44,6]. The occurrence of bimodalities is discussed in the literature since a long time and is often used as a practical way to look for phase transition in numerical simulations [START_REF] Hill | Thermodynamics of small systems[END_REF]47]; however, the general equivalence between negative curvatures and bimodalities was presented in ref. [44]. For intensive ensembles, since the pioneering work of Yang and Lee [43] another definition was proposed considering the zeroes of the partition sum The regions where no zeroes are coming close to the real axis when the thermodynamic limit is taken will not present singularities of log Z.

in the complex intensive parameter plane [43,85]. The idea is simple: the zeroes of Z are the singularities of log Z and so phase transitions, which are singularities, must come from the zeroes of the partition sum. In a finite system the zeroes of the partition sum cannot be on the real axis since the partition sum Z is the sum of exponential factors which cannot produce a singularity of log Z. However, the thermodynamic limit of an infinite volume may bring the singularity on the real axis. This is schematically illustrated in fig. 7. Only regions where zeroes converge towards the real axis may present phase transitions, while the other regions present no anomalies. The order of the transition can be associated to the asymptotic behavior of zeroes [85]. The distribution of zeroes has been analyzed in ref. [45] where the transition was studied with a parabolic entropy. In ref. [46] the equivalence of the expected behavior of the zeroes in a first order phase transition case and the occurrence of bimodalities in the distribution of the associated extensive parameter was demonstrated. To be precise, in this demonstration bimodality means that the extensive variable distribution can be splitted at the transition point into two distributions of equal height, with the distance between the two maxima scaling like the system size [86].

This global picture of phase transitions in finite systems is summarized in figure 8 in the case where energy is the order parameter of the transition. The occurrence of a bimodal distribution of the extensive parameter (e.g. energy) in the associated intensive (e.g. canonical) ensemble is a necessary and sufficient condition to asymptotically get the distribution of the Yang-Lee zeroes in the complex lagrange multiplier (e.g. temperature) plane, which is expected in a first order transition. The direction of bimodality is the direction of the order parameter. This bimodality is also equivalent to the presence of an anomalous curvature in the thermodynamic potential of the extensive (microcanonical) ensemble obtained constraining the bimodal observable to a fixed value. In the extensive ensemble, the inverted curvature can be spotted looking for anomalously large fluctuations (e.g. larger then the canonical ones) of the partition of the extensive variable (e.g. energy) between two independent subsystems. FIGURE 8. Schematic representation of the different equivalent definitions of first order phase transitions in finite systems. From top to bottom: the partition sum's zeroes aligning perpendicular to the real temperature axis with a density scaling like the number of particles; the bimodality of the energy distribution with a distance between the two maxima scaling like the number of particles times the latent heat; the appearence of a back-bending in the microcanonical caloric curve i.e. a negative heat capacity region; and the observation of anomalously large fluctuations of the energy splitting between the kinetic part and the interaction part.

STATISTICAL DESCRIPTION OF EVOLVING SYSTEMS

A major issue in the statistical treatment of finite systems is that most of the time open and transient systems are studied. Therefore, they are not only finite in size but also finite in time, and in fact they are evolving. The number of degrees of freedom of a quantum many-body problem being infinite, it is impossible to have all the information needed to solve exactly the dynamical problem. Since only a small part of the observation space is relevant, this time evolution may also be treated with statistical tools. This is the purpose of many models: from Langevin approaches to Fokker-Planck equations, from hydrodynamics to stochastic Time Dependent Hartree Fock theory. The purpose of this chapter is not to review those theoretical approaches, therefore we will not enter here into details about the different recent progresses, and we will rather focus this discussion on general arguments of time dependent statistical ensembles [52,[START_REF] Gulminelli | [END_REF].

A statistical treatment of a dynamical process is based on the idea that at any time one can consider only the relevant variables A ℓ , disregarding all the other ones a m as irrelevant. If only the maximum entropy state is followed in time assuming that all the irrelevant degrees of freedom have relaxed instantaneously, one gets a generalized mean-field approach [61]. If the fluctuations of the irrelevant degrees of freedom are included, this leads to a Langevin dynamics [62]. With those considerations one can see that statistical approaches can be always improved including more and more degrees of freedom to asymptotically become exact. However, before including a huge number of degrees of freedom one should ask himself if only a few observables can take care of the most important dynamical aspects of the systems we are looking at. In a recent paper [START_REF] Gulminelli | [END_REF] it was proposed to introduce observations at different times (e.g. different freeze-out/equilibration times) as well as time odd extensive parameters. The idea is simple : maximizing the Shannon entropy with different observables Âℓ known at different times t ℓ = t 0 + ∆t ℓ is a way to treat a part of the dynamics. Going to the Heisenberg representation, if we propagate all the Âℓ to the same time t 0 we get: Âℓ (t 0 ) = e -i∆t ℓ Ĥ Âℓ e i∆t ℓ Ĥ (46) = Âℓ -i∆t ℓ [ Ĥ, Âℓ ] + ... (47) This shows that the time propagation introduces new constraining operators

Bℓ = -i[ Ĥ, Âℓ ]. ( 48 
)
If Âℓ is a time even observable, Bℓ is a time odd operator. Let us take the example of an unconfined finite system characterized at a given time by a typical size < R2 >=< Ŝ >, where R2 is the one body operator ∑ i r2 i . If the whole information is assumed to be known at the same time, then the statistical distribution of event reads in a classical canonical picture

p (n) = 1 Z e -β E (n) -λ S (n) (49) 
which is formally equivalent to a particle in a harmonic potential. However, if now we assume that the size information is coming from a different time, then according to Eq. ( 48) we must introduce a new time odd operator vr = -i[ Ĥ, r2 ]. For a local interaction, this reduces to vr = (r p + pr)/m (50) which represents a radial flow. Then the classical canonical probability reads

p (n) = 1 Z e -β (p (n) -h(t)r (n) ) 2 -λ S (n) (51)
which is a statistical ensemble of particles under a Hubblian flow. In the ideal gas model eq.( 51) provides the exact solution at any time of the dynamics. This simple example shows that information theory allows treat in a statisticl picture dynamical processes where observables are defined at different times, by taking into account time odd components such as flows. This might be a tool to extract thermodynamical quantities from complex dynamics. In particular, the above example shows that in an open system an initial extension in space is always transformed into an expansion, meaning that flow is an essential ingredient even in statistical approaches.

CONCLUSION

In conclusion, we have presented in this paper the actual understanding of the thermodynamics of finite systems from the point of view of information theory. We have put some emphasis on first order phase transitions which are associated to specific and intriguing phenomena as bimodalities and negative heat capacities. Phase transitions have been widely studied in the thermodynamic limit of infinite systems. However, in the physical situations considered here (i.e. small systems or non saturating forces), this limit cannot be taken and phase transitions should be reconsidered from a more general point of view. This is for example the case of matter under long range forces like gravitation. Even if these self gravitating systems are very large they cannot be considered as infinite because of the non saturating nature of the force. Other cases are provided by microscopic or mesoscopic systems built out of matter which is known to present phase transitions. Metallic clusters can melt before being vaporized. Quantum fluids may undergo Bose condensation or a super-fluid phase transition. Dense hadronic matter should merge in a quark and gluon plasma phase while nuclei are expected to exhibit a liquid -gas phase transition and a superfluid phase. For all these systems the theoretical and experimental issue is how to define and sign a possible phase transition in a finite system. In this review we have presented the synthesis of different works which tend to show that phase transitions can be defined as clearly as in the thermodynamic limit. Depending upon the statistical ensemble, i.e. on the experimental situation, one should look for different signals. In the ensemble where the order parameter is free to fluctuate (intensive ensemble), the topology of the event distribution should be studied. A bimodal distribution signals a first-order phase transition. The direction in the observable space in which the distribution is bimodal defines the best order parameter. To survive the thermodynamic limit, the distance between the two distributions, the two "'phases"', should scale like the number of particles. This occurrence of a bimodal distribution is equivalent to the alignment of the partition sum zeroes as described by the Yang and Lee theorem. In the associated extensive ensemble, the bimodality condition is also equivalent to the requirement of a convexity anomaly in the thermodynamic potential. The first experimental evidences of such a phenomenon have been reported recently in different fields: the melting of sodium clusters [6],the fragmentation of hydrogen clusters [8], the pairing in nuclei [9] and nuclear multifragmentation [7,87,88]. However, much more experimental and theoretical studies are now expected to progress in this new field of phase transitions in finite systems. Three challenges can thus been assigned to the physics community:

• The statistical description of non extensive systems and in particular of open transient finite systems; • The experimental and theoretical study of phase transitions in thoses systems and of the expected abnormal thermodynamics • The confirmation of the observation of the phase transition and the analysis of the associated equation of state properties and the associated phase diagram.
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 1 FIGURE 1. Illustration of the Liouville space of density matrices: an observation Âi is a projection of D on the axis associated with the corresponding observable Âi .
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 4 FIGURE 4. Left panels: temperature as a function of the potential energy E 2 (full lines) and of the kinetic energy E -E 2 (dot-dashed lines)for two model equation of states of classical systems showing a first order phase transition. Symbols: temperatures extracted from the most probable kinetic energy thermometer from eq.(38). Right panels: total caloric curves (symbols) corresponding to the left panels and thermodynamic limit of eq.(42) (dashed lines).
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 5 FIGURE 5. Canonical event distributions in the potential versus kinetic energy plane (left panels) and total versus kinetic energy plane (right panels) at the transition temperature for the two model equations of state of figure 4. The inserts show two constant total energy cuts of the distributions.

FIGURE 6 .

 6 FIGURE 6. Schematic representation of a first order phase transition in the canonical case. Top: the log of the canonical partition sum (i.e. the free energy) presents an angular point Bottom: the first derivative as a function of the temperature (i.e. the energy) presents a jump.
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 7 FIGURE 7. Schematic representation of the zeroes of the partition sum Z in the complexe temperature plane. The regions where no zeroes are coming close to the real axis when the thermodynamic limit is taken will not present singularities of log Z.

  

  

  

A way out can be to introduce another entropy better suited to treat the relation between the information and the associated state as discussed in other contributions in this book. We will not elaborate more on this point here and rather refocus the discussion on the generalized Gibbs equilibria.

meaning that any phase space point gets close to at least one event.

For example, the Boltzmann law should be an exponential decay up to an infinite energy.

if observables are not orthogonal it is alway possible to use a Schmitt procedure to define a set of orthogonal observables[START_REF] Balian | From microphysics to macrophysics[END_REF].