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Abstract

The over-passing probability across an inverted parabolic potential barrier is investigated accord-

ing to the classical and quantal generalized Langevin equations. It is shown that, in the classical

case, the asymptotic value of the over-passing probability is determined by a single dominant root

of the characteristic function, and it is given by a simple expression. The expression for the over-

passing probability is quite general, and details of dissipation mechanism and memory effects enter

into the expression only through the dominant root of the characteristic equation.

PACS numbers: 05.40.-a, 66.10.Cb
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I. INTRODUCTION

In many physical systems, for example transport processes in condensed matter physics,

activation processes in chemical reactions, and thermal fission and fusion reactions in nuclear

physics, generalized Langevin approach provides a very useful framework for theoretical de-

scription of the reaction under consideration [1–7]. According to general framework of Mori

[8], the equations of motion of relevant variables, in general, appear as non-Markovian

stochastic differential equations, referred to as Generalized Langevin Equations (GLE).

These equations involve memory dependent dissipation and correlated random forces, which

are connected to each other in accordance with the fluctuation-dissipation relation of non-

equilibrium statistical mechanics. It is possible to derive the GLE in the classical limit,

and also including quantum statistical effects [9–14]. The generalized Langevin approach

has recently gained a lot of interest as a mathematical tool to deal with diffusion in dis-

ordered medium, phenomenon known as anomalous diffusion which is characterized by a

long-range power-law correlations encountered in various physical processes such as the dy-

namics of polymers [15], decorrelation processes in microemulsions [16], charge transport in

amorphous semiconductors [17], and diffusion in fractals [18].

After the pioneering work of Kramers, the Langevin approach has been applied to describe

normal as well as anomalous diffusion over a potential barrier in many research subjects. In

order to solve the GLE, one must assume a particular form for the spectral density of the

environment or the memory kernel which define the non-Markovian effects. In our study,

we investigate the consequences of the non-Markovian effects on the asymptotic behavior

of the system. We consider the evolution of a single-relevant variable with sharp initial

values according to the classical and quantal GLE. The noise term in the GLE is a Gaussian

stochastic variable and hence the probability distribution has a Gaussian form, which is

specified by the mean-values and the variances of the relevant variables. In the specific case

of exponential Friction-Memory Function (FMF), the non-Markovian problem was solved

analytically in [19]. Here, we consider a general form of the FMF, and investigate memory

effects on the dynamical evolution of normal as well as anomalous systems. We show that

for classical GLE the asymptotic value of the over-passing probability is determined by a

single dominant root of the characteristic function Eq. (8) and given by a simple expression

Eq. (15). This expression for the over-passing probability is quite general, and details
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of dissipation mechanism and memory effects enter into the expression only through the

dominant root of the characteristic equation [19]. In the case of quantal GLE, the asymptotic

expression of the over-passing probability has the same structure as the classical case, except

it involves a quantity which is determined by a numerical integration over the spectral

density.

The formal expression for the over-passing probability is derived in Section II. The anal-

ysis of the probability and some general results are explained in Section III. The conclusion

is given in Section IV.

II. FORMAL EXPRESSION FOR THE OVER-PASSING PROBABILITY

A. The over-passing probability for the classical GLE

The classical GLE reads

q̈(t) = − 1

m

∂V

∂q
−

∫ t

0

χ(t − t′)q̇(t′)dt′ + ǫ(t), (1)

where χ(t) is the model dependent FMF and the stochastic driving term ǫ(t) has a Gaussian

distribution with first and second moments given by

〈ǫ(t)〉 = 0, (2)

〈ǫ(t)ǫ(t′)〉 =
T

m
χ(|t − t′|), (3)

so that the classical fluctuation-dissipation theorem is satisfied. Here, T is the temperature

of the heat-bath. All throughout the paper, we set kB = 1 where kB is the Boltzmann

constant.

For a quadratic potential barrier with a barrier height B which is defined by the initial

position q0 as

V (q) =
1

2
mΩ2(q2

0 − q2) = B − 1

2
mΩ2q2, (4)

using the Laplace transform of Eq. (1), the mean and the variance of q(t) over the noise,

denoted by 〈..〉, can be obtained as

〈q(t)〉 = q0

[

1 + Ω2

∫ t

0

h(t′)dt′
]

+
p0

m
h(t), (5)
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and

σqq(t) =
T

m

∫ t

0

dt′
∫ t

0

dt′′h(t′)h(t′′)χ(|t′ − t′′|), (6)

respectively. The time-dependent function h(t) reads

h(t) = L−1 [1/D(s)]

=
∑

i

Res[h̃(si)]e
sit, (7)

where L−1 stands for inverse Laplace transform and Res[h̃(si)] is the residue of h̃(s) = L[h(t)]

at the roots (poles) si of the characteristic function

D(s) = s2 + sχ̃(s) − Ω2, (8)

with χ̃(s) = L[χ(t)] =
∫

∞

0
exp (−st)χ(t)dt being the Laplace transform of χ(t). The initial

position q0 as well as the initial momentum p0 of the collective system are considered to

be sharp. The formal expressions for 〈p(t)〉, σpp(t) and σqp(t) can also be obtained, but

are irrelevant for finding the over-passing probability. For a quadratic potential, the rele-

vant variables have Gaussian distribution. By integrating out the momentum, the reduced

distribution

W (q) =
1

√

2πσqq(t)
exp

(

−(q − 〈q(t)〉)2

2σqq(t)

)

(9)

is obtained. Starting with the initial value q0 < 0, the over-passing probability is simply

the probability that the system is found on the other side of the potential barrier, hence the

probability reads [20, 21],

P (t) =

∫

∞

0

W (q)dq

=
1

2
Erfc

{

− 〈q(t)〉
√

2σqq(t)

}

. (10)

This converges to a finite value,

P = P (t → ∞) =
1

2
Erfc

{

− 〈q(t → ∞)〉
√

2σqq(t → ∞)

}

, (11)

which defines the asymptotic value of the over-passing probability.

In various studies on activated rate processes the characteristic function Eq. (8) appears

[4, 22–28] and it is shown that Eq. (8) has only one positive root (or pole), called hereafter
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s1, which is larger than the real parts of all the others, see the appendix of [25] for details.

This suggests that the asymptotic behavior of Eq. (7) is

h(t → ∞) = Res[h̃(s1)]e
s1t. (12)

Therefore using Eq. (12), the Eqs. (5) and (6) read

〈q(t → ∞)〉 = Res[h̃(s1)]

(

q0Ω
2

s1

+
p0

m

)

es1t, (13)

and

σqq(t → ∞) = (Res[h̃(s1)])
2 T

m

(

Ω2 − s2
1

s2
1

)

e2s1t, (14)

where the last equation is obtained by performing the integration of Eq. (6) using the

variables u = t′ + t′′ and v = t′ − t′′ and then using the equation D(s1) = 0. Substituting

Eqs. (13) and (14) into Eq. (11) we get the over-passing probability in the form

P =
1

2
Erfc

{

1
√

1 − y2

(

√

B

T
− y

√

K

T

)}

, (15)

where B is the barrier height measured from the initial position defined in Eq. (4) whereas

K = p2
0/2m is the initial kinetic energy. The function y is given by

y =
s1

Ω
. (16)

There exists a critical initial kinetic energy Kc = B/y2 for which the mean trajectory Eq.

(13) converges to the top of the barrier, 〈q(t → ∞)〉 = 0 and hence the kernel of the error

function in Eq. (15) vanishes to give the probability P = 1/2. Since the critical kinetic

energy must be larger than the barrier height B, the function y can assume any value in the

interval,

0 ≤ y ≤ 1. (17)

The function y is the Kramers factor in the rate formula for a non-Markovian escape process

from a metastable state [4, 22–27, 29] and here it is the function that determines the non-

Markovian effects on the over-passing probability. Figure 1 shows the probability, Eq. (15),

being plotted versus y for three energy regions. For y = 1, the probability takes its classical

value, which correspond to the trivial system without dissipation. The probability for the
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FIG. 1: The asymptotic probability, Eq. (15), is plotted versus the parameter y for the three

energy regions. The temperature is taken such that T/B = 0.5 and the solid, dashed and dotted

lines stand for K/B = 1.5, 1, 0.5 values, respectively.

over-damped system is obtained for y = 0, which is the smallest probability for kinetic

energies K larger or equal to the barrier height B. Then, the function y can be termed

as “the dissipation reducing factor”. However, when the kinetic energy is smaller than the

barrier height we have a more interesting situation where the maximum

Pmax =
1

2
Erfc

{

√

B − K

T

}

K ≤ B, (18)

occurs at some mid-point value

ymax =

√

K

B
K ≤ B. (19)

Since the function y is the only positive root s1 of Eq. (8) divided by the curvature

parameter Ω of the potential barrier, it depends on the specific form of the FMF and is a

function of the parameters that FMF is expressed by as well as the curvature parameter Ω

of the potential. There will be a specific set of these parameters for which ymax in Eq. (19)

will be obtained. The probability Pmax occurs due to the compensation between dissipation

which reduces probability and fluctuation which enhances probability. This is explained in

the next section.

It should be emphasized here that the results Eq. (15) and Eq. (18) are valid for any

FMF χ(t) whose Laplace transform exists. The formal simplicity of these expressions is due
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to the fact that the asymptotic behavior (t → ∞) of non-Markovian systems with Gaussian

noises diffusing over a parabolic barrier can be reduced to that of Markovian ones with an

effective friction coefficient,

βeff = χ̃(s1), (20)

which contains all non-Markovian effects. This is easily seen when the normalized root,

using Eq. (8), is cast into the formal form,

y =

√

1 +

(

βeff

2Ω

)2

− βeff

2Ω
, (21)

which has the same form with the Markovian factor Eq. (28).

B. The over-passing probability for the quantum GLE

For systems with quadratic potentials, the difference between the classical and c-number

quantum GLE is the correlation of the stochastic force [1, 2, 30], hence the quantum GLE has

the same form with Eq. (1) but with a mean-zero Gaussian noise satisfying the correlation

〈ǫ(t)ǫ(t′)〉 =
1

m

∫

∞

−∞

dω

π
T ⋆(ω)χ̂real(ω)e−iω(t−t′), (22)

instead of Eq. (3). T ⋆ is the effective temperature given by

T ⋆(ω) =
~ω

2
coth

(

~ω

2T

)

, (23)

and χ̂real(ω) is the real part of the Fourier transformed FMF χ̂(ω) =
∫

∞

−∞
χ(t) exp(iωt)dt.

The effective temperature is the mean energy of a quantum harmonic oscillator and for high

temperatures ~ω ≪ 2T , it takes its classical value T ⋆ → T . The full quantum limit T ⋆ →
~ω/2 is obtained at low temperatures ~ω ≫ 2T and represents the zero-point (vacuum)

energy.

Since the noise term does not appear in the expression of the mean position, the Eqs. (5)

and (13) are valid for quantum systems as well, whereas the variance of the position takes

the form

σqq(t) =
1

m

∫ t

0

dt′
∫ t

0

dt′′h(t′)h(t′′)

×
∫

∞

−∞

dω

π
T ⋆(ω)χ̂real(ω)e−iω(t′−t′′). (24)
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By using Eq. (12), the asymptotic value of the variance reads

σqq(t → ∞) =
1

m
(Res[h̃(s1)])

2e2s1t

×
∫

∞

−∞

dω

π
T ⋆(ω)

χ̂real(ω)

ω2 + s2
1

. (25)

Substituting Eq. (13) and Eq. (25) into Eq. (11), we get the over-passing probability as

P =
1

2
Erfc

{

1
√

G(y)

(√
B − y

√
K

)

}

, (26)

where

G(y) = y2

∫

∞

−∞

dω

π
T ⋆(ω)

χ̂real(ω)

ω2 + s2
1

. (27)

III. ANALYSIS OF THE PROBABILITY

A. Influence of the memory

The knowledge of the FMF χ(t) is crucial for determining the over-passing probability

since the probabilities Eq. (15) and Eq. (26) are functions of the positive root of the

characteristic function Eq. (8) which depends on the Laplace transform χ̃(s). As an example,

in the Markovian (M) limit, the normalized root y is explicitly given by

y(M) =

√

1 +

(

β

2Ω

)2

− β

2Ω
(28)

for the FMF [20],

χ(M)(t) = 2βδ(t), (29)

which corresponds to a memoryless dissipation with a reduced friction coefficient β. For

non-Markovian Exponential (E) FMF [19],

χ(E)(t) =
β

τ
exp

(

− t

τ

)

, (30)

the normalized root can be expressed as
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y(E) = − 1

3Ωτ

− 1

3Ωτ

−1 + 3βτ − 3(Ωτ)2

[

−1 + 9
2
βτ + 9(Ωτ)2 +

√

(

−1 + 9
2
βτ + 9(Ωτ)2)2

+
(

−1 + 3βτ − 3(Ωτ)2)3
]1/3

+
1

3Ωτ



−1 +
9

2
βτ + 9(Ωτ)2 +

√

(

−1 +
9

2
βτ + 9(Ωτ)2

)2

+
(

−1 + 3βτ − 3(Ωτ)2)3





1/3

.(31)

The exponential FMF corresponds to a dissipating system with a reduced friction coefficient

β and a memory characterized by the relaxation time τ . In the limit τ → 0+ the exponential

FMF Eq. (30) reduces to the Markovian FMF Eq. (29).

The over-passing probability for classical systems with Markovian FMF Eq. (29) and

the exponential FMF Eq. (30) is obtained by substituting Eq. (28) and Eq. (31) into Eq.

(15), respectively. Figure 2 shows the probability for the Markovian system plotted versus

the initial kinetic energy over potential barrier height for various friction coefficients. The

intersection points with the maximum probability (solid line) corresponds to the specific

initial kinetic energy and specific friction β/Ω in Eq. (28) for which the condition Eq. (19)

is met. In Figure 3, it is seen that as friction β/Ω increases, the factors y(M) and y(E) are
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FIG. 2: The probability for classical Markovian case is plotted versus the initial kinetic energy

over potential barrier height for various friction coefficients. The maximum probability, Eq. (18),

is indicated by a solid line. The temperature is such that T/B = 0.25.

decreasing. Increasing memory time Ωτ results in increasing y for any β/Ω. Therefore by

looking at the behavior of the probability with respect to the factor y (see Figure 1), the
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friction β/Ω and memory time Ωτ dependence of the probability is expected as in Figure 4.

For kinetic energies K larger or equal to the barrier height B, the probability is decreasing

as β/Ω is increasing which is due to the dissipation of kinetic energy. For zero kinetic energy

the situation is opposite, as β/Ω is getting larger the probability is increasing which is due

to the thermal fluctuations of the observables. In the intermediate region where the kinetic

energy is less than the barrier height B, the probability obtains a peaked value, Eq. (18).

This can be understood as the dissipation dominating at the right side of the maximum

and fluctuation dominating at the left side of the maximum. In this region, the probability

approaches the asymptotic value 0.5 Erfc{
√

B/T} for the over-damped case β/Ω → ∞
regardless of the initial kinetic energy K and memory time Ωτ .

2 4 6 8 10
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WΤ = 2

WΤ = 1

WΤ = 0

FIG. 3: The functions Eq. (28) (solid line) and Eq. (31) are plotted versus the friction β/Ω for

different relaxation times Ωτ .

In general, by using Eq. (8) a relation between the root y for any non-Markovian FMF

χ(t) and the Markovian root y(M) given by Eq. (28) can be obtained as

y

y(M)
=

y(M) + β(0)/Ω

y + βeff/Ω
. (32)

Here, the zero-frequency component of the Laplace transformed FMF defines the static

friction,

β(0) = χ̃(0) =

∫

∞

0

χ(t) dt (33)

which is equal to the friction coefficient β in case of normal (non-anomalous) diffusion and βeff

is the non-Markovian effective friction defined in Eq.(20). From Eq. (32) and Eq. (33), when
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FIG. 4: The probability Eq. (15) for the exponential FMF Eq. (30) with the corresponding

normalized positive root Eq. (31) is plotted versus the friction β/Ω for various memory times Ωτ .

No memory case Ωτ = 0 (solid lines) corresponds to the Markovian FMF Eq. (29) with y given by

Eq. (28). The temperature is taken so that T/B = 0.25 and each figure is plotted with different

initial kinetic energy K/B = 1.5, 1, 0.5, 0 as labeled on them.

y is larger (smaller) than y(M), the non-Markovian effective friction βeff is smaller (larger)

than the Markovian friction β [22]. Hence by comparing the non-Markovian roots with

Markovian roots, it is possible to relate the effective frictions and hence the probabilities.

B. Influence of the oscillations

It is possible to obtain an exact FMF for a system coupled to a heat-bath of harmonic

oscillators known as Caldeira-Leggett Model [7, 31–33]. By using this model, the global

degrees of freedom are reduced to the relevant ones and a GLE in the form of Eq. (1) is

obtained. The corresponding FMF is a sum of cosine functions and hence has an oscilla-

tory behavior. In order to understand the consequences of the oscillatory memories, let us
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consider the following FMF,

χ(EC)(t) =
(1 + λ2)β

τ
exp

(

− t

τ

)

cos

(

λ
t

τ

)

, (34)

where the parameter λ keeps track of the oscillations (see Figure 5). The plots of the
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FIG. 5: The normalized FMF Eq. (34) is plotted versus time. Different lines correspond to different

oscillation frequencies λ, the solid line with λ = 0 is the exponential FMF.

corresponding normalized positive root y(EC) where EC stands for Exponential-Cosine FMF

Eq. (34) and the corresponding over-passing probability for classical systems are shown in

Figure 6 and Figure 7, respectively. It is seen that for small values of λ the factor y(EC) is

larger than y(M) (solid line) and for large values of λ the factor y(EC) is smaller than y(M). By

using the equation χ̃(EC)(s1) = χ̃(EC)(0) and the Laplace transform of Eq. (34), the critical

value λc for which y(EC) = y(M) is satisfied can be found as

λc =
√

1 + Ωτy(M), (35)

which is in the interval 1 < λc <
√

1 + Ωτ . When the dimensionless oscillation frequency is

less than the critical value λ < λc, one has y(EC) > y(M) and hence non-Markovian dissipation

is smaller than the Markovian dissipation, βeff < β. This means that the oscillations of the

FMF are irrelevant during the memory time Ωτ and the dissipation is reduced like in the

exponential FMF case. When the oscillations are relevant λ > λc, one has y(EC) < y(M)

and consequently the oscillations of the FMF cancel out in the characteristic time interval

Ωτ increasing the non-Markovian effective friction χ̃(EC)(s1) with respect to the Markovian

friction χ̃(EC)(0).
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FIG. 6: The normalized positive root y(EC) of the Eq. (8) where the Laplace transform of Eq. (34)

is used, is plotted versus friction β/Ω for various oscillation frequencies λ. The memory time is

chosen as Ωτ = 2. The solid line corresponds to the Markovian factor Eq. (28).

For the asymptotic value λ → ∞, substituting the Laplace transform of Eq. (34) into

Eq. (8) and taking the limit, the normalized positive root can be found as

y
(EC)
λ→∞

=
1

1 + βτ





√

(1 + βτ) +

(

β

2Ω

)2

− β

2Ω



 , (36)

which satisfies the following inequality y
(EC)
λ→∞

< y
(EC)
λ>λc

< y(M) < y
(EC)
λ<λc

. The corresponding

probabilities follow the same order, P
(EC)
λ→∞

< P
(EC)
λ>λc

< P (M) < P
(EC)
λ<λc

for K ≥ B.

C. Influence of the anomalous diffusion

The FMF for a system coupled to a Non-Ohmic (NO) heat-bath can be expressed as

χ(NO)(t) = 2

∫

∞

0

dω

π

J(ω)

ω
cos(ωt), (37)

where J(ω) is the spectral density of the heat bath. Non-Ohmic spectral density has the

form [2, 5, 34–39]

J(ω) = β
ωα

ωα−1
r

(0 < α < 2), (38)

where ωr is some reference frequency allowing for consistent dimensionality of the friction β

for any α. For matter of convenience, we set this frequency as that of the potential barrier,

ωr = Ω. The explicit form of the FMF is,

χ(NO)(t) =
2β

πΩα−1
cos(

πα

2
) Γ(α) t−α (t 6= 0), (39)
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FIG. 7: The probability Eq. (15) for the exponential-cosine FMF Eq. (34) with the corresponding

factor y(EC) shown in Figure 6, is plotted versus the friction β/Ω for various oscillation frequencies

λ. The memory time is chosen as Ωτ = 2. The Markovian probability is indicated by a solid

line. The temperature is taken so that T/B = 0.25 and each figure is plotted with different initial

kinetic energy K/B = 1.5, 1, 0.5, 0 as labeled on them.

with the Laplace transform,

χ̃(NO)(s) =
β

sin(πα
2

)

( s

Ω

)α−1

. (40)

Figures 8 and 9 show the plot of the FMF Eq. (39) as a function of time and α, respectively.

Note that α = 1 recovers the normal Markovian FMF. For super-Ohmic case α > 1, the

FMF Eq. (39) is negative and approaches −∞ as t → 0, but from Eq. (37) it is seen that

χ(NO)(0) → +∞. Furthermore, these divergences in the super-Ohmic case are such that the

static friction is vanishing, β(0) = χ̃(NO)(0) =
∫

∞

0
χ(NO)(t)dt = 0. On the other hand, for

sub-Ohmic diffusion α < 1 there is a divergence to +∞ as t → 0, hence the static friction

is divergent, β(0) = +∞. This behavior is completely different from the Ohmic dissipative

systems which have static frictions that are simply equal to the friction coefficient β.

A force-free system coupled to a bath with non-Ohmic spectral density of the form Eq.

(38) exhibits anomalous diffusion [40] which is characterized by the mean square displace-
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FIG. 8: The FMF Eq.(39) is plotted versus time Ωt for different values of α. The friction coefficient

is taken as β/Ω = 1.
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FIG. 9: The FMF Eq.(39) is plotted versus the parameter α. The time and friction coefficient are

taken as Ωt = 1 and β/Ω = 1, respectively.

ment given by

〈x2(t)〉 ∼ tα (t → ∞), (41)

where, for 0 < α < 1 the system is called subdiffusive and for 1 < α < 2 the system

is superdiffusive. The static friction can be used to distinguish between the sub-Ohmic

(β(0) → ∞), Ohmic (β(0) → finite), and super-Ohmic (β(0) → 0) environments which mean

sub-diffusion, normal diffusion, super-diffusion for force-free systems.

Our expressions for the over-passing probability are valid for non-Ohmic dissipation as

well, since the characteristic function Eq. (8) again has only one positive root. The Figure

10 shows the plot of the normalized root y of Eq. (8) versus the parameters α. The

corresponding probabilities are indicated in Figure 11. The effective friction βeff is enhanced
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FIG. 10: The normalized root is plotted versus the parameter α.

for the very subdiffusive or very superdiffusive systems.

We emphasize that our study is limited only to Gaussian distributions and hence does

not include systems exhibiting non-Gaussian anomalous diffusion like Lévy flights.

D. Quantum effects

The previous three sections are dealing with the effects of the FMF and hence of the

normalized root y on the probability. Here, we investigate the effects of quantum noise

on the dynamics. For this purpose we consider the exponential FMF Eq. (30) with the

corresponding root Eq. (31). The over-passing probability is obtained by substituting this

root and the Fourier transform of the FMF into Eq. (26). In order to compare our results

with some previous studies we consider the fusion reaction of 48Ca and 238U nuclei with the

same parameter set [9–11]. The friction coefficient is taken as β/Ω = 3.29, the memory time

is Ωτ = 1/15, the curvature parameter of the conditional saddle is Ω = 1 and the barrier

height with respect to the initial position is B = 4, in arbitrary units. The comparison

of the probabilities for the classical and quantum systems is shown in Figure 12 which is

in good agreement with the previous studies [9–11]. At low temperatures, the over-passing

probability is enhanced since the variance of the position is larger when the quantum effects

are included. At high temperatures, the classical over-passing probability is recovered.
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FIG. 11: The probability Eq. (15) for the non-Ohmic FMF Eq. (38) is plotted versus the friction

α. The temperature is taken so that T/B = 0.25 and each figure is plotted with different initial

kinetic energy K/B = 1.5, 1, 0.5, 0 as labeled on them.

IV. CONCLUSION

The probability of a system to diffuse over a barrier is an important quantity in many

research subjects such as activation processes in chemical physics, fusion and fission reactions

as well as giant resonances in nuclear physics. In this work, we consider the evolution of

a single-relevant variable according to the classical and quantal GLE. When the potential

barrier has the shape of an inverted parabola, the asymptotic value of the over-passing

probability is given by the complimentary error function according to Eq. (11). We show

that in the case of classical GLE the asymptotic value of the over-passing probability is

determined by a single dominant root y = s1/Ω of the characteristic function D(s1) = 0,

and given by a simple expression Eq. (15). The details of dissipation mechanism and

memory effects enter into the expression only through the dominant root of the characteristic

equation. One of the results we found is that for the initial kinetic energies K less than the

17



0 2.5 5 7.5 10 12.5 15
K-B

0.05

0.1

0.15

0.2

0.25

0.3

P
r
o
b
a
b
i
l
i
t
y

T=5

CNMD

QNMD

0 2.5 5 7.5 10 12.5 15
K-B

0.05

0.1

0.15

0.2

0.25

0.3

P
r
o
b
a
b
i
l
i
t
y

T=1

CNMD

QNMD

0 2.5 5 7.5 10 12.5 15
K-B

0.05

0.1

0.15

0.2

0.25

0.3

P
r
o
b
a
b
i
l
i
t
y

T=0.5

CNMD

QNMD

FIG. 12: The probabilities for the quantum and classical systems are plotted versus the initial

kinetic energy K with respect to the barrier height B for the temperatures T = 0.5, 1, 5. The

quantum non-Markovian and the classical non-Markovian diffusions are indicated by solid and

dashed lines, respectively.

barrier height B, which is the case for many physical situations, the over-passing probability

of the diffusion due to the thermal fluctuations becomes maximum when the dominant root

fits the condition given by Eq. (19). This is a result of the competition between dissipation

and fluctuation. In the case of quantal GLE, the asymptotic value of the over-passing

probability has the same structure as the classical one, except it involves a quantity which is

determined by a numerical integration over the spectral density. The probability is enhanced

at low temperatures where the quantum effects are relevant. The expression for the over-

passing probability, Eq. (15) in the classical limit and Eq. (26) in quantal framework, are

valid for a general FMF provided that the FMF has a well defined Laplace transform.

It is shown that the oscillatory behavior of the FMF can have an important impact on

the factor y and hence on the over-passing probability. For oscillation frequencies λ less

than the critical value Eq. (35), the non-Markovian dissipation βeff is reduced with respect

to the Markovian one β. Whereas for frequencies exceeding the the critical value, the non-

Markovian dissipation is enhanced.

Our formulation also covers systems exhibiting anomalous diffusion with Gaussian noises.

In this case, the static friction coefficient β(0) is zero or infinity for superdiffusive or subdiffu-

sive systems, respectively. The feature allows to distinguish easily between these anomalies.

The effective friction βeff is enhanced for subdiffusive systems α < 1 with respect to the
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Markovian friction coefficient β. Whereas there is a minimum of the effective friction or

similarly maximum of the non-Ohmic root y
(NO)
max which changes with β/Ω in the superdiffu-

sive region α > 1.
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