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We discuss the origin of pathological behaviors that have been recently identified in particle-
number-restoration calculations performed within the nuclear energy density functional framework.
A regularization method that removes the problematic terms from the multi-reference energy den-
sity functional and which applies (i) to any symmetry restoration- and/or generator-coordinate-
method-based configuration mixing calculation and (ii) to energy density functionals depending
only on integer powers of the density matrices, was proposed in [D. Lacroix, T. Duguet, M. Ben-
der, larXiv:0809.2041] and implemented for particle-number restoration calculations in [M. Bender,
T. Duguet, D. Lacroix, larXiv:0809.2045]. In the present paper, we address the viability of non-
integer powers of the density matrices in the nuclear energy density functional. Our discussion
builds upon the analysis already carried out in [J. Dobaczewski et al., Phys. Rev. C 76, 054315
(2007)]. First, we propose to reduce the pathological nature of terms depending on a non-integer
power of the density matrices by regularizing the fraction that relates to the integer part of the expo-
nent using the method proposed in [D. Lacroix, T. Duguet, M. Bender, arXiv:0809.2041]. Then, we
discuss the spurious features brought about by the remaining fractional power. Finally, we conclude
that non-integer powers of the density matrices are not viable and should be avoided in the first
place when constructing nuclear energy density functionals that are eventually meant to be used in

multi-reference calculations.

PACS numbers: 21.10.Re, 21.60.Ev, 71.15.Mb

Keywords: Energy density functional, particle number restoration, spurious contributions

I. INTRODUCTION

In their recent paper @], Dobaczewski et al. have
pointed out that there are two distinct pathologies that
might appear in calculations aiming at restoring particle
number within the nuclear Energy Density Functional
(EDF) framework. Formulating a Particle Number Re-
stored (PNR) EDF calculation through a contour integral
in the complex plane over multi-reference (MR) EDF ker-
nels, the two categories of pathologies are associated with
spurious poles and branch cuts of the complex MR-EDF
kernels that relate to dependencies of the latter on in-
teger and non-integer powers of the (transition) density
matrices, respectively.

The possible appearance of spurious poles was already
identified in Refs. [d, 3, 4]. In Ref. [5], hereafter re-
ferred to as Paper I, we demonstrated that such a pathol-
ogy is shared by any symmetry-restoration- or generator-
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coordinate-method (GCM)-based configuration mixing
calculation performed within the EDF context, which
we will call a Multi-Reference Energy Density Functional
(MR-EDF) formalism from hereon. In most other cases
than PNR, however, the identification of the spuriosities
is much less transparent. In Paper I, we proposed a for-
mal and practical regularization method that applies to
any symmetry restoration and/or GCM-based configura-
tion mixing calculation. In Ref. ﬂa], hereafter referred to
as Paper II, we applied the correction method to PNR
calculations using a particular energy functional that de-
pends only on integer powers of the density matrices and
thus only display spurious poles.

The pathology associated with spurious branch cuts
has been overlooked until recently ﬂ] for reasons that
will become clear in the following. As a remedy to it, the
authors of Ref. @] have proposed to deform the integra-
tion contour in the complex plane such that it does not
cross the branch cuts. As will be discussed below, such
a procedure does not allow the definition of a fully sat-
isfactory theory; e.g. the breaking of the shift invariance
remains. In addition, there is no clear method for gen-
eralizing the proposed solution to any other coordinate
frequently used in MR-EDF calculations.

In the present paper, we thus address the pathology as-
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sociated with branch cuts from a different point of view
than in Ref. @] We first make use of the correction
scheme designed in Paper I to regularize the pathology
associated with spurious poles. Doing so we can isolate
the part that is specific to the pathology brought about
by branch cuts and question whether it is possible to
perform meaningful MR calculations using an EDF that
depends on non-integer powers of the density matrices.
In fact, the question relates to the possibility to deal
with any EDF providing multi-valued MR kernels over
the complex plane. It will appear that any EDF (i) pro-
viding multi-valued MR kernels over the complex plane,
(ii) whose functional form is such that the pole structure
cannot be extracted analytically; e.g. the family of func-
tionals proposed by Fayans and collaborators ﬂ, ], is
critical. Eventually, anything but low-order polynomials
seems difficult, if not impossible, to handle in practical
MR-EDF calculations. Indeed, even if the pole structure
of a complicated EDF can be characterized, it is only
for low-order polynomials that the regularization method
proposed in Paper I can be applied to identify the associ-
ated spurious contribution to the physical pole at z = 0.

The present discussion is conducted for PNR calcula-
tions based on a EDF whose normal part takes the form
of a toy Skyrme energy density functional, and whose
pairing part derives from a density-dependent delta in-
teraction (DDDI). Numerical applications are performed
using the realistic SLy4 Skyrme EDF combined with a lo-
cal pairing part as derived from a (density-independent)
delta interaction (DI). Two situations of interest are ac-
tually considered that correspond to using an EDF (i)
derived from (density-dependent) forces (ii) formulated
directly at the level of the energy functional itself.

The paper is organized as follows. In Sect. [ basic el-
ements of the single-reference EDF method are recalled
and the form of the simplified energy functional consid-
ered for the discussion is given. Section [[II] introduces
PNR calculations performed within the EDF framework
and describes the analytical continuation into the com-
plex plane which is used for analysis purposes in Sect. [Vl

Section[[V]discusses the occurrence of pathological pat-
terns in particle-number restored energies. First, we re-
call the situation for EDFs depending on integer pow-
ers of the density matrices, which is the focus of Pa-
pers I and II. Then, EDF's depending on non-integer pow-
ers of the density matrices are discussed as the simplest
and most practically relevant example of EDF generating
multivalued PNR energy kernels over the complex plane.
Still, the conclusions drawn are valid for more involved
EDF's presenting such a feature. Finally, results of nu-
merical applications are provided in Sect.[V] highlighting
again the differences between EDFs depending on integer
powers of the density matrices and those depending on
non-integer ones. Conclusions are given in Sect. [Vl

II. SINGLE-REFERENCE EDF METHOD

Before we present results obtained with a realistic
SLy4+4-DI EDF, we analyze the relevant physics with a
toy functional, reduced to the bare minimum of terms
necessary to convey our point.

A. Density Matrices

The implementation of the Single-Reference EDF ap-
proach relies on the use of a quasi-particle vacuum |®,)
to calculate the one-body density matrices the energy
Elp, k,k*] is a functional of. The index ¢ in |®,) de-
notes the gauge angle that provides the orientation of
the system in gauge space. Using the requirement that a
meaningful energy functional should be invariant under
gauge space rotations, the angle can be set to a conve-
nient value, usually ¢ = 0.

In the canonical basis {¢,(r) = <r|aL|O>} of the Bo-
goliubov transformation that underlies the quasi-particle
vacuum |®g), the SR normal density matrix p and
anomalous density matrix k£ (pairing tensor) take the
form

_ (®olafau|®o)

2
v = = 0 v 1
Pu (D[ @) U Ou (1)
(®olava,|Po)
v = T = Ouvii s 2
i (@o|®Po) O )
. (®o|af,al|Po)
N TN N AL Ovi (3)
where {u,,v,} are BCS-like occupation numbers such
that ui + vﬁ =1, u, =ug >0 and v, = —vz. The two

canonical states (p, i) are the so-called pair conjugated
states. Based on an appropriate quantum number, the
basis can be split into a positive half (ux > 0) and a
negative half (1 < 0). When a canonical state p belongs
to one of these halves, its conjugate state i belongs to
the other half.

From the point of view of their physical content, cur-
rently used nuclear EDFs can be put under the generic
form [d]

g[pv R, ’{*] = 5kin [p] + gnorm[p] + (‘:pair [pa R, ’%*] 9 (4)

where appear the uncorrelated kinetic energy, the normal
and the pairing contributions, respectively. The contri-
butions from Coulomb interaction and explicit quantum
corrections as the center of mass correction have been
omitted for the sake of using simple notations. Including
them will not modify the arguments given below. From
the point of view of their functional dependence on nor-
mal and anomalous density matrices, the different parts
of the functional can be formally written

Einlp] = £, 5)
gnorm[p] grr + EPPPa , (6)
gpair[p, R, KJ*] = gﬁﬁ + gnﬁpﬁf : (7)



where the superscripts specify the powers of the nor-
mal and anomalous density matrices that contribute to
a given term. The focus of the present work is on the
properties of £PP" and £%"" when such a nuclear EDF
is used in MR calculations. Note that the Slater approxi-
mation which is usually used to tackle the exchange part
of the Coulomb contribution to the normal part of the
EDF is of the form £°°°" .

For the sake of a transparent discussion, we will per-
form the analysis for a toy functional limited to the min-
imum of ingredients necessary to make the point. For
this purpose, we start from a simplified Skyrme interac-
tion containing the so-called ¢y and t3 terms only, which
limits the local densities entering Enorm[p] to those that
do not contain spatial derivatives ﬂg] In addition, and
because the validity of the points made together with the
conclusions reached do not critically depend on it, we
omit the isospin degree of freedom and consider one nu-
cleon species only throughout the discussion. Comments
on the additional complexity brought by considering neu-
trons and protons are added in Sect. [VEl The gener-
alization to a complete and realistic Skyrme or Gogny
EDF is then straightforward.

B. Local densities

The local matter and spin densities needed to construct
Evormlp] are given by
= 2.0

Zsf’*

where ¢,(r) and & denote a canonical single-particle
spinor and the vector of Pauli matrices, respectively. In
addition, one needs the local kinetic density

() = Y [VoLm)] - [Vou)] puu.  (10)

m

P,u,u ) (8)

o (bu p,u,u ) 9)

to express the kinetic energy. The three previous local
densities can be put under the form

ZW puuv (11)

where f € {p,s, 7} and where the explicit form of W;{u (r)
can be easily extracted from Egs. (8HIQ); i.e.

Wi, (x) = o) du(r), (12)
Wi, (r) = ¢l(r) 6 ¢u(r), (13)
Wy, (r) = [Vol(x)] - [Veu(r)]. (14)

The densities entering the pairing part of the EDF are
the local pair densities defined as

pr) =23 Wia(r) ra (15)

n>0

Finally, with the symmetries of the SR and MR EDF
calculations assumed here, W, (r) and W/ are equal
and given by the spin-singlet part of the two-body wave
function, defined as

Wi,(x) =Wiir) = Y odu(ro) ¢, (r—a) (16)
o==+1
= W, (x) = -W[r(x). (17)

C. Toy energy density functional

The kinetic energy part of the EDF takes the form

EP = /d37“2h—m7'(r) (18)

whereas the normal part derives from a toy Skyrme in-
teraction characterized by!

ere /d3r [A°Pp?(r) + A*s*(r)], (19)

/d3r [A”””a p2(r) + AssP” s°(r)] p*(r) (20)

grer®

Finally, the pairing part of the EDF is given as
e = [t A7 () o). (21)
= [Er A 5w o, (22)

gmipW
where the superscripts ff and fff’ of the As refer to the
local densities the corresponding term depends on. In ad-
dition, one can still read off those superscripts the powers
of normal and anomalous density matrices that the cor-
responding term incorporate. Note that no hypothesis
about time-reversal invariance of the system has been
made. On the other hand, we limit ourselves to quasi-
particle vacua |®,) with an even number-parity quan-
tum number and thus only discuss explicitly even-even
systems.
The part of the EDF which only depends on the normal
density matrix can be derived from a schematic Skyrme
force

’Usk(R, I‘u) = to (1 +$0Pg) 5(1‘12)

t .
+5 (Lt a3 Po) o (R) 8(r12) . (23)
where R = (r1 4+ r2)/2 and r1a = r; — ro, whereas
P, = %(1 + 01 - 02) denotes the spin exchange operator.
Computing the normal part of the EDF as the Hartree

I One could have considered that the terms multiplying p? and s
«
in EPPP present different exponents.



and Fock contributions derived from such an empirical
effective vertex, one obtains

APP — +it0(1 — z0), ArPP”

A% = —Jto(1—mo), A" =

—l—ﬁtg(l — ,Tg) R (24&)

_ﬁtii(l - I3) s (24b)
which shows that in this case the four coupling constants
entering the EDF depend on two independent parame-
ters only. However, we will also be interested in EDFs
which are not derived from a Skyrme force and for which
the four coupling constants can be chosen independently.
For more complete and realistic functionals, local gauge
invariance imposes constraints between certain coupling
constants [10].

The part of the EDF which depends on the anomalous
density matrix could be derived from the same Skyrme
force. As one usually focuses on the superfluidity in the
spin-singlet /isospin-triplet channel, one would be led in
practice to select only a part of the interaction from the
outset. Furthermore, there exists strong theoretical mo-
tivations to explicitly disconnect the part of the EDF
responsible for superfluidity from the part that only de-
pends on the normal density matrix However, such a
decoupling between Eorm and Epair is at the origin of seri-
ous problems encountered in MR-EDF calculations ﬂ, ﬁ]
We will come back to that in the following. For now, one
can relate the specific local pairing functional given in
Egs. (2I22) to a DDDI vertex of the form

po(R)
psat

tparBer) = 3 (1= B [ 1= 0(25) ] 60, (25)

where pgq; = 0.16 fm—3, which leads to

~~ ’]7 ~
. AP = 26
4 0 4p'cy 0 ( )
Independently of the starting point, a quasi-local pair-
ing EDF must be regularized /renormalized as far as its

ultraviolet divergence is concerned ﬂﬂ]

IIT. PARTICLE NUMBER RESTORATION

A. Notations

As extensively discussed in Ref. @] and in Paper II,
Particle Number Restoration (PNR) performed within
the EDF framework relies on calculating the energy of
the N-particle system through a MR energy functional
of the form

e = [ N g0, ) (oo 27
= [ ep e, )

where

) 27 e—ing
= d Dy|P 28
di= [ e @), (28)

in such a way that £V depends only implicitly on the
(normalized) projected state

PN 27 —ipN
Ny = _PT%0) :/ dy < B,).  (29)
(@o| PN | Do) 0 2men

The gauge-space-rotated product states constituting the
MR set of interest read, in their common canonical basis,
as

[@4) = ¥ [@0) = [T (s + v e®? aif af )10}, (30)
n>0

where |0) is the particle vacuum. The above form of |®,)
is convenient to compute the overlap between a rotated
state and the unrotated one

(@o]@y) = ] (up +vie*?). (31)
n>0
In Eq. 1), £]0, ] denotes the (set of) MR energy den-
sity functional kernel(s). It is traditionally defined by
replacing the SR normal and anomalous density matri-
ces by transition ones

<<I>0|alta#|fl)g,>

02 o2i®
P = =5 Sups  (32)

0 u2 4 v2 e2ie M7
[Bofby) w2+ od e
2ip
0o _ (Polavau®y) __upvge 5 -
fur = <(I)0|(I)Lp> ui+vﬁ e2ip VHO ( )
R ) S R
e N T

into the SR EDF &|[p, x, k*]. This corresponds to defining
non-diagonal energy kernels through the prescription

E[0, o] = E[P°?, k77, k0] (35)

As discussed in Paper I, MR-EDF calculations per-
formed along the lines presented above fulfill basic re-
quirements ﬂ%] but may display pathologies such as di-
vergences and finite steps in the energy. The extent of
such problems depends on the analytical form of the EDF
used. In order to conduct an in-depth analysis of the po-
tential problems, it is necessary to perform an analytical
continuation of [0, ¢| to the complex plane [1, [14].

B. Continuation to the complex plane

The continuation is achieved by extending the complex
number z = €'Y onto the entire complex plane in all
previous formulae.? In that context, the PNR energy

2 The same notation as before is used when extending the defini-
tion of SR states and energy kernels to any value of the complex
variable z. Thus, we abusively replace the gauge angle ¢ by the
complex variable z in all our expressions; i.e. SR states character-
ized by the gauge angle ¢, |®,) are extended into |®.) to denote
SR states anywhere on the complex plane. In particular, the un-
rotated SR state, denoted as |®g) when using ¢ as a variable, is
written as |®1) when using z as a more general variable.



defined through Eq. 7)) results from integrating over
over a closed contour around z = 0 which can be chosen

as the unit circle C; (Jz] = R =1)
dz  Elz]
N = |0
¢ fc 2imc2, N+ (@1]@:), (36)
dz 1
2 _
& = § g v 10, (37)

where

(01]®,) = H (up + 7, 2%) . (38)

n>0

With this continuation, the transition density matrix and
pairing tensor read as

2,2
vz
0
Puw = 3 523 Ovns (39)
uu—l—vuz
U v, 22
:‘ﬂ?llﬁj = 7’“2:%2 2 (51,;1, (40)
Iz Iz
Uy, v
'ift}/* = 72 ug 2 Ovii s (41)
u#—l—v#z

and must replace the SR density matrices in Eqgs. B{I3in
order to define the corresponding transition local densi-
ties. Finally, the energy kernel from Eq. (B8] reads as

Elz] = E[p'?, k17, k7. (42)

IV. STEPS AND DIVERGENCES

A. General considerations

The computation of £V through an integration over
a contour encircling the origin requires the knowl-
edge of the (non-)analytical structure of the integrand
E[2] (®1|®,)/2N+! over the complex plane. First, it ob-
viously contains a (physical) pole at z = 0. Since &|[z]
is a functional of the transition density matrices, (i) it is
a function of z? and is thus even, i.e. £[z] = £[—2], (ii)
its analytical structure relates to the one of the tran-
sition densities. As displayed in Fig. [l it is trivial
to see that p'?, k' and k*'* possess simple poles at
2 = +2, = +iluy|/|v,| [1]. In general, it is likely that
those poles will translate into non-analytical features of
E[z] (P1|®.) that have serious consequences on the PNR
energy.

As explained in Paper I, it is necessary to go to con-
figuration space to isolate the spurious contributions to
the MR-EDF energy. For a given pair of vacua belong-
ing to the MR set, the basis relevant to the analysis of
the corresponding energy kernel is the canonical basis of
the Bogoliubov transformation connecting the two vacua.

For PNR calculations, this simply amounts to expressing
the EDF kernel £[z] in the canonical basis of the Bogoli-
ubov transformation defining any of the product states of

Im[z] ¢ +z
0 +2,
o +7,
© -z Re[z]
Zuzlluulllvul
¢
0

FIG. 1: Pole structure of p**, x'* and x*'* on the complex
plane.

reference; e.g. |®1). Indeed, the same canonical basis is
shared by all product states |®.) over the complex plane,
as well as by the Bogoliubov transformation linking any
pair of them.

B. Term depending on integer powers of densities

Let us start the analysis with terms that depend on
integer powers of the density matrices. To illustrate the
situation, we make use of the bilinear parts, Eqs. (I9)
and (210), of the toy EDF introduced in Sect. [TCl

1. Matriz elements

Working in the canonical basis of Bogoliubov transfor-
mation connecting |®;) and |®,), the bilinear part of the
energy kernel £[z] takes the form

£77[2] + €7 ]

Zvuuuu puu pVIJ 1 Z’U uuz/ Zl* VIJ7 (43)

where 77 and v"" denote matrix elements of effective
two-body vertices associated with £°7 and £"", respec-
tively. For the toy functional of Eq. (I9), the matrix
elements of v°? take the form



7P =
U =

The quasi-local nature of the Skyrme energy functional
(the toy functional considered here being purely local)
simplifies the construction of the matrix elements v/7
as they involve a single spatial integral only. However,
the discussion conducted in the rest of the paper would
hold equally for non-local functionals; e.g. as obtained
from finite-range, possibly non-local, effective vertices.

The matrix elements associated with £ in Eq. (2I))
take the form

—“KK
Ypupivo

=4 / dPr APP W (r) W (r) . (45)

Note that for PNR calculations, the matrix elements that
one naturally associate to any term of the EDF depend-

4 4
1 v, 2

— 1 (5pp 7PP [
V=i = 3 (vuuuu + Uuwu) W2+ 022
m

m

_ = 1 (PP PP 2.2
V=Uu = {2(vuﬂuﬁ+v’ )v z5+v

appp )

and both contain potential poles at z = £z, =
+i|u,|/|v.|. Note that those poles do not exist in the
first place if the states (u, 1) are more than doubly de-
generate in terms of occupation numbers as an additional
factor from the norm then compensates the single pole
in Eqs. (@673

Otherwise, the poles disappear in Eq. (@0]) if, and only
if, 00 . = Unhan = 0; ie. the matrix elements associ-
ated with £°7 are antisymmetrized. Coming back to the
toy Skyrme functional used in the present paper, and
noticing that

Wi, @ = W@ = Y leuto)?] . (a8)

o=+1
— . _pp . .
for all y, one finds that vff = vghzs = 0 if, and only

if, A%* = —APP. As shown by Egs. [24al24D), such a

3 This holds for bilinear functionals. A term of order n in the den-
sity matrices can generate a pole at £z, of order (at most) (n—1).
For the pole to disappear, (n—1) additional factors from the norm
kernel are needed to cancel the denominator (ui + vi 22)=(n=1),
Thus, the pair of interest (u, 1) needs to be degenerate (at least)
with (n — 1) other pairs in terms of occupations for this to occur.

2 /d?’r [A”” Wlfu(r) WP (r) + A% me(r) Wﬁy(r)} .

(44)

ing on integer powers of the density matrices do not de-
pend on the pair of vacua |®;) and |®,) under consider-
ation, i.e. they do not depend on the gauge variable z.

2. Analytical structure of (EPP[z] + E™"[z]) (P1]P.)

Due to the additional presence of the norm factor
(®1]|®,) in the integrand of Eq. ([B), it is easy to realize
that only the terms corresponding to v = p and v = fi in
Eq. [@3) can lead to non-analytical features [5, [d]. Such
terms contribute to the integrand through

I e, w0
v#pu>0
2 UZ a 2, .22
KK
pufi i uu} W2 + 02 22 H (uy +vp2%) (47)
TR
v#pu>0

condition is satisfied when starting from the (density-
independent part of the) Skyrme force. The previous
analysis is trivially extended to the density-independent
part of a more complete Skyrme or Gogny vertex. On the
other hand, using a functional approach that bypasses
the introduction of a two-body vertex, relationships such
as A®% = —APP might not be fulfilled. In such a case £
generates poles at z = +z,, in the integrand of Eq. (3@).

The poles disappear from Eq. ) if, and only if,
Uy s e diagonal matrix elements involving
two conjugated canonical states are identical in £°7 and
Ert It it is so, the two terms in the bracket of Eq. (7))
combine in such a way that the dangerous denomina-
tor explicitly cancels out. One is then left with a finite
contribution to the MR energy kernel. Such a recom-
bination is obviously satisfied if both £°7 and &£"" are
constructed from the same (effective) force, for example
when using the density-independent part of the Gogny
interaction B] Using a functional approach or starting
from two different effective vertices to build £ and £"*,
the recombination is unlikely to occur and one is left with
an ill-defined PNR formalism and compromised results.

— ,DNH

i PP = PP = i
Just as we did to ensure that v/f, = Vnin O,.1.e.
A®® = —APP_ one could work out minimal constraints

between the coupling constants entering £°° and £* to
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FIG. 2: Computation of £V for an EDF (i) obtained from
the average value of a genuine Hamiltonian in the projected
state (ii) depending only on integer powers of the densities
and after applying the correction proposed in Paper 1. The
integration is performed in the complex plane over a circular
contour C'r of arbitrary radius R.

PP

impose that v,5,; = 0,5, in the underlying EDF.
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3. Projected energy from a Hamiltonian

As seen from the previous discussion, poles in the
transition densities do not always translate into poles
in E[z] (P1]|P.). The most trivial example for this oc-
curs when the particle number projected energy is com-
puted from the average value of a genuine Hamiltonian
in the projected state [U); i.e. what we denote as the
strict projected HFB approach in Paper II. In this case,
the only pole of the integrand in Eq. (B8] is the phys-
ical one at z = 0. To apply the Cauchy theorem?*
and calculate the projected energy, the original circu-
lar contour C; must be deformed to exclude the pole at
z = 0. As shown in Fig. @ this can be achieved by
choosing two semi-circular contours Cy and Cy, such that
C1 = [Cy+C4) (e — 0), and by closing those semi-circular
contours along the imaginary axis in such a way that the
pole at z = 0 is bypassed by two semi-circles of infinitely

4 The present Section reformulates parts of the analysis proposed
in Paper II for functionals proportional to integer powers of the
density matrices, i.e. we employ Cauchy’s integral theorem rather
than using directly Cauchy’s residue formula. Coming back to
Cauchy’s integral theorem will be needed to conduct the dis-
cussion for more general functionals as is indicated in the next
Section.

small radii. Using such contours, it is easy to prove that

& EN = Res {%} , (49)
z=0
& = Res {%] (50)
z=0

Because the only pole of the integrand is at z = 0, the
same result is obtained for £V by starting from any inte-
gration contour encircling the origin in Eq. (3G). When
the energy is calculated as the average value of a Hamil-
tonian in the projected state, the independence of the
projected energy on the details of the integration con-
tour, as for example its radius, can be related to the
invariance of the normalized projected state with respect
to shift transformations ﬂ, @] This symmetry will be
discussed below in the EDF context.

4. PNR energy from an EDF

The poles subsist in Eqs. {#6) and 1) for any EDF
that is characterized by v/, ,, # 0 and/or U5, 7 Vpifi -
To apply the Cauchy theorem in this case, the circular
contour C'; must now be deformed to exclude not only
the pole at z = 0 but also those at z = £z, which are
inside the unit circle. As shown in Fig. Bl this can be
done by choosing two semi-circular contours Cy and Cj,
such that C; = [Cy + Cyl(e — 0), and by closing each
of them along the imaginary axis in such a way that all
the poles are bypassed by semi-circles of infinitely small
radii. Using such contours, the Cauchy theorem leads to

> e [0

2 oN __
CNE = ZN+1
z=0,%tz,

z

whereas ¢4 remains unchanged.

According to Eq. (&I, the existence of poles at z =
+2z,, in the integrand makes the PNR energy to (i) depend
on the radius of the integration circle [1, %], (ii) display a
finite step whenever a pole leaves the integration circle;
e.g. as the system is deformed along a collective degree
of freedom [1, l6]. Such a behavior make the PNR energy
to break shift invariance. This is very undesirable as the
concept of shift transformation and shift invariance can
be extended to the EDF framework in such a way that
the invariance of £V with respect to the radius of the
integration contour remains a fundamental feature of the
theory [15].

Also, PNR energies may display divergences whenever
a pole crosses the integration circle. When a pole sits on
the integration contour Cg, the definition of the contour
Cr = [Cy+Cy (e — 0) is in fact ambiguous and requires
an additional prescription. The most natural procedure
is to define the integration through the pole in the sense
of the Cauchy principal value. Doing so provides a finite
PNR energy if the Laurent series of the integrand cen-
tered at the pole only contains odd powers. Considering



FIG. 3: Computation of £V for an EDF depending on integer
powers of the densities. The integration is performed in the
complex plane over the unit circle C;.

the structure of the nuclear EDF, this will happen if the
EDF (i) only contains bilinear terms (ii) contains addi-
tional trilinear terms that do not allow three powers of
the same isospin (as a zero-range three-body force does
not allow) (iii) contains additional quartic terms which
are bilinear in each isospin. In this case, one is left with
simple poles at z = +z, and the Cauchy principal value
equals half the result that would be obtained if the pole
were to lie inside the integration circle. In all other cases,
one can see that (i) the poles at z = +z,, will be of higher
orders (ii) the Laurent series centered at those poles will
contain even powers (ii) the Cauchy principle value will
lead to an infinite values and the PNR energy will di-
verge as a poles crosses the integration circle. If the EDF
used is such that PNR energies diverge whenever a pole
crosses the integration circle, it is important to note that
Variation After Projection (VAP) calculations will not
converge as soon as the minimization procedure ”finds”
the infinity B, ]

All previous features prove that PNR calculations are
ill-defined whenever poles at z # 0 arise and that the
theory is unacceptable as it is. However, it is possible to
meaningfully regularize PNR calculations based on any
EDF depending on integer powers of the density matri-
ces as was demonstrated in Paper I and exemplified in
Paper II. As a matter of fact, the method proposed in
Paper I precisely removes the poles at z = +z, from
E[z] (P1|®.). However, it is crucial to realize that the
correction method does not only remove those poles but
also consistently subtracts a spurious contribution to the
physical pole at z =0 ﬂa] In the end, only the physical
pole at z = 0 remains in Eq. (@) and the independence
of &N on the integration contour is recovered, as seen

from Fig. Bt i.e. the same PNR energy is obtained by
integrating over circular contours C'r of arbitrary radius
R.

C. Non-integer power of densities
1. Problem

The situation is often more complex due to the pres-
ence of higher-order terms of the form £PP°" and %"
in realistic nuclear EDFs, Eqs. (20) and (22)).

If « =y =1, then £PPP and £""* can, at least formally,
be analyzed as if they originated from a three-body ver-
tex. Thus, and as for the bilinear terms, two cases have
to be distinguished (i) £7P? and £7"P are both derived
from the same antisymmetrized three-body vertex and
do not lead to divergences and steps in MR-EDF calcu-
lations (ii) they refer to different three-body vertices such
that the regularization method proposed in Paper I can
be applied to obtain a meaningful PNR-EDF method.

However, all modern parameterizations of the nuclear
EDF, starting either from a functional approach or from a
density-dependent vertex, depend on non-integer powers
of the density matrix that one cannot expand in a Taylor
series to relate them, at least formally, to three-body,
four-body, ...forces. The goal of the present paper is
to characterize the pathologies brought about by such
dependencies and whether or not they are viable in the
end; i.e. if the corresponding pathologies can be easily
regularized.

2. Regularizing the integer part

As a first step, one can reduce the extent of the prob-
1en217§ giiociated with terms of the form &7 and
g P with m and n integer, and 0 < a < 1 and
0 < v < 1, to pathologies only due to the fractional
powers p® and p7, respectively. This means that steps
and potential divergences associated with the integer part
2m + n can be regularized from the outset. This is the
case either (i) if one started from a density-dependent
(2m + n)-body effective force or (ii) by applying the

2m-+n

correction method proposed in Paper I to &£ and

g,
Let us exemplify how an empirical extension of the
correction method proposed in Paper I can be designed
to regularize the quadratic part of £/7°”  with 0 < o < 1.
To simplify the situation further, we disregard the term
£r%r” in the following discussion. Such a simplification
does not alter any of the conclusions given in the rest of
the paper.

To proceed, we first introduce pseudo two-body ma-
trix elements T)ﬁﬁﬁi [2] which take, for the toy functional
considered in the present paper, the form
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With the pseudo two-body matrix elements ﬁfbﬁfjj [2]
at hand, one can apply the correction formula given by
Eq. (43) of Paper II. However, and as opposed to terms
of the EDF depending on integer powers of the density
matrices, the matrix elements of 77?" do depend on the
gauge variable z. As a result, Eq. (43) of Paper II must
be applied in such a way that the matrix elements are
located underneath the integral over z. Last but not
least, it would also be trivial to regularize the integer
part of £5%7” by introducing the pseudo two-body ma-
trix elements %" [z] and by using them in Eq. (43) of
Paper II.

D. Left-over fractional power

With the latter correction at hand, the quadratic part
of £PPP" does not create any divergence or step in the

ENlppp®] = j{ o

2
o 2iTCy

where

Fz)(r) = 2* Z [Apppa Wﬁu(r) WP (r) + AP me(r) Wf/l,(r)] v

v

with N even. In agreement with the properties of £[z]
mentioned above, F[z](r) is an even function of z for all
r. For odd N, it is easy to prove that F[z](r) is an odd
function of z in such a way that F[z](r)/2zV ! remains
itself an odd function of z.

The terms corresponding to v = p and v = [ are
absent in Eq. (B4]) because (i) they were removed by the
correction method briefly outlined in Sect. [V.C] (ii) one
started from a density-dependent two-body interaction;
i.e. the term with v = p do disappear (A%°" = —ArrP™)
whereas the term with v = i could be combined with
the corresponding one in £%/" to give a well-behaved
contribution that we omit here.

To understand the features displayed by the contri-
bution £N[ppp®] to the PNR energy, it is necessary to
extract for each r the non-analytical structure of the in-
tegrand in Eq. (53]) where the order of the two integrals
over r and z have been reversed. Clearly, the function
F[2](r)/zN*1 displays a (physical) pole at z = 0. The

2 / d*r [APPP WS (x) WS, (r) + A% W, (r) - W3, (1) [p**(x)] " . (52)

PNR-EDF energy anymore. Again, the same is true if
one starts from the outset from a density-dependent two-
body antisymmetrized interaction, as long as the corre-
sponding term £ is explicitly considered in the EDF
to proceed to the necessary recombination of terms in
Eq. (#T). One way or another, one is only left in the end
with discussing the impact of the fractional power of the
transition density; i.e. the extra factor [plz(r)}a, with
0<a<l.

1. Analytical structure of EPPP" [2] (®1|®.)

Now that the pathologies due to the bilinear factor in
£PPP” have been taken care of, the contribution of interest
to the PNR energy can be written as

greet [ dz Flz|(r 1z a
@iy = [ B (oo, (53)
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difficulty comes from the fractional power of the local
transition density that multiplies F/[z](r). Indeed, such a
function is multivalued on the complex plane for all r.

Defining the function corresponding to taking the frac-
tional power of a complex number® requires the introduc-
tion of a branch cut along the axis where that number
is real and negative. Here, this means that one needs
the values of z for which the function p'*(r) is real and
negative. As can be seen from Eqs. [8) and ([B9), the
transition density is real both on the real and imagi-
nary axis, but can be negative only on the latter. A
discussed in Ref. [1], p'*(r) is negative for z = iy such

5 Parameterizing z = ret? 0 e [—m, 4], we define the principal
value of the function z%, « being a rational number between zero
and one, as z& = r®e?®? The latter choice lifts the ambiguity
regarding the multivalued nature of the function but requires to
track the latter through several Riemann cuts.



FIG. 4: Branch cuts of [p'*(r)]”. The branch cuts join the
integrable poles of [p'*(r)]™ at z = +i|u, /v,| (squares) and
its zeros at z = +iay, (crosses).

that |z,-1] < o < y < |2z,], as well as on the entire
interval [—z1,+21], where z; denotes the closest pole to
the origin. The corresponding branch cuts are charac-
terized in Fig. @ by solid lines joining the zeros of p'*(r)
at z = *ia, (crosses) and its next integrable pole at
z = *z, (square). Whereas the poles of p'*(r) are in-
dependent of the position vector r, the points z = Fic,
at which it changes sign in between two poles do depend
on r.

2. Calculation of EN[ppp®)

Knowing the non-analytical structure of the integrand
F[2](r)[p**(r)] " /2NF1, the integration contour to be
used in Eq. (B3) can be specified. Just as before, the
circle Cr needs to be deformed in order to apply the
Cauchy theorem on contours encircling regions where the
function is entirely analytical. In particular, one cannot
go through branch cuts as one must remain on the same
Riemann sheet. An acceptable decomposition under the
form Cr = [Cy + Ca|(e — 0), where each semi-circle
C,/Cy is further closed by a vertical segment along the
imaginary axis interrupted by a semi-circle around the
origin, is displayed in Fig. Note that, as opposed to
Fig.Bl no special care needs to be taken around the poles
at z = +z, as they are now integrable (~ 1/z% with
0 < @ < 1). The crucial point, however, is that the por-
tions along the branch cuts will not cancel out as we sum
the two vertical segments because the integrand (in fact
[plz(r)]a) is discontinuous across the branch cuts.

One may wonder what happens when, as in Fig [0
the radius R is such that the original contour Cr goes
through a branch cut. In fact, the contour Cr defined
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FIG. 5: Specification of the integration contour for an EDF
containing fractional powers of the densities.

through [Cy + Cy)(e — 0) in Fig. B (i) is well defined
when a branch cut lies in between C; and Cy because
the limit € — 0 does not pose any problem once the value
of the function on both sides of the cut has been prop-
erly worked out, (ii) is the contour which has been used
in actual calculations [1, 3, [17] and (iii) might however
need to be discretized on a rather dense mesh to provide
converged calculations.

Note that the deformation of the contour discussed
above was advocated in Ref. @] as a remedy to the pathol-
ogy brought about by branch cuts. In fact, it is rather
a necessary step to simply define the integration over
the original circle and obtain the result it provides. As
detailed below, proceeding to such a deformation of the
contour does not remove the intrinsic pathological nature
of MR calculations performed using an EDF containing
non-integer powers of the density matrices.

We are now ready to apply the Cauchy theorem along
the two closed contours appearing in Fig. Bl and then let
€ goes to zero. It is clear that the contributions from the
vertical portions in between the branch cuts cancel out
as we add the results from the two closed contours. On
the other hand, contributions from segments along the
branch cuts will not cancel out because of the disconti-
nuity of the integrand across them.

We consider for illustration (see Fig. [l) the situation
where the contour Cg "hits” the (n + 1) branch cut
at z = +iR; ie. apy1 < R < |zp41|. This means that
the n'™ branch cut is entirely located inside C'r whereas
the (n+1)* one is partially outside the circle of integra-
tion. For simplicity, and because it is irrelevant to the
present discussion, we do not calculate the contribution
ENppp]([—z1, +21]) from the closest branch cut to the
origin. Indeed, this one is trickier than the other branch
cuts because the physical pole at z = 0 lies on that branch
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FIG. 6: Zoom on the integration contour Cr obtained as the
limit of the sum of two disconnected semi-circles. For illus-
tration, we display a situation where the chosen integration
contour C'g ”hits” the (n + 1) branch cut at z = £iR, that
is, has a radius R such that ant1 < R < |zn41].

ENppp®)(R) — EN [ppp®]([—21, +21]) = (—1)

which is real and where, for y real,

2

p(r) = Z 7|Z z

Fliy](r) =
vE [

The above analytical results are explicit enough that we
can draw several important conclusions from them. First,
Eq. (B8) demonstrates that the PNR energy depends
on the radius R of the integration contour through the
boundary of the integral; i.e. the PNR energy is not shift
invariant. As Cg goes through a branch cut, the con-
tribution of that branch cut changes progressively and
leaves a smoothed step in the PNR energy; see Fig. [0
This relates to an unphysical breaking of shift invari-
ance. Second, there is no discontinuity or divergence as
CR passes through the branch points since the function
|p' % (r)|* is integrable at y = |z,|, for all .

The two previous conclusions are at variance with what
happens for (most of the) EDFs containing only integer
powers of the densities as recalled in Sect. Indeed,
a pole crossing the integration provides in this case PNR
energies with (i) an abrupt step (ii) a divergence if the
pole is of even order ﬂa] Also, it is important to under-

y4 > [APPP Wh(x) WE, (1) + A" W, () - W, (
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cut. All that matters for the present discussion is that
the branch cut [—z1,+2;] provides a finite contribution
to the projected energy. In the end, one obtains

line the role played by the regularization of the bilinear
part of £,PP" put forward in Sect. [V.C2 If one were to
use the uncorrected term £PPP” | the PNR energy would
diverge as C'r passes through the branch points. Indeed,
the integrand in Eq. (B3) would then contain terms over-
all proportional to (y? — |z,[?) 7' |p' % (r)|* which is not
integrable at y = |z,].

In any case, the absence of divergence for the regular-
ized EN [ppp™] is critical since the associated integrability
of the pole was used in Ref. B] to assess the meaning-
fulness of PNR calculations performed with the Gogny
force. However, and although divergences do constitute
a dramatic pathology of ill-defined PNR calculations, the
most profound problem relates rather to the breaking
of shift invariance of the PNR energy as one changes
the integration contour. Indeed, the associated spuri-
ous branch cuts modify the topology of potential energy
curves as one deforms the system with respect to a col-
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FIG. 7: Schematic effect of a shift transformation on the PNR
energy. Top: projected energy £V [ppp°] as a function of R.

Bottom: same for the derivative of £~ [ppp®] with respect to
R.
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Because of the non-analytic behavior of | p at
each branch point, the derivative diverges in Eq. (B8] for
R = |z,|, p # 1. As a result, the projected energy dis-
plays a kink (non-derivable behavior) as the integration
circle goes through a branch point or as a branch point
goes through the integration circle when the system is
deformed along a collective path. This fact alone is un-
acceptable for a well-defined projected theory. The corre-
sponding pattern is schematically displayed in Fig. [[ and
is observed in realistic calculations as will be discussed

in Sect. [Vl

11R )|

E. Isospin degree of freedom

The isospin degree of freedom does not modify any con-
clusion of the present paper but only complexifies certain
aspects of the discussion. Still, to provide an idea of the
modifications brought about by the consideration of both
protons and neutrons, we now proceed to a restricted set
of remarks.

Considering the isospin degree of freedom, one must
account for the fact that densities, e.g. pq(r), and single-
particle wave-functions ¢, (rq) are now labeled with the
isospin projection quantum number ¢, where ¢ = n

sin(am) /d3r F[iR](r) |p" "(r)|"
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lective degree of freedom. As discussed above, such a
problem persists for a regularized non-integer power or,
equivalently, for an effective two-body vertex depending
on a fractional power of the density. Still, the absence of
divergence explains why the spurious nature of fractional
powers of the densities that we focus on here has been
overlooked so far even more than the pathologies brought
about by integer powers.

In the end, divergences are presently replaced by an-
other pathological behavior of the PNR energy. To
isolate such a pattern, let us take the derivative of
ENppp®](R) in Eq. (B5) with respect to the radius of
integration R. One obtains, for p > 1

if R€ [zl o] ,
if R € [ay,|zl]-

and ¢ = p for neutrons and protons, respectively. The

problematic terms entering the toy Skyrme functional
(Egs. 2022) now take the form

Pl / Br Z Appp

q=p,n

/ Br Z Bppp

q,9'=p,n
a#q’

) + A1) o ()

4(r) pgr(r) (59)

+ B sy (x) - 5,(1)] 9 () (60)

grert = /d3 S A5 |5, ) (61)

q=p,n

where the coupling constants A/B characterize terms in
which the two linear densities involved refer to identi-
cal/different isospins. Note that neutron-proton pairing
is not considered. Also, po(r) is the isoscalar part of the
matter density. As single-particle states have a definite
isospin projection, po(r) = pn(r) + pp(r).

In the present case, both neutron and proton particle
numbers are restored. Doing so requires to consider two
gauge angles ¢, and ¢, for neutrons and protons, respec-
tively. As a result, PNR energies are obtained through



a double integration over the complex plane where the
corresponding variables are denoted as z, and z,.

As far as the regularization of the bilinear part of the
toy functional, see Sect. it still leads to the con-
dition A®® = —APP and thus only constrains the like-
particle interaction. Then, one notes that the pseudo
matrix elements introduced in Eq. (52)) to deal with the
part of the EDF containing non-integer powers of the
density matrices now depend on both the neutron z,
and proton z, gauge variables because of the dependence
on the isoscalar part of the transition local density in
Eqs. (B36T). With the pseudo two-body matrix elements

o

o [#n, zp] at hand, one can apply the correction for-
mula of Eq. (43) of Paper II ensuring that the matrix
elements are now placed underneath the integrals over
the two gauge angles.

Once the part of the energy kernel £z, z,] that de-
pends only on integer powers of the density matrix has
been regularized, one is left with the spuriosities brought
by the fractional power of the isoscalar transition den-
sity [pzlzzq (r) + pézq(r)]a. The branch cuts of the latter
are not the same as those seen when dealing with a sin-
gle particle species. This modifies the analysis but does
not change the fact that the theory is not satisfactory,
irrespective of the fine tuning done to define the integra-
tion contour. As a result, PNR energies cannot be made
shift invariant and display smooth spurious steps as one
changes the proton and/or neutron radii of integration
or deforms the system along a certain degree of freedom.

V. APPLICATIONS

We wish to illustrate the analytical results obtained in
the previous Sections through results of realistic calcu-
lations. We perform PNR calculations after variation of
80. We use the SLy4 parametrization ﬂﬁ] of the Skyrme
EDF together with a pairing functional derived from a
Delta Interaction (DI). The Coulomb exchange part of
the functional, usually calculated in the Slater approxi-
mation, is omitted as done in Paper II. The SLy4 Skyrme
parametrization includes a term of the type grer’’® \which
is perfectly suited to the present discussion.

A. Uncorrected calculations

As explained in Sect. [ITAl traditional PNR calcula-
tions have been performed using non-diagonal kernels de-
fined through the prescription £[0, ¢] = E[p°¢, k%, k¥0*],
where E[p, k,k*] is the single-reference EDF. Figure
shows the PNR energy £V obtained in this way for '#0
and displayed as a function of quadrupole deformation.
The calculation is repeated twice, using 5 and 199 points
in the discretization of the integrals over the two gauge
angles.

One observes that the deformation energy surface ob-
tained with 5 integration points is smooth and looks
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FIG. 8: (Color online) Spectrum of poles z, = |u,/v,| for
protons (top panel) and neutrons (middle panel) as a func-
tion of quadrupole deformation, which for levels in the vicin-
ity of the Fermi energy resembles a stretched and slightly
distorted Nilsson diagram. The dashed red line at z; = 1 de-
notes the radius of the standard integration-contour R, = 1.
The bottom panel shows the PNR energy £V for two differ-
ent numbers of discretization points in the computation of the
integrals over the gauge neutron ¢, and proton ¢, angles.

physically reasonable. However, as one increases the
number of integration points, divergences develop, pre-
cisely at deformations where a neutron or a proton single-
particle state crosses the Fermi energy in the underlying
SR states, i.e. when the associated non-integrable branch
point crosses the unit circle in the complex plane. This
is consistent with the discussion given in Sect. for
the uncorrected SLy4 parametrization. Such divergences
are at variance with the results obtained in Paper II with
the SIII parametrization. Indeed, SIII is of specific func-
tional form such that all the poles at z = £z, are simple
poles. This is notably due to the fact that the trilinear
terms entering SIIT do not display products of three den-
sity matrices referring to the same isospin. As explain
in Sect. this property leads to a finite Cauchy
principle value as the poles cross the integration circle.

Still, the finite step left in the PNR energy as a
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FIG. 9: Energy gain from particle number restoration as a
function of quadrupole deformation for two different numbers
of discretization points in the computation of the integrals
over the gauge angles.

pole/branch cut enters or leaves the integration circle is
a pathology shared by the calculations performed with
SLy4 and SIII. Those steps are better visible in Fig.
which displays the gain from particle number restoration
with respect to the SR energy (rather than the absolute
PNR binding energy) using SLy4. Note in passing that
the reason why the structure around gy = 0.7 does not
display a typical step can be understood from the fact
that two pairs of levels cross the Fermi energy at that
deformation, as discussed in Paper II.

By looking carefully, one can observe an interesting
difference between the steps produced by SIII (see Pa-
per II) and those obtained presently using SLy4. The
steps generated by SLy4 are significantly less steep than
those produced by SIII. This is because, whereas a sharp
step is generated by an isolated pole leaving or entering
the integration circle in the case of SIII, which occurs
over an infinitesimal interval of deformation, it is gener-
ated by a branch cut leaving or entering the integration
circle in the case of SLy4, which happens over a finite
interval of deformation.

B. Correcting the bilinear part

The specificity of SLy4 is to contain a term of the type

grer'’® - As discussed in Sect. [V} one could have hoped
that regularizing the quadratic part of this term through
the correction method proposed in Paper I would lead to
a well-behaved PNR energy; i.e. that the remaining frac-
tional power of the density would not create any pathol-
ogy, in particular in view of the fact that the branch point
becomes integrable in this case. Of course, it is impor-
tant to remember that the correction method proposed
in Paper I relies on solid basis only for terms of the form
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FIG. 10: (Color online) Particle number restored energy £V
as a function of quadrupole deformation without and with
regularization of all bilinear terms in the EDF, including the
quadratic part of £7p0"'®  Results are shown for two different
numbers of discretization points in the computation of the
integrals over the gauge angles.

EP", with n integer. Thus, regularizing the quadratic
part of grer'’® in this way is purely empirical.

As a matter of fact, the results displayed in Fig.
demonstrate that proceeding to such a correction does
not lead to a well-behaved PNR energy. The integrabil-

ity of the branch points remaining after regularizing the

quadratic part of £rer'’® is such that all the divergences
have disappeared. This is a necessary but not sufficient
condition to obtain a well-behaved PNR energy. Indeed,
Fig. [ clearly demonstrates that the spurious steps are
still present and have in fact not been reduced by regu-

larizing the bilinear part of gree'’® addition, one ob-
serves that the corrected results still depend strongly on
the discretization of the integrals over the gauge angles.
More precisely, all terms of the energy functional that are
strictly bilinear have become independent on the number
of discretization points whereas the term with the extra
fractional power is not. Considering the experience we
have gathered about well-behaved PNR energies, such a
dependence is a fingerprint of a ill-defined PNR theory.
As discussed in Sect. [V D2 Figs. [0 and 1] also show

that regularizing the quadratic part of £ee'’° leads to
the replacement of divergences by non-derivable points
in the PNR potential energy curve. Indeed, kinks are
clearly visible at the deformation where the divergences
appeared before applying the correction method. Using
more mesh points for ()29, ¢p and ¢, one could resolve
even better the non-derivable character of the energy as a
branch point passes through the integration circle. This
pattern relates directly to the analytical result obtained
in Eq. (B8).

Finally, note that it is a particularity of the SLy4
interaction complemented with the pairing interaction
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FIG. 11: (Color online) Energy gain from PNR as a function
of quadrupole deformation without and with regularization
of all bilinear terms in the EDF| including the quadratic part
of £77°"'° Results are shown for two different numbers of
discretization points in the computation of the integrals over
the gauge angles.

chosen here that the combined correction of all density-
independent terms is always very small in 'O, often even
difficult to resolve on the plots.

C. Shift transformation

The finite steps that arise in the deformation energy
surface are a reminiscence of the violation of the shift
invariance of the PNR energy. Such a violation is unam-
biguously demonstrated by varying the radius of the in-
tegration contour in Eq. (B8)); i.e. by computing Eq. (ES)
as a function of R.

The upper panel of Fig. shows the PNR energy of
180 at a deformation Q2 = 600 fm?, obtained using
the SLy4 parametrization. The energy is displayed as
a function of the radius of the integration contour used
to restore the proton number. The radius for the neu-
trons is R, = 1 in all cases. The calculation is performed
with and without a regularization of the bilinear part of
the functional and for two different numbers of integra-
tion points (taken to be the same for protons and neu-
trons). Finally, the bottom panel of Fig. shows the
same quantity obtained from the SIII parametrization at
a quadrupole deformation Q2 = 500 fm?.

The upper panel of Fig. confirms that, even after

regularizing the bilinear part of 8”””1/6, the PNR en-
ergy is not invariant under shift transformation. Even
though the correction method does remove the diver-
gence, it does not eliminate the shaped steps as the in-
tegration contour goes through a branch cut. In addi-
tion, both the corrected and uncorrected PNR energies
depends strongly on the discretization of the integrals.
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FIG. 12: (Color online) Particle-number restored energy £~
as a function of the radius R, of the contour chosen to re-
store proton number (R, = 1) and for two different num-
bers of discretization points in the computation of the inte-
grals over the gauge angles. Results are shown before and
after regularization of the bilinear part of the EDF. Upper
panel: at a prolate quadrupole deformation Q20 = 600 fm?
using the SLy4 parametrization. Bottom panel: at a pro-
late quadrupole deformation Q29 = 500 fm? using the SIII
parametrization. The corrected SIII curve is independent on
the number of discretization point; hence, only one curve is
shown. The left scale shows the absolute value of the binding
energy whereas the right scale shows the energy gain from
symmetry restoration.

Again, those two features are entirely due to the term in
the functional depending on a non-integer power of the
density. After regularization, all terms that are strictly
bilinear become shift invariant. For comparison, the bot-
tom panel of Fig. shows the PNR energy obtained
with SIIT in Paper II. We recall that SIII contains only
linear, bilinear and trilinear terms which are such that
all poles at z = %z, are of order one. The corresponding
PNR energy is, after regularization, independent on the
contour and the number of discretization points with a
numerical precision better than 1 keV. When restoring
the particle number that the SR-EDF calculation was
constrained to, the finite spurious contributions are the
smallest when using a circle radius close to R = 1 for the
reasons outlined in Paper II. Consequently, the corrected
value is rather close to the uncorrected one in such a case.



It is fortuitous that for the deformation Q29 = 500 fm?
in 10 and when using SLy4 the combined correction of
all density-independent terms is very small, such that
corrected and uncorrected curves are close at very small
values of R, in Fig.[[21and even cannot be distinguished
within the resolution of the plot for larger R, shown.

Just as for the deformation energy curve as a func-
tion of quadrupole deformation, one observes, by com-
paring the two panels of Fig.[I2] that the steps generated
by SLy4 are significantly less steep than those produced
by SIII before correction (calculated in both cases with
enough integration points to resolve them). This is due
to the fact that the steps are generated by a single pole
leaving or entering the integration circle in the case of
SIII, which occurs over an infinitesimal variation of R,
whereas they are generated by a branch cut leaving or en-
tering the integration contour in the case of SLy4, which
happens over a finite interval of variation of R,,.

Just as for the behavior of the deformation energy
curve as a function of quadrupole deformation, the curves
obtained with 199 integration points in the upper panel
of Fig. [[2 show that the divergences seen before regular-

izing the quadratic part of £rer"’® have been replaced by
cusps. Using more mesh points for R, and ¢, one could
resolve even better the non-derivable character of the
PNR energy as the integration circle passes the branch
points. This is a direct illustration of the analytical re-
sult obtained in Eq. (B8) and is schematically displayed
in Fig. [

An important byproduct of the previous result is that
they invalidate PNR calculations performed using a fully
antisymmetrized two-body interaction that depends on
the medium through a fractional power of the density, e.g.
the Gogny interaction. The problem was further circum-
vented in Ref. B] by using the projected density in place
of the transition density in the density-dependent term
of the Gogny interaction. However, such a procedure sin-
gles out one density factor in the energy kernel in a way
that seems highly arbitrary and not easily extendable to
more involved EDFs. In addition, such a prescription of
using the correlated density into the density-dependent
term of the effective vertex leads to unsatisfactory results
for other multi-reference calculations; e.g. calculations in-
cluding parity restoration and configuration mixing along
the octupole degree of freedom @]

VI. SUMMARY AND CONCLUSIONS

In Ref. ﬂ], pathologies of calculations aiming at restor-
ing particle number and performed within the Energy
Density Functional (EDF) framework have been high-
lighted. In Ref. [5], the first paper of the present
series, we demonstrated that such pathologies are in
fact shared by all multi-reference (MR) calculations,
i.e. symmetry restoration and/or Generator Coordinate
Method (GCM)-based configuration mixing calculations,
performed within the EDF framework. In Ref. [5], a for-
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mal and practical solution that applies (i) to any symme-
try restoration and/or GCM-based configuration mixing
calculation (ii) to EDFs depending only on integer pow-
ers of the density matrices, was proposed. In Ref. ﬂa],
the second paper of the present series, the regulariza-
tion method was applied to Particle Number Restoration
(PNR) calculations using an energy functional that de-
pends only on integer powers of the density matrices; e.g.
which contains linear, bilinear and trilinear terms.

The limitation of the correction method proposed in
Ref. ﬂﬂ] to energy functionals depending on integer powers
of the density matrices is a critical feature as most func-
tionals found in the literature contain non-integer powers
of the (normal) density matrix, both in the functional
modeling the strong interaction and in the functional
modeling the Coulomb interaction, due to the Slater ap-
proximation to the exchange term ﬂQ] Such non-integer
powers of the density matrices pose difficulties which
go beyond those posed by integer powers: as transition
densities are complex, taking their non-integer powers
amounts to dealing with a multivalued function on the
complex plane. This makes the analysis of the associated
pathologies more involved.

In the present paper, the third of the series, the viabil-
ity of non-integer powers of the density matrices has been
addressed, building upon the analysis already carried out
in Ref. ﬂ] First, we proposed to reduce the pathologi-
cal character of terms depending on a non-integer power
of the density matrices by regularizing the fraction that
relates to the integer part of the exponent, using the
method proposed in Ref. ﬂﬂ] This amounts to scaling
down the extent of the problem to the one potentially
encountered using a fully antisymmetrized effective in-
teraction depending further on a fractional power of the
density; e.g. the Gogny force. Second, we discussed in
detail the spurious character of the remaining fractional
power of the density (matrix). Both through analytical
derivations and numerical applications (using the SLy4
Skyrme parametrization), we demonstrated that regu-
larizing the fraction related to the integer part of the
exponent does remove divergences in the particle num-
ber restored energy but replace them by cusps which are
as unphysical as the original divergences. In addition,
the spurious steps in the PNR energy and the related
breaking of shift invariance prevail. Such results thus
invalidate PNR calculations performed using a fully an-
tisymmetrized two-body interaction that depends on the
medium through a fractional power of the density.

Eventually, and because we do not see any well-defined
basis to correct the corresponding pathologies, we con-
clude at this point that non-integer powers of the den-
sity matrices are not viable and should be avoided in
the first place when constructing nuclear energy density
functionals to be used in MR-EDF calculations in the fu-
ture. However, one will have to restrict the form to rather
low integer orders in the density matrices. For example,
the EDF recently proposed by Baldo et al. @] includes
terms up to fifth power in the total density p(r), which



lead to self-interaction terms ﬂﬂ] that will require a regu-
larization containing quadruple sums over single-particle
states, which will be too costly in realistic calculations.
Let us make an additional comment regarding the dras-
tic conclusion to discard non-integer powers of the den-
sity matrices altogether. On the one hand, integer powers
of the density matrices appear naturally when construct-
ing the EDF through ab-initio calculations, e.g. through
many-body perturbation theory. On the other hand,
non-integer powers of the density matrices, if not intro-
duced merely on phenomenological grounds, do often, if
not always, result from interpreting integrals over mo-
menta up to kp providing the infinite matter equation
of state with contributions of the kind k% as density-
dependent term through the use of kp ~ p'/3. Trans-
ported to finite nuclei, where the latter relationship has
no rigorous basis, through some version of the local den-
sity approximation, this leads to an EDF that contains
terms of the form p™/3. Although such a constructive
procedure of the nuclear EDF does not lead to particular
problems in single reference (SR) calculations, it does so
when this procedure is extended to MR calculations as
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even the local part of the scalar-isoscalar transition den-
sity matrix is complex, stretching one step too far the
above procedure proceeding through infinite matter and
the use of kr < p'/3. Finally, there are both practi-
cal reasons and formal motivations to conclude that (i)
non-integer powers of the density (matrix) are not viable
in (multi-reference) EDF calculations (ii) parameteriza-
tions making only use of integer powers of the densities
need to be constructed in the very near future. Last but
not least, note that such a conclusion actually extends to
any form of the EDF that generates branch cuts when
continued over the complex.
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