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Abstract
The parentage between Weyl pairs, generalized Pauli group and unitary group is in-

vestigated in detail. We start from an abstract definition ofthe Heisenberg-Weyl group on

the fieldR and then switch to the discrete Heisenberg-Weyl group or generalized Pauli

group on a finite ringZd. The main characteristics of the latter group, an abstract group

of orderd3 notedPd, are given (conjugacy classes and irreducible representation classes

or equivalently Lie algebra of dimensiond3 associated withPd). Leaving the abstract

sector, a set of Weyl pairs in dimensiond is derived from a polar decomposition ofSU(2)

closely connected to angular momentum theory. Then, a realization of the generalized

Pauli groupPd and the construction of generalized Pauli matrices in dimension d are

revisited in terms of Weyl pairs. Finally, the Lie algebra ofthe unitary groupU(d) is ob-

tained as a subalgebra of the Lie algebra associated withPd. This leads to a development

of the Lie algebra ofU(d) in a basis consisting ofd2 generalized Pauli matrices. In the

case whered is a power of a prime integer, the Lie algebra ofSU(d) can be decomposed

into d − 1 Cartan subalgebras.

1Dedicated to the memory of my teacher and friend Moshé Flatoon the occasion of the tenth anniversary
of his death.
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1 Introduction

The present paper is devoted to three major ingredients of quantum mechanics, namely,

the Heisenberg-Weyl group connected with Heisenberg commutation relations [1], the

Pauli spin matrices [2] used in generalized angular momentum theory and theory of uni-

tary groups, and the pairs of Weyl [3] of relevance in finite quantum mechanics.

The Heisenberg-Weyl (or Weyl-Heisenberg or Heisenberg) groupHW (R), also called

the Weyl group [4], is of central importance for the quantization process and its Lie al-

gebra turns out to be a basic building unit for quantum mechanics [5]. Note that the

Lie algebra ofHW (R) should not be confused with the Weyl-Heisenberg algebra (or

oscillator algebra spanned by the creation, annihilation and number operators) and its

supersymmetric extensionsWk [6].

A discrete restrictionHW (Zd) of HW (R), corresponding to the replacement of the

infinite field R by a finite ringZd ≡ Z/dZ, yields a group of orderd3 (d arbitrary in

N \ {0, 1}). This group was introduced by̌Štovı́ček and Tolar [7] in connection with

quantum mechanics in a discrete space-time, by Balian and Itzykson in connection with

finite quantum mechanics [8], and by Patera and Zassenhaus [9] in connection with grad-

ings of simple Lie algebras of typeAn−1. The case where the ringZd is replaced by a

finite (Galois) fieldFq gave rise to several mathematical studies [10, 11]. The discrete

Heisenberg-Weyl group, also known as the generalized Pauligroup, plays a central role

in quantum information, cf. the interest of Galois fields in finite quantum mechanics [12]

and, consequently, in quantum information and quantum computation. In this connection,

a finite Heisenberg-Weyl group was used for a description of phase oscillations of EPR

states [13].

What is the relationship between the Heisenberg-Weyl groupand Weyl pairs? First

of all, a definition of a Weyl pair is in order. A Weyl pair(X, Z) in d dimensions is a

pair of d-dimensional unitary matricesX andZ that satisfy theq-commutation relation

XZ − qZX = 0 and the cyclic relationsXd = Zd = I (I standing here for the unitary

matrix), whereq is a primitive root of unity withqd = 1. The concept of a pair of Weyl,

initially introduced for dealing with quantum dynamical systems in finite dimension [3],

was used for the construction of unitary bases in finite-dimensional Hilbert spaces [14]

and (independently) for the factorization of the secular equation corresponding to finite-

dimensional eigenvalue problems [15]. In the last 20 years,the notion of Weyl pairs was

used for the construction ofgeneralizedPauli matrices in domains as different as graded

Lie algebras and quantum information.

TheusualPauli matricesσx, σy andσz are useful for the representation theory of the

Lie groupSU(2). Therefore, a natural extension of the Pauli matrices resulted in the
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sixties from the interest of the groupSU(3) for the classification of elementary particles

[16]. This gave gise to the Gell-Mann matrices and the Okubo matrices. Further exten-

sions of the Pauli matrices came out of the introduction of the groupSU(4) for charmed

particle [17] and of the groupSU(5) for a grand unified theory of quarks and leptons

[18]. The Gell-Mann lambda matrices forSU(3) and their extension to Cartan bases for

SU(d) undoubtedly constitute a systematic extension of the ordinary Pauli matrices. This

statment is particularly justified as far as the tensor structure (involving symmetric and

antisymmetric tensors) of their algebra is concerned [19].We shall deal in this paper with

another extension of the Pauli matrices ind dimensions which turns out to be of special

interest in the case whered is a power of a prime integer. Indeed, generalized Pauli matri-

ces can be constructed in a systematic way by making use of Weyl pairs. In this direction

let us mention the pioneer work of Patera and Zassenhaus [9].In the last two decades,

the construction of generalized Pauli spin matrices has been extensively used in the the-

ory of semi-simple Lie algebras, in quantum mechanics (complete state determination,

reconstruction of a density matrix, discrete Wigner functions), in quantum information

and quantum computation (mutually unbiased bases, unitaryerror bases, quantum error

correction, random unitary channels, mean king’s problem,positive operator valued mea-

sures, and quantum entanglement), and in the study of modified Bessel functions (see for

instance [8, 9] and [20]-[32]).

From a group-theoretical point of view, thed-dimensional generalized Pauli matrices

may serve to construct a generalized Pauli group ind dimensions, a group generalizing

the ordinary Pauli group spanned by the ordinary Pauli matrices (see [7]-[12], [21], [24]

and [33]-[42]). In fact, this group is nothing but the discrete Heisenberg-Weyl group

HW (Zd). This generalized Pauli group has been recently the object of numerous studies

partly in connection with the Clifford or Jacobi group [34, 36, 37, 38] as well as graph-

theoretical and finite-geometrical analyses of the generalized Pauli operators [41, 42] .

The object of this work is to further study the link between the Heisenberg-Weyl

group, the Weyl pairs, the generalized Pauli matrices and the generalized Pauli group and

to revisit their interest for unitary groups. We shall startwith an abstract definition of

the Heisenberg-Weyl group, pass to an abstract version ofHW (Zd) and briefly study it.

Then, we shall deal with the introduction of Weyl pairs from apolar decomposition of the

Lie algebrasu(2) and we shall use them for finding a realization ofHW (Zd) isomorphic

to the generalized Pauli group ind dimensions. Finally, some of the generators of the Pauli

group ind dimensions shall be used for constructing the Lie algebrasu(d) of SU(d) in a

basis that is especially adapted, whend is a power of a prime integer, to a decomposition

of su(d) into a direct sum ofd + 1 Cartan subalgebras.
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2 The Heisenberg-Weyl group

2.1 The Lie groupHW (R)

We start with an abstract definition of the Heisenberg-Weyl groupHW (R). Let us con-

sider the set of triplets

S := {(x, y, z) : x, y, z ∈ R}. (1)

The setS can be equipped with the internal composition lawS × S → S defined trough

(x, y, z)(x′, y′, z′) := (x + x′ − zy′, y + y′, z + z′). (2)

It is clear that the setS is a group with respect to the law (2). We denoteHW (R) this

group and call it the Heisenberg-Weyl group (for evident reasons to be given below) on

the infinite fieldR. More precisely, we have the following result.

Proposition 1. The groupHW (R) is a noncompact Lie group of order 3. This nonabelian

group is nilpotent (hence solvable) with a nilpotency classequal to 2.

Proof. The proof is trivial. Let us simply mention that the nilpotency ofHW (R) follows

by repeated use of the commutator

[(x′, y′, z′), (x, y, z)] = (zy′ − yz′, 0, 0) (3)

of the elements(x′, y′, z′) and(x, y, z) of the groupHW (R). Equation (3) shows that

(x, y, z) and(x′, y′, z′) commute if and only ifzy′ − yz′ = 0. �

In the terminology of Wigner [43], the groupHW (R) is not ambivalent (ambivalent

means that each conjugacy class contains its inverse elements). Indeed, since

(x, y, z)−1 = (−x − yz,−y,−z) (4)

and

(x′, y′, z′)(x, y, z)(x′, y′, z′)−1 = (x + zy′ − yz′, y, z) (5)

it is evident that only the classC(0,0,0) = {(0, 0, 0)} of the identity element(0, 0, 0) is

ambivalent.

2.2 The Lie algebra ofHW (R)

We may ask why to callHW (R) the Heisenberg-Weyl group? The following result clar-

ifies this point.
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Proposition 2. A set of infinitesimal generators ofHW (R) is

H =
1

i

∂

∂x
Q =

1

i

∂

∂y
P =

1

i

(

∂

∂z
− y

∂

∂x

)

. (6)

This set of generators satisfies the formal commutation relations

[Q, P ]− = iH [P, H ]− = 0 [H, Q]− = 0 (7)

with H = H, Q = Q andP = P. The Lie algebrahw(R) of HW (R), with the Lie

brackets (7), is a three-dimensional nilpotent (hence solvable) Lie algebra with nilpotency

class 2.

Proof. The proof easily follows by working in a neighbourhood of the identity(0, 0, 0) of

HW (R) and by considering the seriesw1 = hw(R), w2 = [w1, w1]−, w3 = [w1, w2]−, · · ·
where[A, B]− refers here to the set of commutators[α, β]− with α ∈ A andβ ∈ B. �

The connection with the Heisenberg commutation relations is clearly emphasized

by (7). This constitutes a partial justification for callingHW (R) the Heisenberg-Weyl

group onR. The Lie algebrahw(R) was derived from a matrix group [4] and stud-

ied at length from the point of view of quantum mechanics [5].This algebra admits

infinite-dimensional representations by Hermitean matrices. In particular, we have the

infinite-dimensional harmonic oscillator representationwhich is associated with the op-

erator realizationH = Hho := ~1, Q = Qho := x andP = Pho := ~

i
∂
∂x

, where~ is the

rationalized Planck constant. On the other side, we may expect to have finite-dimensional

representations ofhw(R) at the price to abandon the Hermitean character of the represen-

tation matrices.

As an example, we have the three-dimensional representation of hw(R) defined by

H = H3, Q = Q3 andP = P3 with

H3 :=





0 0 0
0 0 0
i 0 0



 Q3 :=





0 0 0
i 0 0
0 0 0



 P3 :=





0 0 0
0 0 0
0 −i 0



 . (8)

We can look for the matrix Lie group which corresponds to the Lie algebra spanned by

the set{H3, Q3, P3}. This yields Proposition 3.

Proposition 3. The exponentiation

M(x, y, z) := exp[i(xH3 + yQ3 + zP3)] (9)

leads to

M(x, y, z) =





1 0 0
−y 1 0

−x − 1
2
yz z 1



 . (10)
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The matricesM(x, y, z) satisfy the composition law

M(x, y, z)M(x′, y′, z′) = M(x + x′ +
1

2
zy′ − 1

2
yz′, y + y′, z + z′) (11)

so that the setS ′ := {M(x, y, z) : x, y, z ∈ R} endowed with the law (11) is a group

isomorphic toHW (R).

Proof. A simple expansion of (9) whereH3, Q3 andP3 are given by (8) yields (10). The

isomorphism follows from the bijectionS → S ′ : (x, y, z) 7→ M(−x − 1
2
yz,−y,−z).

Note that the matrix form (10) corresponds to two other sets{H±,Q±,P±} of infinitesi-

mal generators ofHW (R), namely,

H± = ±i
∂

∂x
Q± = ±i

(

∂

∂y
∓ 1

2
z

∂

∂x

)

P± = ±i

(

∂

∂z
± 1

2
y

∂

∂x

)

(12)

which satisfies (7) withH = H±, Q = Q± andP = P± (cf. [4, 5]). �

3 The Pauli group

3.1 The abstract Pauli group

3.1.1 The groupPd

We shall be concerned in this section with a discretization of the Heisenberg-Weyl group

HW (R). A trivial discretization ofHW (R) can be obtained by replacing the fieldR

by the infinite ringZ. This leads to an infinite-dimensional discrete groupHW (Z). A

further possibility is to replaceR by the finite ringZd ≡ Z/dZ whered is arbitrary in

N \ {0, 1}. (In the case whered is a primep or a power of a primepe with e ∈ N \ {0, 1},

the finite ringZ/dZ can be replaced by the Galois fieldFp or Fpe.) This yields a finite

groupHW (Zd) which can be described by the following result.

Proposition 4. The set

Sd := {(a, b, c) : a, b, c ∈ Zd} (13)

with the internal composition lawSd × Sd → Sd defined trough

(a, b, c)(a′, b′, c′) := (a + a′ − cb′, b + b′, c + c′) (14)

(where from now on the addition is understood modulod) is a finite group of orderd3.

This nonabelian groupHW (Zd), notedPd for short, is nilpotent (hence solvable) with a

nilpotency class equal to 2.
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Proof. The proof of Proposition 4 is elementary. Note simply that we have the canonical

decomposition

(a, b, c) = (a, 0, 0)(0, b, 0)(0, 0, c) (15)

for any element(a, b, c) of Pd and that two elements(a, b, c) and(a′, b′, c′) of Pd commute

if and only if cb′ − bc′ = 0 (modd). �

We call the abstract groupPd the (generalized) Pauli groupin d dimensions. At this

stage, we can give the main reason for associating Heisenberg, Pauli and Weyl in the title

of the present paper. As a point of fact, the discretization of the groupHW (R), a group

associated with theHeisenberg commutation relations, via the replacementR → Z/dZ

gives rise to the groupPd, a group which can be realized in terms ofgeneralized Pauli

matrices, which in turn can be constructed in terms ofWeyl pairs(see below).

3.1.2 Some subgroups ofPd

Among the subgroups ofPd, we can mention proper subgroups of orderd andd2 (there

are no other proper subgroups ifd is a prime integer). We simply list below the subsets of

Sd, which together with the law (14), provide us with some important subgroups ofPd.

- The set{(a, 0, 0) : a ∈ Zd} gives an invariant abelian subgroup ofPd of orderd

isomorphic to the cyclic groupZd. In fact, this subgroup is the centrumZ(Pd) of Pd and

Pd/Z(Pd) is isomorphic toZd ⊗ Zd.

- The set{(0, b, 0) : b ∈ Zd} gives an abelian subgroup ofPd of orderd isomorphic to

Zd.

- Similarly, the set{(0, 0, c) : c ∈ Zd} gives also an abelian subgroup ofPd of orderd

isomorphic toZd.

- The sets{(a, b, 0) : a, b ∈ Zd} and{(a, 0, c) : a, c ∈ Zd} give two invariant abelian

subgroups ofPd of orderd2 isomorphic toZd ⊗ Zd.

- Finally, the set{(a, b, b) : a, b ∈ Zd} give an invariant abelian subgroup ofPd of

orderd2.

3.1.3 Conjugacy classes ofPd

The conjugacy classes ofPd readily follow from

(a′, b′, c′)(a, b, c)(a′, b′, c′)−1 = (a + cb′ − bc′, b, c) (16)

with addition modulod. This can be precised by the following result.

Proposition 5. The groupPd hasd(d + 1) − 1 conjugacy classes:d classes containing

each 1 element andd2 − 1 classes containing eachd elements.
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Proof. It can be checked that the classC(a,0,0) of (a, 0, 0) isC(a,0,0) = {(a, 0, 0)}; therefore,

there ared classes with 1 element. Furthermore, the classC(a,b,c) of (a, b, c), with the case

b = c = 0 excluded, isC(a,b,c) = {(a′, b, c) : a′ ∈ Zd}; this yieldsd2 − 1 classes withd

elements. We note that the groupPd is not ambivalent in general.�

The cased = 2 is very special since the groupP2 of order 8 is ambivalent like the

groupQ of ordinary quaternions, another group of order 8. Not all the subgroups ofP2 are

invariant. Therefore, the groupP2 is not isomorphic toQ (for which all subgroups are in-

variant). Indeed, it can be proved thatP2 is isomorphic to the group of hyperbolic quater-

nions associated with the Cayley-Dickson algebraA(c1, c2) with (c1, c2) 6= (−1,−1)

defined in [44]. In this respect, the Pauli groupP2 defined in this work differs from the

Pauli group ind = 2 dimensions considered by some authors, a group isomorphic to the

groupQ of ordinary quaternions. LetP ′
2 be this latter Pauli group. It consists of the

elementsσ := ±σ0, ±iσx, ±iσy, ±iσz (whereσ0 is the2 × 2 unit matrix). Let us also

mention that an extension of the groupP ′
2 is used in quantum computation [45] (see also

[33, 42]). This extension, sayP ′′
2 , is obtained from a doubling process: The groupP ′′

2

consists of the elements of the set{σ, iσ : σ ∈ P ′
2}. Thus, the conjugation classes and the

irreducible representation classes ofP ′′
2 trivially follow from those ofP ′

2.

3.1.4 Irreducible representations ofPd

The duality between conjugacy classes and classses of irreducible representations leads

to the following result.

Proposition 6. The groupPd hasd(d + 1) − 1 classes of irreducible representations:d2

classes of dimension 1 andd − 1 classes of dimensiond.

Proof. It is sufficient to apply the Burnside-Wedderburn theorem.�

As a corollary of Proposition 5 and Proposition 6, the difference between the order

of Pd and its number of classes (conjugacy classes or irreduciblerepresentation classes)

is odd if d = 2k (k ∈ N
∗), or a multiple of 16 ifd = 4k + 3 (k ∈ N) or a multiple of

32 if d = 4k + 1 (k ∈ N∗). (For an arbitrary finite group of odd order, the difference

is a multiple of16.) Furthermore, the number of elements ofPd which commute with a

given element(a, b, c) of Pd is d3 or a multiple ofd2 according to whether the order of

the conjugation class containing(a, b, c) is 1 or d; see [41] for a more elaborated result, in

the form of a universal formula, and its interpretation in terms of the fine structure of the

projective line defined over the modular ringZd. Note that Proposition 5 and Proposition

6 are in agreement with the results obtained [10] in the case whered is a power of a prime

integer corresponding to the replacement of the ringZd by the Galois fieldFd.
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3.1.5 A Lie algebra associated withPd

We close the study of the abstract groupPd with a result devoted to the association of

Pd with a Lie algebra of dimensiond3. Let us consider the group algebra (or Frobenius

algebra)F (Pd) of the generalized Pauli groupPd. Such an algebra is an associative

algebra over the fieldC. By applying the process developed by Gamba [46], we can

construct fromF (Pd) a Lie algebra, which we shall denote aspd, by taking

〈(a, b, c), (a′, b′, c′)〉 := (a + a′ − cb′, b + b′, c + c′) − (a + a′ − bc′, b + b′, c + c′) (17)

for the Lie bracket of(a, b, c) and(a′, b′, c′). (The right-hand side of (17) is defined in

F (Pd).) The setSd constitutes a basis both for the Frobenius algebraF (Pd) and the Lie

algebrapd (Sd is a Chevalley basis forpd). As a further result, we have the following

proposition.

Proposition 7. The Lie algebrapd of dimensiond3, associated with the finite groupPd of

orderd3, is not-semi-simple. It can be decomposed as the direct sum

pd =

d2

⊕

1

u(1)

d−1
⊕

1

u(d) (18)

which containsd2 Lie algebras isomorphic tou(1) andd − 1 Lie algebras isomorphic to

u(d).

Proof. The proof can be achieved by passing from the Chevalley basis of pd, inherent to

(17), to the basis generated by the idempotent (or projection) operators and nilpotent (or

ladder) operators, defined inF (Pd), associated with the classes of irreducible representa-

tions ofPd. Equation (18) is reminiscent of the fact thatPd hasd2 irreducible representa-

tion classes of dimension1 andd − 1 irreducible representation classes of dimensiond.

�

3.2 A realization of the Pauli group

3.2.1 Polar decomposition ofSU(2)

Let E(2j + 1), with 2j ∈ N, be a(2j + 1)-dimensional Hilbert space of constant angular

momentumj. Such a space is spanned by the set{|j, m〉 : m = j, j − 1, · · · ,−j}, where

|j, m〉 is an eigenstate of the squarej2 and thez-componentjz of a generalized angular

momentum [47]. The state vectors|j, m〉 are taken in an orthonormalized form, i.e., the

inner product〈j, m|j′, m′〉 is equal toδm,m′ .

Following the approach of [48], we define the linear operatorvra via

vra|j, m〉 = (1 − δm,j) q(j−m)a|j, m + 1〉 + δm,je
i2πjr|j,−j〉 (19)

9



where

r ∈ R a ∈ R q = exp

(

2πi

2j + 1

)

. (20)

The matrixVra of the operatorvra in the spherical basis

bs := {|j, j〉, |j, j − 1〉, · · · , |j,−j〉} (21)

reads

Vra =













0 qa 0 · · · 0
0 0 q2a · · · 0
...

...
... · · · ...

0 0 0 · · · q2ja

ei2πjr 0 0 · · · 0













. (22)

The matrixVra constitutes a generalization of the matrixVa introduced in [49] (see also

[40]).

The shift operatorvra takes its origin in the study of the Lie algebra ofSU(2) in a

nonstandard basis with the help of two quon algebras describing q-deformed oscillators

[50]. The operatorvra is unitary. Furthermore, it is cyclic in the sense that

(vra)
2j+1 = ei2πj(a+r)I (23)

whereI is the identity. The eigenvalues and eigenvectors ofvra are given by the following

result.

Proposition 8. The spectrum of the operatorvra is nondegenerate. For fixedj, r anda, it

follows from

vra|jα; ra〉 = qj(a+r)−α|jα; ra〉 (24)

where

|jα; ra〉 =
1√

2j + 1

j
∑

m=−j

q(j+m)(j−m+1)a/2−jmr+(j+m)α|j, m〉 (25)

for α = 0, 1, · · · , 2j.

A second linear operator is necessary to define a polar decomposition ofSU(2). Let

us introduce the Hermitean operatorh through

h|j, m〉 =
√

(j + m)(j − m + 1)|j, m〉. (26)

10



Then, it is a simple matter of calculation to show that the three operators

j+ = hvra j− = v†
rah jz =

1

2
(h2 − v†

rah
2vra) (27)

satisfy the ladder equations

j+|j, m〉 = q+(j−m+s−1/2)a
√

(j − m)(j + m + 1)|j, m + 1〉 (28)

j−|j, m〉 = q−(j−m+s+1/2)a
√

(j + m)(j − m + 1)|j, m − 1〉 (29)

and the eigenvalue equation

jz|j, m〉 = m|j, m〉 (30)

wheres = 1/2. (Note that there is one misprint in the corresponding relations of [40].)

Therefore, we have the following result.

Proposition 9. The operatorsj+, j− andjz satisfy the commutation relations

[jz, j+] = +j+ [jz, j−] = −j− [j+, j−] = 2jz (31)

and thus span the Lie algebra ofSU(2) over the complex field.

The latter result does not depend on the parametersr anda. However, the action of

j+ and j− on |j, m〉 on the spaceE(2j + 1) depends ona (an a priori real parameter

to be restricted to integer values in what follows); the usual Condon and Shortley phase

convention used in spectroscopy corresponds toa = 0. The writing of the ladder operators

j+ andj− in terms ofh andvra constitutes a two-parameter polar decomposition of the

Lie algebra ofSU(1, 1) [or SU(2)over the complex field]. This decomposition is an

alternative to the polar decompositions obtained independently in [51, 52].

3.2.2 Weyl pairs

The linear operatorx := v00 such that (cf. (19))

x|j, m〉 = (1 − δm,j) |j, m + 1〉 + δm,j |j,−j〉 (32)

has the spectrum(1, q, · · · , q2j) onE(2j + 1). Therefore, the matrixX := V00 of x on the

basisbs is unitarily equivalent to

Z := diag(1, q, · · · , q2j). (33)

The linear operatorz corresponding to the matrixZ can be defined by

z|j, m〉 = qj−m|j, m〉. (34)

11



The two isospectral operatorsx (a cyclic shift operator) andz (a cyclic phase operator)

are unitary and constitute a pair of Weyl(x, z) since they obey theq-commutation relation

xz − qzx = 0 (35)

(or XZ − qZX = 0 in matrix form). These two operators are connected via

x = f †zf ⇔ z = fxf † (36)

wheref is the Fourier operator such that

f |j, m〉 =
1√

2j + 1

j
∑

m′=−j

q−(j−m)(j−m′)|j, m′〉. (37)

The operatorf is unitary and satisfies

f 4 = 1 (38)

(see [52] for a general treatment of Fourier operators on finite-dimensional Hilbert spaces).

Let F be the matrix of the linear operatorf in the basisbs. Indeed,F is a circulant ma-

trix. Note that the reduction of the endomorphism associated with the matrixX yields the

matrix Z. In other words, the diagonalization ofX can be achieved with the help of the

matrixF via Z = FXF †.

We conclude that the polar decomposition ofSU(2) described in Section 3.2.1 pro-

vides us with an alternative derivation of the Weyl pair(X, Z). Of course, other pairs

of Weyl (Vra, Z), corresponding to(vra, z) with the propertyvraz − qzvra = 0, can be

derived by replacingv00 by vra. Note thatvra = vr0z
a.

3.2.3 Weyl pairs and Pauli group

Let us define thed3 operators

wabc := qaxbzc a, b, c ∈ Zd. (39)

The action ofwabc on the Hilbert spaceE(2j + 1) is described by

wabc|j, m〉 = qa+(j−m)c|j, m + b〉 (40)

wherem + b is understood modulo2j + 1. The operatorswabc are unitary and satisfy

TrE(2j+1)

(

w†
abcwa′b′c′

)

= qa′−a d δb,b′ δc,c′ (41)
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with d := 2j + 1. In addition, we have the following central result.

Proposition 10. The setWd := {wabc : a, b, c ∈ Zd} endowed with the multiplication of

operators is a group isomorphic to the Pauli groupPd. Thus, the groupPd is isomorphic

to a subgroup ofU(d) for d even orSU(d) for d odd.

Proof. The proof is immediate: It is sufficient to consider the bijection Wd → Sd :

wabc 7→ (a, b, c), to use repeatedly (35) or (40), and to note that the matrix ofwabc in the

basisbs belongs toU(d) for d even and toSU(d) for d odd. As a consequence, the Lie

bracket〈(a, b, c), (a′, b′, c′)〉, see (17), corresponds to the commutator[wabc, wa′b′c′]− so

that the Lie algebrapd associated with the finite groupPd corresponds to the commutation

relations

[wabc, wa′b′c′]− = wαβγ − wα′β′γ′ (42)

with α = a + a′ − cb′, β = b + b′, γ = c + c′, α′ = α + cb′ − bc′, β ′ = β andγ′ = γ. �

3.2.4 Weyl pairs and infinite-dimensional Lie algebra

We close this section by mentioning another interest of Weylpairs(vra, z). By defining

the operators

tm = q
1

2
m1m2vm1

ra zm2 m = (m1, m2) ∈ N
∗2 (43)

we easily obtain the following result.

Proposition 11. The commutator of the operatorstm andtn reads

[tm, tn]− = 2i sin

(

π

2j + 1
m ∧ n

)

tm+n (44)

where

m ∧ n = m1n2 − m2n1 m + n = (m1 + n1, m2 + n2). (45)

Therefore, the linear operatorstm span an infinite-dimensional Lie algebra.

The so-obtained Lie algebra is isomorphic to the algebra introduced in [53]. The latter

result parallels the ones derived, on the one hand, from a study of k-fermions and of the

Dirac quantum phase operator through aq-deformation of the harmonic oscillator [54]

and, on the other hand, from an investigation of correlationmeasure for finite quantum

systems [55].
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3.3 Mutually unbiased bases

We now briefly establish contact with quantum information. For this purpose, let us

introduce the notation

k := j − m |k〉 := |j, m〉 d := 2j + 1. (46)

Thus, the angular momentum basis{|j, j〉, |j, j−1〉, · · · , |j,−j〉} of the finite-dimensional

Hilbert spaceE(2j + 1) reads{|0〉, |1〉, · · · , |d − 1〉}. Let us note

Bd := {|k〉 : k = 0, 1, · · · , d − 1} (47)

the latter orthonormal basis, known as the computational basis in quantum information

and quantum computation. From now on, the real numbera occurring in (25) shall be

restricted to take the valuesa = 0, 1, · · · , d − 1.

From equation (25), we can write the eigenvectors|aα〉 := |jα; 0a〉 of the operator

v0a as

|aα〉 =
1√
d

d−1
∑

k=0

q(d−k−1)(k+1)a/2−(k+1)α|k〉 (48)

where, for fixeda (a = 0, 1, · · · , d− 1), the indexα takes the values0, 1, · · · , d− 1. Note

that

B0a := {|aα〉 : α = 0, 1, · · · , d − 1} (49)

is another orthonormal basis ofE(d).

Proposition 8 can be transcribed in matrix form by using the generatorsEx,y of GL(d, C)

(see also [40] where a different normalization is used). Thed × d matrix Ex,y (with

x, y ∈ Zd) is defined by its matrix elements

(Ex,y)kl = δk,x δl,y k, l ∈ Zd. (50)

Therefore, the matrixV0a of the operatorv0a in the computational basisBd is

V0a = Ed−1,0 +

d−2
∑

k=0

q(k+1)aEk,k+1. (51)

The eigenvectorsϕ(aα) of the matrixV0a are expressible in terms of thed × 1 column

vectorsex (with x ∈ Zd) defined via

(ex)k0 = δk,x k ∈ Zd. (52)
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In fact, we can check that

ϕ(aα) =
1√
d

d−1
∑

k=0

q(d−k−1)(k+1)a/2−(k+1)αek (53)

satisfies the eigenvalue equation

V0aϕ(aα) = q(d−1)a/2−αϕ(aα). (54)

Furthermore, thed × d matrix

Ha :=

d−1
∑

α=0

d−1
∑

k=0

q(d−k−1)(k+1)a/2−(k+1)αEk,α (55)

reduces the endomorphism associated withV0a. In other words, we have

H†
aV0aHa = q(d−1)a/2 d

d−1
∑

α=0

q−αEα,α. (56)

Note thatHa is a generalized Hadamard matrix in the sense that

H†
aHa = dI (57)

and the modulus of any element ofHa is unity. Observe that the Fourier matrixF can be

written as

F = (H0S)† S :=
1√
d

d−1
∑

β=0

Eβ,d−β (58)

whereS acts as a permutation matrix normalized by1√
d
.

As an application of (48) or (53) to mutually unbiased bases,we have the following

result (see also [40, 49]).

Proposition 12. In the case whered = p is a prime integer, the basesB0a for a =

0, 1, · · · , p−1 together with the computational basisBd constitute a complete set ofp+1

mutually unbiased bases.

Proof. According to the definition of mutually unbiased bases [56], we need to prove that

|〈k|aα〉| =
1√
p

(59)

and

|〈aα|bβ〉| = δα,βδa,b +
1√
p
(1 − δa,b) (60)
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for any value ofa, b, α, β andk in Zd. Equation (59) simply follows from (48) and

equation (60) was proved in [40] by making use of generalizedquadratic Gauss sums.�

The interest of (48) or (53) withd = p, p prime (including the casep = 2), is that the

p2 vectors corresponding to thep mutually unbiased bases besides the computational basis

are obtainable from one single formula that is easily codable on a computer (the single

formula corresponds to the diagonalization of only one matrix, namely, the matrixV0a

wherea can take the valuesa = 0, 1, · · · , p− 1). In matrix form, thep mutually unbiased

bases besides the computational basis are given by the columns of the Hadamard matrices

matricesHa (a = 0, 1, · · · , p − 1).

Going back tod arbitrary, we can check that the basesB00, B01 andBd constitute a

set of 3 mutually unbiased bases. Therefore, we recover a well-known result according to

which there exists a minimum of 3 mutually unbiased bases when d is not a prime power.

4 Weyl pairs and unitary group

In this section, we shall focus our attention on one of theu(d) subalgebras ofpd. Such

a subalgebra can be constructed from a remarkable subset of{wabc : a, b, c ∈ Zd}. This

subset is made of generalized Pauli operators. It is generated by the Weyl pair(x, z) or

(X, Z) in matrix form.

4.1 Generalized Pauli operators

Following the work by Patera and Zassenhaus [9], let us definethe operators

uab := w0ab = xazb a, b ∈ Zd. (61)

The operatorsuab are unitary. Note that the matricesXaZb of the operatorsuab in the basis

bs belong to the unitary groupU(d) for d even or to the special unitary groupSU(d) for d

odd. Thed2 operatorsuab shall be refered to as generalized Pauli operators in dimension

d. It should be mentioned that matrices corresponding to the operators of type (61) were

first introduced long time ago by Sylvester [57] in order to solve the matrix equation

PX = XQ; in addition, such matrices were used by Morris [58] to definegeneralized

Clifford algebras in connection with quaternion algebras and division rings. The operators

uab satisfy the two following properties which are direct consequences of (41) and (42).

Proposition 13. The set{uab : a, b ∈ Zd} is an orthogonal set with respect to the Hilbert-

Schmidt inner product. More precisely

TrE(2j+1)

(

u†
abua′b′

)

= d δa,a′ δb,b′ (62)
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where the trace has to be taken on thed-dimensional spaceE(2j + 1) with d := 2j + 1.

Proposition 14. The commutator[uab, ua′b′ ]− and the anti-commutator[uab, ua′b′ ]+ of uab

andua′b′ are given by

[uab, ua′b′]∓ =
(

q−ba′ ∓ q−ab′
)

ua′′b′′ a′′ := a + a′ b′′ := b + b′. (63)

Consequently,[uab, ua′b′ ]− = 0 if and only if ab′ − ba′ = 0 (modd) and[uab, ua′b′ ]+ = 0

if and only if ab′ − ba′ = (1/2)d (modd). Therefore, all anti-commutators[uab, ua′b′]+

are different from 0 ifd is an odd integer.

Thed2 pairwise orthogonal operatorsuab can be used as a basis of the Hilbert space

Cd2

(with the Hilbert-Schmidt scalar product) of the operatorsacting on the Hilbert space

C
d (with the usual scalar product). In matrix form, they give generalized Pauli matrices

in (2j + 1) × (2j + 1) dimensions, the spin angular momentumj = 1/2 corresponding

to the ordinary Pauli matrices.

Example 1: j = 1/2 ⇒ q = −1 andd = 2. The matrices of the four operatorsuab with

a, b = 0, 1 are

I = X0Z0 =

(

1 0
0 1

)

X = X1Z0 =

(

0 1
1 0

)

(64)

Z = X0Z1 =

(

1 0
0 −1

)

Y := X1Z1 =

(

0 −1
1 0

)

. (65)

In terms of the usual (Hermitean and unitary) Pauli matricesσx, σy andσz, we haveX =

σx, Y = −iσy, Z = σz. Note that a normalization for the Pauli matrices differentfrom the

conventional one is also used in [9]. The group-theoreticalapproaches developed in [9]

and in the present paper lead to Pauli matrices in dimension2×2 that differ from the usual

Pauli matrices. This is the price one has to pay in order to geta systematic generalization

of Pauli matrices in arbitrary dimension (see also [9, 23]).It should be observed that

the commutation and anti-commutation relations given by (63) with d = 2 correspond to

the well-known commutation and anti-commutation relations for the usual Pauli matrices

(transcribed in the normalizationX1Z0 = σx, X1Z1 = −iσy, X0Z1 = σz).

Example 2: j = 1 ⇒ q = exp(2πi/3) andd = 3. The matrices of the nine operatorsuab

with a, b = 0, 1, 2, viz.,

X0Z0 = I X1Z0 = X X2Z0 = X2 X0Z1 = Z X0Z2 = Z2 (66)

X1Z1 = XZ X2Z2 X2Z1 = X2Z X1Z2 = XZ2 (67)
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are

I =





1 0 0
0 1 0
0 0 1



 X =





0 1 0
0 0 1
1 0 0



 X2 =





0 0 1
1 0 0
0 1 0



 (68)

Z =





1 0 0
0 q 0
0 0 q2



 Z2 =





1 0 0
0 q2 0
0 0 q



 XZ =





0 q 0
0 0 q2

1 0 0



 (69)

X2Z2 =





0 0 q
1 0 0
0 q2 0



 X2Z =





0 0 q2

1 0 0
0 q 0



 XZ2 =





0 q2 0
0 0 q
1 0 0



 . (70)

These matrices differ from the Gell-Mann matrices [16] usedin elementary particle physics.

They constitute a natural extension of the Pauli matrices indimension3 × 3 (see also

[9, 23]).

4.2 The unitary group in the generalized Pauli basis

From Proposition 14, it is clear that the set{uab : a, b = 0, 1, · · · , d − 1} can be used

as a set of generators of the Lie groupU(d). Thus the generalized Pauli matricesX and

Z form an integrity basis for the Lie algebra ofU(d). This can be precised by the two

propositions below.

Proposition 15. The set{XaZb : a, b = 0, 1, · · · , d − 1} form a basis for the Lie algebra

u(d) of the unitary groupU(d) for d arbitrary. The Lie brackets ofu(d) in such a basis

(that we denote as the Pauli basis) are given by

[XaZb, Xa′

Zb′ ]− =
∑

a′′b′′

(ab, a′b′; a′′b′′)Xa′′

Zb′′ (71)

where the structure constants(ab, a′b′; a′′b′′) read

(ab, a′b′; a′′b′′) = δ(a′′, a + a′)δ(b′′, b + b′)
(

q−ba′ − q−ab′
)

(72)

with a, b, a′, b′ = 0, 1, · · · , d − 1 (mod d). The structure constants(ab, a′b′; a′′b′′) with

a′′ = a + a′ andb′′ = b + b′ are cyclotomic polynomials associated withd. They vanish

for ab′ − ba′ = 0 (modd).

Proposition 16. In the case whered = p is a prime integer, the Lie algebrasu(p) of

the special unitary groupSU(p) can be decomposed into a direct sum ofp + 1 abelian

subalgebras of dimensionp − 1. More precisely

su(p) = v0 ⊕ v1 ⊕ · · · ⊕ vp (73)
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where each of thep + 1 subalgebrasv0, v1, · · · , vp is a Cartan subalgebra generated by a

set ofp − 1 commuting matrices. The various sets are

V1 := {X1Z0, X2Z0, · · · , Xp−1Z0} (74)

V2 := {X1Z1, X2Z2, · · · , Xp−1Zp−1} (75)

V3 := {X1Z2, X2Z4, · · · , Xp−1Zp−2} (76)
... (77)

Vp−1 := {X1Zp−2, X2Zp−4, · · · , Xp−1Z2} (78)

Vp := {X1Zp−1, X2Zp−2, · · · , Xp−1Z1} (79)

and

V0 := {X0Z1, X0Z2, · · · , X0Zp−1} (80)

for v1, v2, · · · , vp andv0, respectively.

Proof. The proof of Proposition 15 is straightforward: It followsfrom (62) and (63). For

Proposition 16, we need to pass fromu(p) to its subalgebrasu(p). A basis for the Lie

algebrasu(p) of SU(p) is provided with the set{XaZb : a, b = 0, 1, · · · , p−1}\{X0Z0}.

Then, in order to prove Proposition 16, it suffices to verify that thep + 1 sets (or classes)

V0,V1, · · ·,Vp−1, andZ constitute a partition of{XaZb : a, b = 0, 1, · · · , p−1}\{X0Z0}
and that thep − 1 operators in each set commute one with each other. Proposition 16

takes its origin in a remark [48] according to which the rank of su(p) is p − 1 so that the

case ofp + 1 sets containingp − 1 commuting operators occurs as a limiting case. The

decomposition (73), also valid forsl(p, C), was first derived in [9] in connection with the

determination of finest gradings of Lie algebras of typeAp−1. It is little known that a

decomposition of type (73) was conjectured almost three decades ago [59] for the more

general case wherep is replaced by a prime power (see also [60]).�

Example 3. For the purpose of clarifying the production process of thesetsVi (for i =

0, 1, · · · , p), let us consider the casep = 7 ⇔ j = 3). Equations (74)-(80) give

V0 = {(01), (02), (03), (04), (05), (06)} (81)

V1 = {(10), (20), (30), (40), (50), (60)} (82)

V2 = {(11), (22), (33), (44), (55), (66)} (83)

V3 = {(12), (24), (36), (41), (53), (65)} (84)

V4 = {(13), (26), (32), (45), (51), (64)} (85)

V5 = {(14), (21), (35), (42), (56), (63)} (86)

V6 = {(15), (23), (31), (46), (54), (62)} (87)

V7 = {(16), (25), (34), (43), (52), (61)} (88)
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where(ab) is used as an abbreviation ofXaZb.

At this stage, it should be stressed that decompositions of type (73-80) are especially

useful for the construction of mutually unbiased bases [40,56]. Along this vein, the

common eigenvectors of each of thep + 1 subalgebrasv0, v1, · · · , vp give rise top + 1

mutually unbiased bases. Unfortunately, finding a general formula for the Lie brackets of

each pair of the Cartan subalgebras is a difficult problem forwhich we have no answer.

Counterexample 1. Ford = 4 ⇔ j = 3/2 (⇒ a, b = 0, 1, 2, 3), Proposition 15 is valid

but Proposition 16 does not apply. Indeed, the 16 unitary operatorsuab corresponding to

ab = 01, 02, 03, 10, 20, 30, 11, 22, 33, 12, 13, 21, 23, 31, 32, 00 (89)

are linearly independent and span the Lie algebra ofU(4) but they give only 3 disjoint

sets, viz.,{(01), (02), (03)}, {(10), (20), (30)} and{(11), (22), (33)}, containing each 3

commuting operators, where here again(ab) stands forXaZb. However, it is not possible

to partition the set (89) in order to get a decomposition similar to (73). Nevertheless,

it is possible to find another basis ofu(4) which can be partioned in a way yielding a

decompostion similar to (73). This can be achieved by working with tensorial products

of the matricesXaZb corresponding top = 2. In this respect, let us consider the product

ua1b1 ⊗ ua2b2 , whereuaibi
with i = 1, 2 are Pauli operators forp = 2. Then, by using the

abbreviation(a1b1a2b2) for ua1b1 ⊗ ua2b2 or Xa1Zb1 ⊗ Xa2Zb2 , it can be checked that the

5 disjoint sets

{(1011), (1101), (0110)} (90)

{(1001), (0111), (1110)} (91)

{(1010), (1000), (0010)} (92)

{(1111), (1100), (0011)} (93)

{(0101), (0100), (0001)} (94)

consist each of 3 commuting unitary operators and that the Lie algebrasu(4) is spanned

by the union of the 5 sets. It is to be emphasized that the 15 operators (90-94) are underlaid

by the geometry of the generalized quadrangle of order 2 [30]. In this geometry, the five

sets given by (90-94) correspond to a spread of this quadrangle, i.e., to a set of 5 pairwise

skew lines [30].

The considerations of Counterexample 1 can be generalized in the cased := d1d2 · · · de,

e being an integer greater or equal to2. Let us define

uAB := ua1b1 ⊗ ua2b2 ⊗ · · · ⊗ uaebe
A := a1, a2, · · · , ae B := b1, b2, · · · , be (95)
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whereua1b1 , ua2b2 , · · · , uaebe
are generalized Pauli operators corresponding to the dimen-

sionsd1, d2, · · · , de respectively. (The operatorsuAB are elements of the groupPd1
⊗

Pd2
⊗ · · · ⊗ Pde

. We follow [9] by calling the operatorsuAB generalized Dirac operators

since the ordinary Dirac operators correspond toP2 ⊗ P2.) In addition, letq1, q2, · · · , qe

be theq-factor associated withd1, d2, · · · , de respectively (qj := exp(2πi/dj)). Then,

Propositions 13, 14 and 15 can be generalized as follows.

Proposition 17. The operatorsuAB are unitary and satisfy the orthogonality relation

TrE(d1d2···de)

(

u†
ABuA′B′

)

= d1d2 · · · de δA,A′ δB,B′ (96)

where

δA,A′ := δa1,a′

1
δa2,a′

2
· · · δae,a′

e
δB,B′ := δb1,b′

1
δb2,b′

2
· · · δbe,b′e . (97)

The commutator[uAB, uA′B′ ]− and the anti-commutator[uAB, uA′B′ ]+ of uAB anduA′B′

are given by

[uAB, uA′B′ ]∓ =

(

e
∏

j=1

q
−bja′

j

j ∓
e
∏

j=1

q
−ajb′

j

j

)

uA′′B′′ (98)

with

A′′ := a1 + a′
1, a2 + a′

2, · · · , ae + a′
e B′′ := b1 + b′1, b2 + b′2, · · · , be + b′e. (99)

The set{uAB : A, B ∈ Zd1
⊗ Zd2

⊗ · · · ⊗ Zde
} of thed2

1d
2
2 · · · d2

e unitary operatorsuAB

form a basis for the Lie algebrau(d1d2 · · · de) of the groupU(d1d2 · · · de). In the special

case whered1 = d2 = · · · = de = p with p a prime integer (or equivalentlyd = pe), we

have[uAB, uA′B′ ]− = 0 if and only if

e
∑

j=1

ajb
′
j − bja

′
j = 0 (mod p) (100)

and[uAB, uA′B′ ]+ = 0 if and only if

e
∑

j=1

ajb
′
j − bja

′
j =

1

2
p (mod p) (101)

so that there are vanishing anti-commutators only ifp = 2. For d = pe, there exists a

decomposition of the set{uAB : A, B ∈ Z⊗e
p } \ {I} that corresponds to a decomposition

of the Lie algebrasu(pe) into pe + 1 abelian subalgebras of dimensionpe − 1.

Proof. The proof of (96)-(101) is based on repeated application ofProposition 13. For

d = pe, we know from [24, 25, 33] that the set{uAB : A, B ∈ Z⊗e
p } \ {I} (consisting of
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p2e − 1 unitary operators that are pairwise orthogonal), which provides a basis forsu(pe),

can be partioned intope + 1 disjoint classes containing eachpe − 1 commuting operators.

Therefore, there exists a decompostion ofsu(pe) into a direct sum ofpe+1 subalgebras of

dimensionpe − 1. (There is a one-to-one correspondence between thepe + 1 subalgebras

and thepe + 1 mutually unbiased bases inCpe

.) �

5 Closing remarks

Starting from an abstract definition of the Heisenberg-Weylgroup, combined with a polar

decompostion ofSU(2) arising from angular momentum theory, we have analysed in

a detailed way the interelationship between Weyl pairs, generalized Pauli operators and

generalized Pauli group. The interest of these developments for the unitary groupU(d),

d arbitrary, have been underlined with a special emphasis fora decomposition ofsu(d)

whend is the power of a prime. We would like to close with two remarks.

In arbitrary dimensiond, the number of mutually unbiased bases inCd is less or equal

to d+1 [24, 56]. Proposition 17 suggests the following remark. To prove that the number

of mutually unbiased bases inCd is d + 1 for d arbitrary amounts to prove that it is

possible to find a decomposition of the Lie algebrasu(d) into the direct sum ofd + 1

abelian subalgebras of dimensiond − 1. Therefore, if such a decomposition cannot be

found, it would result that the number of mutually unbiased bases inCd is less thand + 1

whend is not a prime power (cf. Conjectures 5.4 and 5.5 by Boykinet al [60]).

The Pauli group or discrete Heisenberg-Weyl groupPd ≡ HW (Zd) plays an impor-

tant role in deriving mutually unbiased bases in finite-dimensional Hilbert spaces. We

know that the concept of mutually unbiased bases also existsin infinite dimension [61].

In this connection, the infinite or ordinary Heisenberg-Weyl groupHW (R) might be of

interest for constructing mutually unbiased bases in infinite-dimensional Hilbert spaces.
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