I Agapov

G Blair

J Carter

O Dadoun

The BDSIM Toolkit

s Manual for the v0.1 version.

Introduction

BDSIM is a Geant4 [START_REF]Geant4 User's guide[END_REF] extension toolkit for simulation of particle transport in accelerator beamlines. It provides a collection of classes representing typical accelerator components, a collection of physics processes for fast tracking, procedures of "on the fly" geometry construction and interfacing to ROOT analysis.

Obtaining, installing and running

BDSIM can be downloaded from http://flc.pp.rhul.ac.uk/bdsim.html. This site also contains some information on planned releases and other issues. Alternatively, a development version is accessible under http://cvs.pp.rhul.ac.uk. Download the tarball and extract the source code 1 . Make sure Geant4 is installed and appropriate environment variables defined. Then go through the configuration procedure by running the ./configure script ./configure It will create a Makefile from the template defined in Makefile.in. Then start the compilation by typing ./make If the compilation is successful, an executable called bdsim should be created in the current directory or in the directory to which the G4WORKDIR environment variable points, if this variable is defined. Next, set up the LD LIBRARY PATH variable to point to the ./parser directory and to the directory containing libbdsim.so. BDSIM is invoked by the command bdsim <option> where the options are --file=<filename> : specify the lattice file --output=<fmt> : output format (root|ascii), default ascii --outfile=<file> : output file name. Will be appended with _N where N = 0, 1, 2, 3... etc. --vis_mac=<file> : visualization macro script, default vis.mac --help : display this message --verbose : display general parameters before run --verbose_event : display information for every event --verbose_step=N : display tracking information after each step --verbose_event_num : display tracking information for event number N --batch : batch mode -no graphics 1 BDSIM is supported on Linux and MacOS with gcc compiler

2

To run bdsim one first has to define the beamline geometry in a file which is then passed to bdsim via the --file command line option, for example bdsim --file=line.gmad --output=root --batch

The next section describes how to do this in more detail.

Lattice description

The beamline, beam properties and physics processes are specified in the input file written in the GMAD [START_REF] Agapov | GMAD accelerator description language[END_REF] language which is a variation of MAD [START_REF]MAD-X User's Guide[END_REF] language extended to handle sophisticated geometry and parameters relevant to radiation transport. GMAD is described in this section. Examples of input files can be found in the BDSIM distribution in the examples directory.

Program structure

A GMAD program consists of a sequence of element definitions and control commands. For example, tracking a 1 GeV electron beam through a FODO cell will require a file like this:

qf: quadrupole, l=0. Generally, the user has to define a sequence of elements (with drift, quadrupole, line etc.), then select the beamline with the use command and specify beam parameters and other options with beam and option commands. The sample command controls what sort of information will be recorded during the execution. The parser is case sensitive. However, for convenience of porting lattice descriptions from MAD, the keywords can be both lower and upper case. The GMAD language is discussed in more detail below.

Arithmetical expressions

Throughout the program a standard set of arithmetical expressions is available. Every expression is ended with a semicolon. For example x=1; y=2.5-x; z=sin(x) + log(y) -8e-5;

The variables then could be used along with numerical constants. The if-else clause is also available, for example z=1; if(z<2) y=2.5-x else y=15;

Physical elements and Entities

GMAD implements almost all the standard MAD elements, but also allows to define arbitrary geometric entities and magnetic field configurations. The geometry description capabilities are extended by using "drivers" to other geometry description formats which makes interfacing and standardization easier. The syntax of a physical element declaration is element_name : element_type, attributes; for example qd : quadrupole, l = 0.1*0.1, k1 = 0.01; element type can be of basic type or inherited. Allowed basic types are

• marker • drift • sbend • rbend • quadrupole • sextupole • octupole • multipole • vkicker • hkicker • rcol • ecol • laser • transform3d • element
All elements except element are by default modeled by an iron box (given by the box-Size option) with the vacuum-filled beampipe (defined by beampipeRadius option). An already defined element can be used as a new element type. The child element will have the attributes of the parent one as default q:quadrupole, l=1*m, k1=0.1; qq:q,k1=0.2;

Coordinate system

A standard coordinate system used in accelerator studies is assumed. The horizontal coordinates are x and x , vertical coordinates are y and y and the longitudinal coordinates are the distance along the nominal orbit z and the momentum. z is influenced by every component of nonzero length and x and y coordinates -by bending magnets and coordinate transformations transform3d .

Units

In GMAD the SI units are used (see Table 1). There are some predefined numerical values (see Table 2). For example, one can write either 100 or 0.1 * KeV when energy constants are concerned.

marker

marker has no effect but allows one to identify a position in the beam line (say, where a sampler will be placed). It has no attributes. Example: m1 : marker; • l -length [m] (default 0)

• angle -bending angle [rad] (default 0)

• B -magnetic field [T]
• aper -aperture [m] (default same as beampipe radius) when B is set, this defines a magnet with appropriate field strength and angle is not taken into account. Otherwise, the B that corresponds to the bending angle angle for a particle in use (defined by the beam command, with appropriate energy and rest mass) is calculated and used in the simulations. Example :

rb1 : rbend, l=0.5*m, angle = 0.01;

• l -length [m] (default 0)
• angle -bending angle [rad] (default 0)

• B -magnetic field [T]
• aper -aperture [m] (default same as beampipe radius)

The meaning of B and angle is the same as for rbend.Example : rb1 : rbend, l=0.5*m, angle = 0.01;

quadrupole

quadrupole defines a quadrupole. Attributes:

• l -length [m] (default 0) • k1 -normal quadrupole coefficient k1 = (1/Bρ)(dB y /dx)[m -2]
Positive k1 means horizontal focusing of positively charged particles. (default 0)

• ks1 -skew quadrupole coefficient ks1 = (1/Bρ)(dB y /dx)[m -2
] where (x,y) is now a coordinate system rotated by 45 degrees around s with respect to the normal one.(default 0).

• tilt [rad] -roll angle about the longitudinal axis, clockwise.

• aper -aperture [m] (default same as beampipe radius)

Example :

qf : quadrupole, l=0.5*m , k1 = 0.5 , tilt = 0.01;

sextupole

sextupole defines a sextupole. Attributes:

• l -length [m] (default 0) • k2 -normal sextupole coefficient k2 = (1/Bρ)(d 2 B y /dx 2)[m -3] • ks2 -skew sextupole coefficient ks2 = (1/Bρ)(d 2 B y /dx 2)[m -3
] where (x,y) is now a coordinate system rotated by 30 degrees around s with respect to the normal one.(default 0).

• tilt [rad] -roll angle about the longitudinal axis, clockwise.

• aper -aperture [m] (default same as beampipe radius)

Example :

sf : sextupole, l=0.5*m , k2 = 0.5 , tilt = 0.01;

3.3.9. octupole octupole defines an octupole. Attributes:

• l -length [m] (default 0) • k2 -normal sextupole coefficient k3 = (1/Bρ)(d 3 B y /dx 3)[m -4
] Positive k1 means horizontal focusing of positively charged particles. (default 0)

• ks3 -skew sextupole coefficient ks3 = (1/Bρ)(d 3 B y /dx 3)[m -4
] where (x,y) is now a coordinate system rotated by 30 degrees around s with respect to the normal one.(default 0).

• tilt [rad] -roll angle about the longitudinal axis, clockwise.

Example :

octp : octupole, l=0.5*m , k3 = 0.5 , tilt = 0.01; 3.3.10. multipole will be implemented starting from v0.2

rcol

rcol defines a rectangular collimator Attributes:

• l -length [m] (default 0) • xsize -horizontal aperture [m] • xsize -vertical aperture [m]
• material -material Example :

col1 : rcol,l=0.4*m, xsize=2*mm, ysize=1*mm, material="W";
The longitudinal collimator structure is not taken into account. To do this the user has to describe the collimator with the generic type element.

ecol

ecol defines an elliptical collimator.Attributes:

• l -length [m] (default 0) • xsize -horizontal aperture [m] • xsize -vertical aperture [m]
• material -material Example :

col2 : ecol,l=0.4*m, xsize=2*mm, ysize=1*mm, material="W";

Here the longitudinal collimator structure is also not taken into account.

solenoid

will be implemented starting from v0.2

hkicker and vkicker

hkicker and vkicker are equivalent to an rbend and an rbend rotated by 90 degrees respectively.

transform3d

An arbitrary 3-dimensional transformation of the coordinate system is done by placing a transform3d element in the beamline. The next element after it will be placed with respected to the new coordinates. The attributes are: Here the sector bend will act in the vertical plane. where filename is the path to the file with the geometry description and format defines the geometry description format and Example :

• x = {x offset} • y = {y offset} • z = {z offset} • phi = {phi Euler angle} • theta = {theta Euler angle} • psi = {psi
qq : element, geometry = "mokka:qq.geom", bmap ="mokka:qq.bmap";

Possible formats are specific to each geometry driver and described in Appendix A. where element n can be any element or another line. For example, a sequence of FODO cells can be defines as qf: quadrupole, l=0.5, k1=0.1; qd: quadrupole, l=0.

Attributes

• l -length of the drift section

• position -position of an arbitrary point on the beam axis relative to the center of the drift section

• direction -vector pointing in the beam direction

• wavelen -laser wave length [m] • spotsize -spot size (sigma)[m] • intensity -[W]
the laser is considered to be the intersection of the laser beam with the volume of the drift section. For example laser1: laser, l=10*cm, position={0.,0.,0.}, direction={1.,0.,0.}, wavelen=532e-9*m, spotsize=1e-6*m, intensity=10e6;

Material table

There is a set of predefined materials for use in elements such as collimators, e.g. "Al", "W", "Iron", "Copper", "Graphite" etc. Note that each geometry driver such as Mokka has its own set of materials

Run control and output

The execution control is performed in the GMAD input file through option and sample commands. How the results are recorded is controlled by the sample command. When the visualization is turned on, it is also controlled through Geant4 command prompt The following options influence the tracking and output deltaChord -chord finder precision deltaIntersection -boundary intersection precision chordStepMinimum -minumum step size lengthSafety -element overlap safety thresholdCutCharged -charged particle cutoff energy thresholdCutPhotons -photon cutoff energy randomSeed -seed for the random number generator stopTracks -if set, tracks are terminated after interaction with material and energy deposit recorded physicsList -determines the set of physics processes used ngenerate -number of primery particles fires when in batch mode nperfile -number of events recorded per file

beam

The parameters related to the beam are given by the beam command beam, name=value,...;

The available parameters are particle -particle name, "e-","e+","gamma","proton" etc. energy -particle energy distrType -type of distribution distrFile -input bunch file beam, particle="e+",energy=100*MeV, distrType=="gauss";

/help

For more details see [START_REF]Geant4 User's guide[END_REF].

Physics

BDSIM can exploit all physics processes that come with Geant4. In addition fast tracking inside multipole magnets is provided. More detailed description of the physics is given below.

Figure 2: A screenshot with an example BDSIM visualization

physicsList option

Depending on for what sort of problem BDSIM is used, different sorts of physics processes should be turned on. This processes are grouped into so called "physics lists". The physics list is specified by the physicsList option in the input file, e.g.

option, physicsList="em_standard";

Several predefined physics lists are available "standard" -transportation of primary particles only "em_standard" -transporation of primary particles, ionization, bremsstrahlung, multiple scattering "em_low" -the same but using low energy electromagnetic models "sr" -electromagnetic physics and synchrotron radiation generation "lw" -list for laser wire simulation -standard electromagnetic physics and "laser wire" physics which is Compton Scattering with the event probability renormalized to 1. "standard_hadronic" -standard electromagnetic, fission, neutron capture, neutron and proton elastic and inelastic scattering.

By default the standard physics list is used

Transportation

The transportation follows the scheme: the step length is defined either by the distance of the particle to the boundary of the "logical volume" it is currently in (which could be, e.g. field boundary, material boundary or boundary between two adjacent elements) or by the mean free path of the activated processes. The step size can also be limited for precision considerations. Then the particle is transported to the new position and secondaries are generated if necessary. Each volume has an associated transportation algorithm.

drift

The particles are translated along straight lines inside drift spaces.

     x x y y      =      1 h 0 0 0 1 0 0 0 0 1 h 0 0 0 1      ×      x 0 x 0 y 0 y 0     
If the trajectory reaches the boundary of the beam pipe then multiple scattering and other activated atomic and nuclear processes determine the random transport.

quadrupole

A similar procedure applies to quadrupoles with transport matrices inside the beampipe

     x x y y      = M ×      x 0 x 0 y 0 y 0     
where for a focusing quadrupole

M f =        cos(h √ k) 1 √ k sin(h √ k) 0 0 - √ k sin(h √ k) cos(h √ k) 0 0 0 0 ch(h √ k) 1 √ k sh(h √ k) 0 0 - √ ksh(h √ k) ch(h √ k)       
and for a defocusing one In sector (wedge) and rectangular bending magnets the transportation is according to the formula

M d =        ch(h √ k) 1 √ k sh(h √ k) 0 0 - √ ksh(h √ k) ch(h √ k) 0 0 0 0 cos(h √ k) 1 √ k sin(h √ k) 0 0 - √ k sin(h √ k) cos(h √ k)       
        x x y y ∆p p         = M ×         x 0 x 0 y 0 y 0 ∆p 0 p         +         0.5F h 1+∆p/p F 1+∆p/p 0 0 0         where M =         cos(F) h F sin(F) 0 0 -h F (1 --cos(F)) -F h sin(F) cos(F) 0 0 -sin(F) 0 0 1 L 0 0 0 0 1 0 0 0 0 0 1        
ρ is the bending radius of the central trajectory,

F = kh, k 2 = (1 -n)ρ 2 , n = -(dB)/(dx)(ρ/B).

sextupole and octupole

For tracking in sextupoles and octupoles the track is approximated by a chord with curvature determined by the local magnetic field. The step size h is determined by the required precision.

other elements

In all other elements 4th order Runge-Kutta method is used for tracking in electromagnetic fields and interaction with material is standard.

Electromagnetic Physics

Following electromagnetic processes are available

• Multiple Scattering, Ionization, Bremsstrahlung, Positron annihilation

• Gamma conversion

• Compton Scattering, Planck Scattering, Photoelectric effect

• Synchrotron radiation

• Muon production and transport

For most of the studies the physics list em standard is sufficient which includes multiple scattering, ionization and bremsstrahlung.

Hadronic Physics

Following hadronic processes are available

• neutron and proton elastic and inelastic scattering

• neutron capture

• fission

• radioactive decay

Output Analysis

During the execution the following things are recorded:

Energy deposition along the beamline Sampler hits

If the output format is ASCII i.e. if BDSIM was invoked with the -output=ascii option, then the output file "output.txt" containing the hits will be written which has rows like if ROOT output is used then the root files output 0.root, output 1.root etc. will be created with each file containing the number of events given by nperfile option. The file contains the energy loss histogram and a tree for every sampler in the line with self-explanatory branch names.

#

Implementation Notes

In this section the architecture of BDSIM is briefly described for someone wishing to use it as a class library (see Figure 6). The GMAD parser is written in flex/bison and is in the parser directory of the distribution. The interface is defined in gmad.h. The output of the parser is a list of elements. This list is passed to the BDSDetectorConstruction class which does the geometry construction. The geometrical entities are instances of classes BDSDrift, BDSSbend, BDSElement etc. Every element has an associated stepper class (BDSSectStepper, BDSQuadStepper etc.) which is responsible for the transportation. BDSPhysicsList class is responsible for defining physics processes. Most of the physics processes come with the Geant4 distribution. Some additional physics processes are implemented (BD-SLaserWirePhysics, MounPhysics, etc.). The interface to the output an analysis is in the BDSOutput class.The primary particle generator is implemented in the BDSBunch class.

A. Geometry description formats

The element with user-defined physical geometry is defined by <element_name> : element, geometry=format:filename, attributes for example, colli : element, geometry="gmad:colli.geo";

A.1. gmad format gmad is a simple format used as G4geometry wrapper. It can be used for specifying more or less simple geometries like collimators. Available shapes are:

Box { x0=x_origin, y0=y_origin , z0=z_origin, x=xsize, y=ysize, z=zsize, material=MaterialName, temperature=T } Tubs { x0=x_origin, y0=y_origin, z0=z_origin, x=xsize, y=ysize, z=zsize, material=MaterialName, temperature=T }
For example

Cons { x0=0, y0=0 , z0=0, rmin1=5 rmax1=500 rmin2=5 rmax2=500 z=250 material="Graphite", phi0=0, dphi=360, temperature=1 }
A file can contain several objects which will be placed consequently into the volume, A user has to make sure that there is no overlap between them.

A.2. mokka

As well as using the gmad format to describe user-defined physical geometry it is also possible to use a Mokka style format. This format is currently in the form of a dumped MySQL database format -although future versions of BDSIM will also support online querying of MySQL databases. Note that throughout any of the Mokka files, a # may be used to represent a commented line. There are three key stages, which are detailed in the following sections, that are required to setting up the Mokka geometry:

• Describing the geometry);

INSERT INTO mytable_BOX VALUES("a_box","vacuum", 50.0, 50.0, 50.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0);

INSERT INTO mytable_BOX VALUES("another_box","iron", 10.0, 150.0, 50.0, 1000.0, 0.0, 500.0, 0.0, 0.0, 0.0);

Further examples of the Mokka geometry implementation can be found in the examples/Mokka/General directory. See the common table parameters and solid type sections below for more information on the table parameters available for use.

A.2.2. Common Table Parameters

The following is a list of table parameters that are common to all solid types either as an optional or mandatory parameter:

• NAME Variable type: VARCHAR(32)
This is an optional parameter. If supplied, then the Geant4 LogicalVolume associated with the solid will be labelled with this name. The default is set to be the table's name plus an automatically assigned volume number.

• MATERIAL

Variable type: VARCHAR(32)

This is an optional parameter. If supplied, then the volume will be created with this material type -note that the material must be given as a character string inside double quotation marks("). The default material is set as Vacuum.

• PARENTNAME

Variable type: VARCHAR(32)

This is an optional parameter. If supplied, then the volume will be placed as a daughter volume to the object with ID equal to PARENTNAME. The default parent is set to be the Component Volume. Note that if PARENTID is set to the Component Volume then POSZ will be defined with respect to the start of the object. Else POSZ will be defined with respect to the center of the parent object.

• ALIGNIN

Variable type: INTEGER(11)

This is an optional parameter. If set to 1 then the placement of components will be rotated and translated such that the incoming beamline will pass through the z-axis of this object. The default is set to 0.

• ALIGNOUT

Variable type: INTEGER(11)

This is an optional parameter. If set to 1 then the placement of the next beamline component will be rotated and translated such that the outgoing beamline will pass through the z-axis of this object. The default is set to 0. This is a required parameter. This is the Z-position in mm used to place the object in the component volume. It is defined with respect to the start of the component volume and with respect to the component volume's rotation.

• ROTPSI

Variable type: DOUBLE(10,3)

This is an optional parameter. This is the psi Euler angle in radians used to rotate the object before it is placed. The default is set to zero.

• ROTTHETA Variable type: DOUBLE(10,3)

This is an optional parameter. This is the theta Euler angle in radians used to rotate the obejct before it is placed. The default is set to zero.

• ROTPHI

Variable type: DOUBLE(10,3)

This is an optional parameter. This is the phi Euler angle in radians used to rotate the obejct before it is placed. The default is set to zero.

• RED

Variable type: DOUBLE(10,3)

This is an optional parameter. This is the red component of the RGB colour assigned to the object and should be a value between 0 and 1. The default is set to zero.

• BLUE

Variable type: DOUBLE(10,3)

This is an optional parameter. This is the blue component of the RGB colour assigned to the object and should be a value between 0 and 1. The default is set to zero.

• GREEN

Variable type: DOUBLE(10,3)

This is an optional parameter. This is the green component of the RGB colour assigned to the object and should be a value between 0 and 1. The default is set to zero.

• VISATT

Variable type: VARCHAR(32)

This is an optional parameter. This is the visual state setting for the object. Setting this to "W" results in a wireframe displayment of the object. "S" produces a shaded solid and "I" leaves the object invisible. The default is set to be wireframe.

• ROUTERSTART

Variable type: DOUBLE(10,3)

This is a required parameter. This value will be used to specify the outer radius of the start of the cone.

• ROUTEREND

Variable type: DOUBLE(10,3) This is a required parameter. This value will be used to specify the outer radius of the end of the cone.

• STARTPHI

Variable type: DOUBLE(10,3)

This is an optional parameter. If set then this value will be used to specify the starting angle of the cone. The default value is zero.

• DELTAPHI Variable type: DOUBLE(10,3)

This is an optional parameter. If set then this value will be used to specify the delta angle of the cone. The default value is 2*PI.

A.2.5. 'Torus' Solid Types

Append TORUS to the table name in order to make use of the G4Torus solid type.

The following table parameters are specific to the torus solid:

• RINNER Variable type: DOUBLE(10,3)

This is an optional parameter. If set then this value will be used to specify the inner radius of the torus tube. The default value is zero.

• ROUTER

Variable type: DOUBLE(10,3) This is a required parameter. This value will be used to specify the outer radius of the torus tube.

• RSWEPT

Variable type: DOUBLE(10,3) This is a required parameter. This value will be used to specify the swept radius of the torus. It is defined as being the distance from the center of the torus ring to the center of the torus tube. For this reason this value should not be set to less than ROUTER.

• STARTPHI Variable type: DOUBLE(10,3)

This is an optional parameter. If set then this value will be used to specify the starting angle of the polycone. The default value is zero.

• DELTAPHI

Variable type: DOUBLE(10,3)

This is an optional parameter. If set then this value will be used to specify the delta angle of the polycone. The default value is 2*PI.

A.2.7. Creating a geometry list

A geometry list is a simple file consisting of a list of filenames that contain geometry descriptions. This is the file that should be passed to the GMAD file when defining the mokka element. An example of a geometry list containing 'boxes.sql' and 'cones.sql' would be:

'#' symbols can be used for commenting out an entire line /directory/boxes.sql /directory/cones.sql A.2.8. Defining a Mokka element in the gmad file

The Mokka element can be defined by the following command:

<element_name> : element, geometry=format:filename, attributes;

where format must be set to mokka and filename must point to a file that contains a list of files that have the geometry descriptions. for example, collimator : element, geometry="mokka:coll_geomlist.sql";

3. 3 .

 3 16. element All the elements are in principle examples of a general type element which can represent an arbitrary geometric entity with arbitrary field maps. Its attributes are • geometry = {geometry description} • bmap = {bmap description} Descriptions are of the form "format:filename"

Figure 1 :

 1 Figure 1: An example of a cryomodule described as element

3. 4

 4 .1. option Most of the options in BDSIM are set up by the command option, name=value,...; The following options influence the geometry beampipeRadius -default beampipe radius [m] beampipeThickness -default beampipe thickness [m] tunnelRadius -tunnel Radius [m] boxSize -default accelerator component size [m]

Figure 3 :

 3 Figure 3: An example of distribution tracked through a beamline

Figure 4 :

 4 Figure 4: Calculations with EM physics

Figure 5 :

 5 Figure 5: An example of root analysis

Figure 6 :

 6 Figure 6: Chart of BDSIM architecture

Table 1

 1

		: Units
	Length	[m] (metres)
	angle	[rad] (radians)
	quadrupole coefficient [m -2]
	multipole coefficient	2n poles [m -n]
	electric voltage	[MV] (Megavolts)
	electric field strength [MV/m]
	particle energy	[GeV]
	particle mass	[GeV/c 2]
	particle momentum	[GeV/c]
	beam current	[A] (Amperes)
	particle charge	[e] (elementary charges)
	emittances	[π m mrad]
	3.3.4. drift	
	drift defines a straight drift space. Attributes:
	• l -length [m] (default 0)	
	• aper -aperture [m] (default same as beampipe radius)
	Example :	
	d13 : drift, l=0.5*m;	
	3.3.5. rbend	
	rbend defines a rectangular bending magnet. Attributes:

Table 2

 2

	: predefined numerical constants
	pi	3.14159265358979
	me	electron rest mass
	mp	proton rest mass
	GeV	1
	eV	1 -9
	KeV	10 -6
	MeV	10 -3
	TeV	10 3
	m	1
	mm	1 -3
	cm	1 -2
	rad	1
	mrad	1 -3
	clight	2.99792458e+8
	3.3.6. sbend	
	sbend defines a sector bending magnet. Attributes:

 By default the macro is read from the file named vis.mac. The name of the file with the macro can also be passed via the vis mac switch.

	3.4.3. sample # Note: This command is not necessary in exampleN03,
	# To record the tracking results one uses the sample command: since the C++ method DrawTrajectory() is # described in the event action.
	sample, range=<name>; /vis/viewer/set/viewpointThetaPhi 90 90
	# /vis/drawVolume puts a plane sampler before element <name>. #/vis/scene/add/trajectories
	csample, range=<range>, l=<l>, r=<r>; # /tracking/storeTrajectory 0
	#/vis/viewer/zoom
	puts a cylindrical sampler of length l and radius r around element <name>, /tracking/storeTrajectory 1
	Example : #
	# for BDS:
	d:drift,l=1*m; #/vis/viewer/zoom 300
	sample, range=d; #/vis/viewer/set/viewpointThetaPhi 3 45
	csample, range=d;
	3.4.4. use
	use command selects the beam line for study
	test:line=(sb,d,d,qf);
	use, period=test;
	4. Visualization
	# Invoke the OGLSX driver
	# Create a scene handler and a viewer for the OGLSX driver
	/vis/open OGLIX
	# Create an empty scene
	/vis/scene/create
	# Add detector geometry to the current scene
	/vis/scene/add/volume
	# Attach the current scene handler
	# to the current scene (omittable)
	/vis/sceneHandler/attach
	# Add trajectories to the current scene

When BDSIM is invoked in interactive mode, the run is controlled by the Geant4 shell. A visualization macro should be then provided. A simple visualization macro is listed below.

bdsim --file=line.gmad --vis_mac=my_macro.mac

In interactive mode all the Geant4 interactive commands are available. For instance, to fire 100 particles type /run/beamOn 100 runs the simulation with 100 particles and to end the session type exit To display help menu

 An object must be described by creating a MySQL file containing commands that would typically be used for uploading/creating a database and a corresponding new table into a MySQL database. BDSIM supports only a few such commands -specifically the CREATE TABLE and INSERT INTO commands. When writing a table to describe a solid there are some parameters that are common to all solid types (such as NAME and MATERIAL) and some that are more specific (such as those relating to radii for cone objects). A full list of the standard and specific table parameters, as well as some basic examples, are given below with each solid type. All files containing geometry descriptions must have the following database creation commands at the top of the file: Once a table has been created values must be entered into it in order to define the solids and position them. The insertion command must appear after the table creation and must the MySQL compliant table insertion command: INSERT INTO TABLE-NAME_GEOMETRY-TYPE VALUES(value1, value2, "char-value", ...);The values must be inserted in the same order as their corresponding parameter types are described in the table creation. Note that ALL length types must be specified in mm and that ALL angles must be in radians. An example of two simple boxes with no visual attributes set is shown below.

			The first
	box is a simple vacuum cube whilst the second is an iron box with length x = 10mm, • Creating a geometry list length y = 150mm, length z = 50mm, positioned at x=1m, y=0, z=0.5m and with zero
	• Defining a Mokka Element to load geometry descriptions from a list rotation.
	A.2.1. Describing the geometry
	CREATE TABLE mytable_BOX (
	NAME	VARCHAR(32),
	MATERIAL	VARCHAR(32),
	LENGTHX	DOUBLE(10,3),
	LENGTHY	DOUBLE(10,3),
	DROP DATABASE IF EXISTS DATABASE_NAME; LENGTHZ DOUBLE(10,3),
	CREATE DATABASE DATABASE_NAME; POSX DOUBLE(10,3),
	USE DATABASE_NAME; POSY DOUBLE(10,3),
	A table must be created to allow for the insertion of the geometry descriptions. A table is created using the following, MySQL compliant, commands: POSZ DOUBLE(10,3),
	ROTPSI	DOUBLE(10,3),
	CREATE TABLE TABLE-NAME_GEOMETRY-TYPE (ROTTHETA DOUBLE(10,3),
	TABLE-PARAMETER ROTPHI DOUBLE(10,3) VARIABLE-TYPE,
	TABLE-PARAMETER	VARIABLE-TYPE,
	TABLE-PARAMETER	VARIABLE-TYPE
);	

Acknowledgement

Work supported by the Commission of European Communities under the 6 th Framework Programme Structuring the European Research Area, contract number RIDS-011899.

• SETSENSITIVE

Variable type: INTEGER(11)

This is an optional parameter. If set to 1 then the object will be set up to register energy depositions made within it and to also record the z-position at which this deposition occurs. This information will be saved in the ELoss Histogram if using ROOT output. The default is set to 0.

• MAGTYPE

Variable type: VARCHAR(32)

This is an optional parameter. If supplied, then the object will be set up to produce the appropriate magnetic field using the supplied K1 or K2 table parameter values . Two magnet types are available -"QUAD" and "SEXT". The default is set to no magnet type. Note that if MAGTYPE is set to a value whilst K1 or K2 are not set, then no magnetic field will be implemented.

• K1

Variable type: DOUBLE(10,3) This is an optional parameter. If set to a value other than zero, in conjuction with MAGTYPE set to "QUAD" then a quadrupole field with this K1 value will be set up within the object. Default it set to zero.

• K2

Variable type: DOUBLE(10,3) This is an optional parameter. If set to a value other than zero, in conjuction with MAGTYPE set to "SEXT" then a sextupole field with this K2 value will be set up within the object. Default it set to zero.

• POSX

Variable type: DOUBLE(10,3) This is a required parameter. This is the X-position in mm used to place the object in the component volume. It is defined with respect to the center of the component volume and with respect to the component volume's rotation.

• POSY

Variable type: DOUBLE(10,3) This is a required parameter. This is the Y-position in mm used to place the object in the component volume. It is defined with respect to the center of the component volume and with respect to the component volume's rotation.

• POSZ

Variable type: DOUBLE(10,3)

A.2.3. 'Box' Solid Types

Append BOX to the table name in order to make use of the G4Box solid type. The following table parameters are specific to the box solid:

This is a required parameter. This value will be used to specify the x-extent of the box's dimensions.

• LENGTHY

Variable type: DOUBLE(10,3) This is a required parameter. This value will be used to specify the y-extent of the box's dimensions.

• LENGTHZ

Variable type: DOUBLE(10,3) This is a required parameter. This value will be used to specify the z-extent of the box's dimensions.

A.2.4. 'Cone' Solid Types

Append CONE to the table name in order to make use of the G4Cons solid type. The following table parameters are specific to the cone solid:

This is a required parameter. This value will be used to specify the z-extent of the cone's dimensions.

• RINNERSTART

Variable type: DOUBLE(10,3) This is an optional parameter. If set then this value will be used to specify the inner radius of the start of the cone. The default value is zero.

• RINNEREND

Variable type: DOUBLE(10,3) This is an optional parameter. If set then this value will be used to specify the inner radius of the end of the cone. The default value is zero.

• STARTPHI

Variable type: DOUBLE(10,3) This is an optional parameter. If set then this value will be used to specify the starting angle of the torus. The default value is zero.

• DELTAPHI

Variable type: DOUBLE(10,3) This is an optional parameter. If set then this value will be used to specify the delta swept angle of the torus. The default value is 2*PI.

A.2.6. 'Polycone' Solid Types

Append POLYCONE to the table name in order to make use of the G4Cons solid type. The following table parameters are specific to the polycone solid:

This is a required parameter. This value will be used to specify the number of z-planes to be used in the polycone. This value must be set to greater than 1.

• PLANEPOS1, PLANEPOS2, ..., PLANEPOSN Variable type: DOUBLE(10,3)

These are required parameters. These values will be used to specify the z-position of the corresponding z-plane of the polycone. There should be as many PLANEPOS parameters set as the number of z-planes. For example, 3 z-planes will require that PLANEPOS1, PLANEPOS2, and PLANEPOS3 are all set up.

• RINNER1, RINNER2, ..., RINNERN Variable type: DOUBLE(10,3)

These are required parameters. These values will be used to specify the inner radius of the corresponding z-plane of the polycone. There should be as many RINNER parameters set as the number of z-planes. For example, 3 z-planes will require that RINNER1, RINNER2, and RINNER3 are all set up.

• ROUTER1, ROUTER2, ..., ROUTERN Variable type: DOUBLE(10,3)

These are required parameters. These values will be used to specify the outer radius of the corresponding z-plane of the polycone. There should be as many ROUTER parameters set as the number of z-planes. For example, 3 z-planes will require that ROUTER1, ROUTER2, and ROUTER3 are all set up.

A.3. GDML

GDML is a XML schema for detector description [6]. GDML will be fully supported as an external format starting from next release.

B. Bunch description formats

For compatibility with other simulation codes several bunch formats can be read. For example, to use the file distr.dat as input the beam definition should look like beam, particle="e-",distrType="guineapig_bunch",distrFile="distr.dat",... here a particle with E > 0 is assumed to be an electron and with E < 0 a positron. The following distribution types can be generated Gaussian : beam,distrType="gauss",sigmaX=<sx>,soigmaXp=<sxp>, sigmaY=<sy>,sigmaYp=<syp>,sigmaE=<se>,...;

Elliptic shell generated a thin elliptic shell in x, x and y, y with given semi-axes beam,distrType="eshell",x=<x>,xp=<xp>,y=<y>,yp=<yp>;