Olivier Bourrion

Bernard Boyer

Développement d'un module NIM « trigger » de logique programmable

2 Caractéristiques techniques détaillées Consommation sur le -6V : jusqu'à 250mA toutes sorties actives Consommation sur le +6V : 350 mA Communication par USB 1.1. 8 entrées analogiques avec seuil réglables entre -1V et 0V et avec pas de réglage de 60 µV 4x2 sorties trigger au standard NIM. 1x2 sorties run au standard NIM.

Latence minimum de la carte avec les retards réglés à zéro : 60 à 70 ns La gamme de réglage des retards est de 0 à 2 13 -1 périodes d'horloge soit de 0 ns à 81910 ns La gamme de réglage des largeurs est de 1 à 2 13 -1 périodes d'horloge soit de 10 ns à 81910 ns La gamme de réglage du pretemps est de 0 à 2 32 -1 pas de 1 ms soit de 1 ms à 49 jours 16 compteurs de 24 bit soit une dynamique > 16 millions Fréquence maximum des compteurs d'entrée : 140 MHz Equations logiques ayant jusqu'à 10 opérandes.

Latence électronique indépendante de l'équation et du nombre d'opérande.

Jitter ajouté aux signaux par la carte : 10 ns 3 Réalisation matérielle

Carte électronique

Pour réaliser cet objectif, une carte électronique a du être réalisée. Elle a été conçue avec l'objectif d'être la moins chère possible et de pouvoir fonctionner indifféremment sur table ou dans un châssis NIM. Son synoptique est fourni ci-dessous.

Objectifs du projet

Afin de remplacer les vieux modules NIM (discriminateur, coïncidence, mise en forme, échelle de comptage,…) sur certains travaux pratiques de la plateforme de travaux pratique, Nucléaire/Particules de UJF/ENSPG/INPG, un nouveau module NIM programmable a été développé par le service électronique du laboratoire. Il est construit autour d'un FPGA 100 MHz et comprend les fonctionnalités suivantes :

8 entrées analogiques avec discriminateurs indépendants programmables.

Possibilité de dupliquer les sorties des discriminateurs.

Mise en forme des portes logiques (retard et largeur réglables par pas de 10 ns).

Possibilité d'opérations logiques (AND, OR,…) entre les signaux.

Quatre sorties logiques.

Seize compteurs.

Possibilité de fixer la durée de l'acquisition (mode pré temps) Le module est configuré via une interface graphique sous PC. Le fichier résultant est ensuite chargée sur le module via une connexion USB. L'interface graphique permet aussi de relire les différents compteurs du module et de sauvegarder la configuration.

Synoptique

Alimentations

Les alimentations locales sont fabriquées à partir du +6V et -6V à l'aide de régulateurs linéaires. Le -5V et le +5V est utilisé par les composants analogiques, et les autres tensions sont utilisées par les composants numériques.

Entrées

La carte dispose de 8 entrées analogiques qui alimentent des discriminateurs. Les seuils de ces discriminateurs sont réglables individuellement entre -1V et 0V à l'aide de DACs 14 bit.

Microcontrôleur

La communication avec la carte est faite grâce à un microcontrôleur offrant une connectivité USB aisée à mettre en oeuvre. Son autre avantage est la possibilité de n'avoir aucune mémoire non-volatile implantée sur la carte que ce soit pour lui-même ou pour le FPGA. En effet, après sa mise sous tension, il offre un fonctionnement minimum qui permet le téléchargement du programme par le lien USB.

Ses interfaces avec le reste de la carte sont : -Un lien série synchrone pour configurer le DAC 8 voies qui permet de régler les seuils analogique.

-Un lien série synchrone pour configurer le FPGA après la mise sous tension.

-Un protocole propriétaire pour communiquer avec le FPGA et lui transmettre les différents paramètres de trigger.

Détails sur le protocole propriétaire

Deux modes de transfert sont définis, le mode adresse et le mode donnée. Ils sont en tous points similaires, à ceci prêt que l'un des fils de l'interface sert à définir le type de cycle en cours. Cela est fait pour permettre un bus de taille réduite, mais qui permet tout de même de faire un adressage en interne du FPGA. Cette fonctionnalité est réalisée par le périphérique GPIF (General Purpose Interface) offert par le microcontrôleur Cypress CY7C68013. Le transfert se déroule de manière asynchrone. Le front montant du signal perform_cycle sert à confirmer le transfert.

Sorties

A la sortie du FPGA, 4 signaux de trigger sont dupliqués et convertis au format NIM afin d'être rendus disponible au monde extérieur. Par ailleurs, un signal « run » est fourni, il donne l'image de l'état d'activation ou d'arrêt de l'acquisition, cette information est particulièrement utile en mode pré temps. Il est aussi dupliqué et fourni au standard NIM.

FPGA

Ce composant est en charge de toute la partie mise en forme des impulsions, génération des duplications et des équations logiques (par l'intermédiaire de tables de vérités). Il contient aussi les différents compteurs d'activité ainsi que la gestion des affichages LED.

LED de signalisation

Chaque entrée et chaque sortie trigger a une LED d'activité associée. Celle-ci clignote à environ 4Hz tant qu'il y a de l'activité sur l'entrée (ou sortie) considérée. La fréquence de clignotement maximum est de 4 Hz. Par ailleurs, tant que l'acquisition est active, la LED « run actif » est allumée, elle s'éteint soit de façon manuelle en passant de run à stop, soit automatiquement à la fin du délai imparti dans le mode pré temps. Enfin, une LED de temps mort affiche l'état du OU logique de tous les états des modules de mise en forme. En effet ceux-ci ne pouvant gérer d'une impulsion à la fois, si une deuxième se présente trop rapidement, elle est ignorée.

Architecture du FPGA

Synoptique

Description

Partie acquisition

Après leur mise en forme par les discriminateurs, les signaux logiques d'entrées sont injectés dans le FPGA. L'activité de ces signaux est mesurée à l'aide des compteurs d'entrée, ceux-ci comptent directement les fronts montants des impulsions d'entrée lorsqu'ils sont validés (cette remarque est importante, voir les compteurs de sortie). D'autre part, dans le bloc synchronisation, ces signaux sont resynchronisés par rapport à l'horloge de fonctionnement du FPGA qui est de 100MHz. Cette opération ajoute un jitter (bruit de phase) au signal.

La deuxième étape, est de faire passer les signaux resynchronisés à travers une mémoire dite « de duplication ». Celle-ci a la particularité d'avoir son contenu initialisé de telle manière, qu'en fonction de la combinaison des signaux d'entrée (câblés sur le bus d'adresse de cette mémoire), la sortie donnée présente une duplication du ou des signaux désirés.

Après la duplication, les signaux sont remis en forme par les modules de mise en forme, ceuxci détectent les passages de 0 à 1 des signaux et génèrent de Ces 2 solutions imposent un accès séquentiel, ce qui n'est pas préjudiciable dans notre cas, mais solutionne nos problèmes.

Il faut aussi noter que l'architecture est relativement simple, car toute l'interface de contrôle fonctionne à 50 MHz, et non pas à la fréquence de la partie acquisition. En effet, les accès aux zones mémoires sont effectués, lorsque l'acquisition est stoppée, et comme ces blocs présentent une fonctionnalité double port / double domaine d'horloge, il n'y a de nécessité de mettre en place des systèmes de multiplexages complexes.

Tableaux d'adressages

Lors de la lecture de ces tableaux, il faut garder en mémoire que les accès sont faits par octets.

Compteurs

Règle de composition des adresses compteurs

Instruction INST_WRITE_DAC

Trame :

octet Contenu 0 INST_WRITE_DAC 1 DAC_MSB 2 DAC_middle 3 DAC_LSB
Cette instruction permet de faire transférer par le microcontrôleur la donnée de contrôle du DAC 8 voies qui est embarqué sur la carte. Les différents mots à transférer sont assez complexes, mais ce protocole est pris en charge par l'API. Le transfert est effectué par lien série « SPI », cela implique de retourner l'ensemble des mots (en effet le périphérique série du microcontrôleur transfert les données en LSB first), une fonction est implémentée sur le microcontrôleur afin de prendre cela en charge.

Instructions permettant la configuration du FPGA

Seules 2 commandes sont fournies pour permettre la programmation du FPGA :

• La commande d'effacement qui permet de ré initier un cycle de programmation • La commande de contrôle qui permet de vérifier si la configuration c'est bien passée Par contre, il n'y a pas de commande spécifique pour envoyer les données (sérialisées par le microcontrôleur) vers le FPGA. Il suffit tout simplement de transférer les données dans l'EP6OUT.

Instruction INST_CLEAR_FPGA

Instruction CLEAR_MEM_POINTER

Ecriture de données dans les blocs mémoires

Pour écrire des données, il faut simplement les données dans l'EP4OUT.

Les zones mémoires concernées par ce type d'accès sont

API de contrôle de la carte

Cette interface se présente sous la forme d'une classe C++, et offre un ensemble de fonctions de haut niveau se chargeant de tous les accès matériels de manière transparente pour l'utilisateur avancé. L'interface graphique décrite au paragraphe suivant repose intégralement sur cette API. La documentation ci-dessous a été générée par Doxygen. Lecture de l'état de l'électronique.

Tcpt_trigger_API Class Reference

int FabricationMasqueBitn (int bit_a_tester, int bit_a_affecter, int address_courante)

Fonction servant à remplir la mémoire duplication.

Tcpt_trigger_API ()

Constructeur de l'API. Lecture de l'état de l'électronique. Permet de savoir si le pretemps c'est écoulé.

Public Attributes

Parameters:

status : 1 quand terminé, 0 encore en cours. Pour utiliser cette fonction, il suffit de lui passer les paramètres adéquats pour chaque entrée (bit) à tester et en retour on obtient le masque à appliquer (en OR).

Parameters:

bit_a_tester : voie d'entrée à dupliquer ou ré aiguiller (valeur de 0 à 7). bit_a_affecter : Numéro de la sortie mémoire à affecter (voie interne) (valeur de 0 à 9). address_courante : Vecteur représentant la combinaison courante des 8 entrées (valeur de 0 à 255).

Returns:

masque servant à modifier la variable courante. Quelques exemples de formules interpretables par cette classe: i0 and i1 or i2 (i0 and i1) or i2 ((i0 and i1)) or i2 not(i0) and i2 not (i1 and i0) xor i2 sup (i0 + i1 +i2;2) (cherche une multiplicité de 2 parmis i0,i1,i2) sup ((i0 and i2) + i1 +i2;2) Erreurs d'intepretation de formule possible (cas d'erreurs testés) : pas de suffisamment parentheses apparentées operateur/opérande inconnu 2 ou plusieurs opérateurs (ou opérandes) successifs opérateur binaire en debut ou en fin de formule (ou accolé à une parenthèse) opérateur unitaire utilisé de façon inaproprié (sans parenthèse, mauvaise syntaxe interne) Si dans un phase de debug, des messages supplémentaires sont souhaités, il suffit de positionner DEBUG lors de la compilation.

Member Data Documentation

Parameters:

in_vector • Voie à copier : c'est le numéro de voie physique à utiliser dans la ligne courante pour faire la mise en forme. Cela permet aussi l'association de l'opérande « interne » à l'entrée physique choisie. • Retard : retard exprimé en nanoseconde, la valeur maximum est de 81920 ns. La valeur réelle de retard appliquée est la plus proche en multiples de 10 ns. • Largeur : largeur exprimée en nanoseconde, la valeur minimum est de 10 ns et la valeur maximum est de 81920 ns. Concrètement, la valeur réelle de largeur appliquée est la plus proche en multiples de 10 ns.

• Operande : Indique le nom de l'opérande associé à l'entrée physique sélectionnée et remise en forme. • Nom de compteur : Rappelle qu'il y a 4 compteurs qui comptent les activités des sorties (Sx) et quatre compteurs qui comptent les activités de signaux internes (Cx). • Equation logique : C'est dans ces champs que sont saisies les équations associées à chaque compteur • Compteurs de sortie : Valeur des 8 compteurs de sortie. Mis à jour chaque seconde, contient soit la valeur intégrée depuis le début du run, soit la valeur vue en 1 seconde. • Label sortie : Nom unique pouvant être attribué à chaque voie de sortie.

Le groupe de contrôle acquisition permet de démarrer ou arrêter l'acquisition. Le champ présent à coté du bouton start/stop sert à présenter le temps écoulé depuis le début du run. Si le mode pré temps est désiré, il suffit de cocher la case l'activant et saisir la durée désirée ainsi que son unité. Si l'acquisition est lancée dans ce mode, le champ de saisie du pretemps va se décrémenter pour chaque échéance d'une unité.

Le groupe contrôle des compteurs permet soit : -de faire une remise à zéro manuelle des compteurs -de faire une remise à zéro automatique des compteurs chaque seconde.

Remarques :

• Toutes les valeurs de champs (à l'exception des valeurs de compteurs) et équations peuvent être sauvegardées dans un fichier de paramètres afin de ne pas avoir à les ressaisir à chaque nouveau démarrage • Tous les champs pouvant être mis à jour sans stopper l'acquisition sont automatiquement transmis à l'électronique. • Toute modification de paramètre est détectée et en cas de fermeture de l'application, une sauvegarde est proposée.

ICI EXEMPLE SIMPLE

Annexes

Installation sur une plateforme Windows

 SetPretemps(unsigned int pretemps) mode_pretemps_select(bool active) INST_READ_STATUS int Tcpt_trigger_API::FabricationMasqueBitn (int bit_a_tester, int bit_a_affecter, int address_courante)Fonction servant à remplir la mémoire duplication. La mémoire duplication permet soit : à dupliquer des signaux afin de pouvoir les utiliser dans des équations différentes. à ré aiguiller un signal vers une autre voie (interne).

6

 Interface graphique de contrôle / manuel utilisateur L'interface graphique a été conçue à l'aide de QT4.3.2 afin de rester portable entre les plateformes Windows, Linux et MacOSX. Dans cette partie, seul l'aspect interface utilisateur va être décrit. Description en fonction des colonnes • Compteurs d'entrée : Valeur des 8 compteurs d'entrée. Mis à jour chaque seconde, contient soit la valeur intégrée depuis le début du run, soit la valeur vue en 1 seconde. • Label entrée : Nom unique pouvant être attribué à chaque voie d'entrée. • Seuil : valeur de chaque seuil d'entrée, réglable entre -1V et 0V avec une résolution de 14 bit, soit un LSB à 60 µV. Ces champs peuvent être mis à jour pendant l'acquisition. • Voie : C'est un rappel du numéro de voie « physique » associée à la ligne.

 Fichiers fournis : Fichier « setup.exe » contient le logiciel de contrôle et quelques exemples Fichier «libusb-win32-filter-bin-20041118.exe » installe le « Filter Driver ». Comment installer les logiciels sur le PC : 1) Ne pas connecter la carte avant la procédure suivante 2) Lancer le fichier « Libusb-win32 » en vous assurant qu'un composant USB quelconque (souris,…) soit connecté à votre PC. Une fois l'installation terminée, pour vérifier le bon fonctionnement du « Filter Driver », lancer « Test Program » (présent dans vos programmes). Si le programme détecte votre composant USB, c'est que l'installation du « Filter Driver » s'est bien déroulée.

 nouvelles impulsions retardées d'une valeur programmable et dont la largeur est elle aussi réglée. Enfin, les signaux passent à travers une nouvelle mémoire dite « table de vérité » qui a été initialisée avec tous les résultats possibles des différentes équations logiques saisies dans l'interface de contrôle. Comme précédemment, les vecteurs d'entrées sont câblés sur le bus d'adresse de la mémoire et le bus de donnée est utilisé comme résultat des équations. Encore une fois prenons l'exemple d'une équation logique à 2 entrées : le ET logique. Sa table de vérité : 'ensemble de ces accès repose sur le protocole propriétaire définie en 3.1.4. Pour faire un accès à une adresse précise, le transfert se déroule en 2 temps : 1. Tout d'abord un cycle adresse est exécuté de manière à ce que l'un des registres internes du FPGA mémorise ce pointeur. L'adresse est spécifiée sur 8 bit. 2. Puis le cycle donnée est exécuté (en mode lecture ou écriture). Presque tous les accès se déroulent de cette façon. Il y a deux légères variations 1. pour les blocs mémoires, car sinon ils nécessiteraient une plage d'adressage bien supérieure (chaque bloc fait 2ko), 2. les retards / largeurs et le registre de prétemps, car ils nécessiteraient une logique de décodage bien fournie. La parade à ces problèmes est de faire un accès BURST pour ces zones mémoires, c'est-à-dire que seule une adresse de base est attribuée à une des ces zones. Pour réaliser ces accès, il y a deux implémentations différentes :

	Vecteur sortie
	00	0
	01	0
	10	0
	11	1
	Il suffit alors d'initialiser une mémoire ayant un bus d'adresse de 2 bit et un bus de donnée de
	1 bit avec le contenu de la table de vérité pour voir cette fonction réalisée (c'est ce qui est fait
	dans les FPGA par les synthétiseurs). Si on généralise le raisonnement, il suffit d'avoir une
	mémoire assez profonde (taille du bus d'adresse) pour gérer plus d'opérandes et assez large
	(taille du bus de données) pour juxtaposer plusieurs équations.
	A la sortie de la table de vérité, les taux de comptage des différents triggers sont mesurés par
	des compteurs lorsqu'ils sont activés. Ceux-ci comptent l'activité de signaux resynchronisés,
	cela veut dire qu'il peut y avoir un léger écart par rapport à un même signal (avec une
	équation sortie=entrée) compté directement à l'entrée.
	3.2.2.2 Partie contrôle	
	L'ensemble des opérations précédentes n'est possible que si :
	-Le contenu des mémoires peut être chargé à la demande par USB.
	-Les 16 compteurs peuvent être lus et effacés.	
	-Les retards et largeurs peuvent être réglés individuellement.
	-Le pré temps peut être réglé.	
	-L'acquisition peut être démarrée ou arrêtée à souhait.

L-dans le cas des zones mémoire, un pointeur commun d'offset est incrémenté. Après un accès ce pointeur doit être réinitialisé pour ne pas pénaliser les accès aux autres zones. -dans le cas des banques de registres, les données sont décalées d'un registre à l'autre pour chaque accès. Il suffit d'envoyer le nombre exact de données dans le bon ordre, pour qu'à la fin des décalages chacune soit à sa place.

.3.4 Registre de commande

 La carte est contrôlée par le microcontrôleur USB 1.1. A la mise sous tension, il doit être configuré par le PC hôte, c'est-à-dire que son exécutable est téléchargé par l'USB. Ensuite, Avant de détailler l'ensemble des commandes et leur utilisation, il convient de préciser quels sont les endpoint utilisés : • EP2OUT, mode bulk : reçoit l'intégralité des instructions. • EP2IN, mode bulk : permet de retourner les différents status et aussi les valeurs des différents compteurs. • EP4OUT, mode bulk : permet de faire transfert rapide ayant pour effet de déclencher des transactions en mode burst (par l'intermédiaire du GPIF). Par défaut le bus est positionné en mode donnée. • EP6OUT, mode bulk : C'est dans cet endpoint que sont écrites les données de configuration du FPGA. Chaque octet écrit est sérialisé par et envoyé au FPGA. Add_pretemps : Registre de pretemps qui est un registre de 32 bit qui sert à programmer la durée du temps de comptage. Le LSB a une durée de 1 ms. • Add_CTRL : Registre de contrôle • Add_mem_duplic : Adresse de base de la mémoire de duplication (2048 octets) • Add_mem_tb_verite_out : Adresse de base de la table de vérité dont les sorties sont rendues disponibles en NIM et aux compteurs d'activités • Add_mem_tb_verite_out : Adresse de base de la table de vérité dont les sorties ne sont envoyées qu'aux compteurs d'activité • Add_raz_mem_pointer : quand cette adresse est positionnée et qu'un cycle d'écriture a lieu, le pointeur d'offset mémoire, qui est commun aux 3 blocs, est remis à zéro. • Add_retard_largeur : adresse de base du tableau contenant les différentes valeurs de retard et de largeur. • Add_base_compteur : Cette adresse ne doit normalement pas être positionnée manuellement, lors de la commande de lecture des compteurs, elle est positionnée automatiquement. • Add_status : Cette adresse est positionnée automatiquement lors de la lecture de status, elle pointe sur le registre d'état du FPGA) Une requête de ce type va déclencher 16 lectures de compteurs 24 bits, c'est-à-dire 48 lectures GPIF en mode données, mais aussi 48 positionnements d'adresse afin de sélectionner les compteurs et les octets les constituant leur contenu. Lors du premier accès à un compteur donné (LSB en premier), le contenu est en fait mémorisé dans un buffer intermédiaire afin de ne pas lire des valeurs erronées. Par contre, du fait de la durée de lecture qui peut être assez longue au regard des taux de comptage en présence, les différents compteurs peuvent présenter des disparités alors même qu'ils comptent un signal identique.

	3C 3D #define add_mem_tb_verite_out 0x41 #define add_mem_duplic Compteur_Output_15 #define add_mem_tb_verite_cpt 0x42	0x40	Bit 0 à bit 7 Bit 8 à Bit 15	
	3E 3.2.3.5 Registre de pretemps #define add_raz_mem_pointer	0x00	Bit 16 à Bit 23	
	#define add_retard_largeur Ce registre est disponible à l'adresse 0xC0 0x80 Tableau #define add_base_compteur 0x00 Ordre d'envoi des données 3.2.3.2 Zones mémoires Pretemps <7..0> 1 #define add_status	0x03	
	Mémoire adressée Pretemps <15..8>		2	Adresse HEXA	
	7 duplication Pretemps <23..16>	6	5	3		40	4		3	2	1	0
	0 Table de vérité des sorties 0 Pretemps <31..24>		4		Numéro du compteur à lire 41		Choix de l'octet à lire
	Ce qui donne le tableau suivant Table de vérité compteurs de sortie 4.1 Architecture du micro logiciel 42 4.3 Instruction INST_READ_COUNTERS	
	Nom des Compteurs Adresse HEXA No des Bits du Compteur L'effacement du pointeur d'offset se fait par une écriture à l'adresse 0. Trame :
	0 1 4 Logiciel microcontrôleur Bit 0 à bit 7 Bit 8 à Bit 15 Compteur_Input_0 octet Contenu 0 INST_READ_COUNTERS	
	2 4 3.2.3.3 Retards et largeurs 5 Compteur_Input_1 Tableau Ordre d'envoi des données Bit 16 à Bit 23 Bit 0 à bit 7 Tableau Bit 8 à Bit 15 6 Largeur (9) <7..0> 1 Retard (9) <7..0> Bit 16 à Bit 23 8 Largeur (9) <13..8> 2 Retard (9) <13..8> Bit 0 à bit 7 9 Compteur_Input_2 Largeur (8) <7..0> 3 Retard (8) <7..0> Bit 8 à Bit 15 A Largeur (8) <13..8> 4 Retard (8) <13..8> Bit 16 à Bit 23 C Largeur (7) <7..0> 5 Retard (7) <7..0> Bit 0 à bit 7 D Compteur_Input_3 Largeur (7) <13..8> 6 Retard (7) <13..8> Bit 8 à Bit 15 E Largeur (6) <7..0> 7 Retard (6) <7..0> Bit 16 à Bit 23 10 Bit 0 à bit 7 11 Bit 8 à Bit 15 Largeur (6) <13..8> 8 Retard (6) <13..8> Largeur (5) <7..0> 9 Retard (5) <7..0> Format de la trame de retour (disponible dans l'EP2IN) Compteur_Input_4 12 Largeur (5) <13..8> 10 Retard (5) <13..8> octet Contenu Bit 16 à Bit 23 14 Largeur (4) <7..0> 11 Retard (4) <7..0> 0 CPT0<7..0> Bit 0 à bit 7 15 Bit 8 à Bit 15 Largeur (4) <13..8> 12 Retard (4) <13..8> 1 CPT0<15..8> Compteur_Input_5 16 Bit 16 à Bit 23 18 Bit 0 à bit 7 19 Bit 8 à Bit 15 Compteur_Input_6 1A Largeur (3) <7..0> 13 #define INST_SET_ADD 0xA0 2 CPT0<23..16> Retard (3) <7..0> Largeur (3) <13..8> 14 Retard (3) <13..8> Largeur (2) <7..0> 15 Retard (2) <7..0> Largeur (2) <13..8> 16 Retard (2) <13..8> #define INST_READ_COUNTERS 0xA2 #define INST_READ_STATUS … … 0xA3 #define INST_WRITE_DAC 45 CPT15<7..0> 0xA4 Trame : 46 CPT15<15..8> Bit 16 à Bit 23 1C Bit 0 à bit 7 1D Bit 8 à Bit 15 Largeur (1) <7..0> 17 Retard (1) <7..0> Largeur (1) <13..8> 18 Retard (1) <13..8> #define INST_CLEAR_FPGA 47 CPT15<23..16> octet Contenu 0xA5 #define CHECK_PROG_FPGA 0xA6 0 INST_SET_ADD Compteur_Input_7 1E Largeur (0) <7..0> 19 Retard (0) <7..0> 1 Adresse Bit 16 à Bit 23 20 Bit 0 à bit 7 Largeur (0) <13..8> 20 Retard (0) <13..8> #define CLEAR_MEM_POINTER 0xB3 4.3.1 Instruction INST_READ_STATUS	Ordre d'envoi des données
	21 22 24 25 26 3.2Ce registre est disponible à l'adresse 0xC4. Bit 8 à Bit 15 Compteur_Output_8 Trame : Bit 16 à Bit 23 Bit 0 à bit 7 Bit 8 à Bit 15 Compteur_Output_9 #define FPGA_CLEAR_SUCCESS 0x01 #define FPGA_CLEAR_FAILURE 0x00 octet Contenu 0 INST_READ_COUNTERS Bit 16 à Bit 23 28 Bit 0 à bit 7 29 Bit 8 à Bit 15 Compteur_Output_10 bit 7 … 3 2 1 0 #define FPGA_INIT_SUCCESS 0x01 #define FPGA_INIT_FAILURE Cette instruction permet d'avoir accès au registre d'état du FPGA. L'octet est retourné dans 0x00 l'EP2IN.
	2A 2C Non affectés Run_nstop Reset_compteurs Pretemps_select Bit 16 à Bit 23 Bit 0 à bit 7 #define FPGA_DONE_SUCCESS 0x01 #define FPGA_DONE_FAILURE Le bit 0 de cet octet représente l'état du compteur de prétemps. C'est-à-dire que lorsqu'il vaut 0x00 1, le pretemps est toujours actif et en décomptage.
	2D 2E 30 /// Bit 8 à Bit 15 Compteur_Output_11 Bit 16 à Bit 23 Run_nstop : lorsque ce bit est à 1 l'acquisition est activée. // controle bit definitions Reset_compteurs : lorsque ce bit est à 1, les compteurs sont en mode reset. /// Bit 0 à bit 7 31 Bit 8 à Bit 15 Compteur_Output_12 Pretemps_select : #define mode_select 0x01 lorsque ce bit est à 1, le mode pre temps est activé ; #define reset_cpt 0x02
	#define run_stop		32	0x04			Bit 16 à Bit 23	
	#define set_raz_mem_bit	34	0x01				Bit 0 à bit 7	
	35 /// Bit 8 à Bit 15 Compteur_Output_13	
	36 38 /// // adresses FPGA Bit 16 à Bit 23 Bit 0 à bit 7 #define add_pretemps 0xC0	
	Compteur_Output_14 #define add_CTRL	39					Bit 8 à Bit 15 0xC4	
			3A					Bit 16 à Bit 23	

grâce à celui-ci, il devient possible de configurer le FPGA (car il est à base de SRAM, donc volatile), et finalement la programmation des différentes mises en forme, seuil, équations logiques devient possible par 2 mécanismes différents : Le protocole SPI (lien série) et par l'utilisation des machine d'état programmable (GPIF). Dans ce paragraphe nous allons lister les différentes commandes et leur utilisation. L'algorithme et la séquence adéquate d'utilisation sera expliquée dans le paragraphe suivant (API). L'ensemble des commandes est définie dans le fichier cpt_trigger_micro.h /// // instructions /// /// // status /// Les différents chronogrammes des accès GPIF sont définis dans les paragraphes précédents. A ce stade, il convient de se rappeler qu'il n'y a que 2 modes possibles : -mode adresse : qui va positionner un pointeur d'adresse dans le FPGA -mode donnée : qui permet d'aller lire ou écrire directement dans le FPGA

4.2 Instruction INST_SET_ADD

C'est une commande à 1 paramètre, l'adresse passée doit être l'une de celles spécifiée dans le fichier cpt_trigger_micro.h. A la réception de cette commande, une transaction en mode adresse est déclenchée sur le bus GPIF.

Détail des adresses disponible :

•

 Cette instruction sert à remettre à zéro les pointeurs d'offset des blocs mémoire. Les mémoires étant accédées en mode FIFO : seule l'adresse de base du bloc est configurée. Puis chaque accès incrémente le pointer d'offset.

	octet Contenu
	0	INST_CLEAR_FPGA
	Trame :	

 • Mémoire duplication : 2048 octets, LSB first • Mémoire table de vérité de sortie : 2048 octets, LSB first • Mémoire table de vérité interne pour compteurs : 2048 octets, LSB first • Mémoire retard largeur 40 octets, MSB first

Constructor & Destructor Documentation Tcpt_trigger_API::Tcpt_trigger_API ()

	TLogicInterpreter LogicInterpreter [8] bool Tcpt_trigger_API::start_triggers ()
	calculatrice logique. Activation des triggers et du comptage.
	Lorsque cette méthode est appelée :
	Detailed Description les triggers sont autorisés
	si requis, le compteur de pretemps est démarré API de la carte compteur trigger. Grace à cette API il est possible de controler directement la carte trigger à travers l'USB. Cette API est Les compteurs d'activités sot autorisés à compter
	compatible avec Windows 2000/XP (sous réserve d'installer le filter driver libusb-win32 http://libusb-See also:
	stop_triggers() win32.sourceforge.net/) et avec LINUX, dans ce cas il faut veiller à ce que les paquets (libusb et libusb-dev) soient bien installés (apt-get ou yum suivant la distribution). SetCTRL_reg()
	Séquence typique d'initialisation après un redémarrage : bool Tcpt_trigger_API::stop_triggers ()
	Connect_USB(char *FirmwarePath) Arret des triggers et du comptage. ConfigureFPGA(char *FPGAConfigFile) Si le mode pretemps est utilisé, un appel à cette méthode forcera l'arrêt des compteurs d'activités et InitDac(float Vref) Séquence de configuration : des triggers.
	SetVoltDacs(double *Thres_value) See also:
	load_duplication_table(int *vector) (utiliser FabricationMasqueBitn(int bit_a_tester,int bit_a_affecter,int start_triggers()
	address_courante) pour créer le tableau) SetCTRL_reg()
	load_tb_verite_out_table(unsigned char *vector) (utiliser la calculatrice logique TLogicInterpreter pour créer les
	tables de vérités) bool Tcpt_trigger_API::Read_status (int & status)
	load_delay_width_table(int *delay_vector,int *width_vector)
	SetPretemps(unsigned int pretemps) et mode_pretemps_select(bool active) (si l'on souhaite fontionner en mode
	prétemps)
	reset_counters()
	Ensuite il suffit de démarrer et arrêter l'acquisition à volontée avec :
	start_triggers()
	stop_triggers() (si l'on souhaite fonctionner en mode pretemps il peut être intéressant de faire un polling sur
	Read_status(int &status) avant de stopper)
	Aussi, il est à noter que certains accès au hardware peuvent se dérouler pendant que les triggers et les
	compteurs sont actifs, la liste suivante est exhaustive:
	SetVoltDacs(double *Thres_value)
	load_delay_width_table(int *delay_vector,int *width_vector)
	ReadCounters(int *Vector_counter)
	Read_status(int &status)
	reset_counters()
	Constructeur de l'API.
	Remet à 0 le mot de controle.
	Member Function Documentation
	bool Tcpt_trigger_API::Connect_USB (char * FirmwarePath)
	Fait la connection USB avec la carte et transfert l'executable.
	Cette Methode est la toute première à executer avant toute autre opération.
	Parameters:
	FirmwarePath : Chaine de caractère contenant le nom et le chemin du fichier ASCII de programmation.
	Returns:
	true en cas de succès.

unsigned char TLogicInterpreter::ComputeAgainstFormula (int in_vector, int bit_a_affecter, unsigned char masque)

 Fonction de calcul. Cette fonction est un wrap up de la méthode ComputeAgainstFormula(int in_vector), car elle permet d'évaluer le résultat de la formule au regard du vecteur d'entrée, mais aussi de modifier le bit approprié dans une table de vérité gérant déja 8 sorties (d'où le type du paramètre de sortie).

	Parameters:
	in_vector : Combinaison logique d'entrée à tester (point d'entrée de la table de vérité)
	bit_a_affecter : Sortie à positionner en fonction du résultat de la formule et de la combinaison d'entrée
	masque : octet dont un des bit est à modifier
	See also:
	CleanString(string Op)
	int TLogicInterpreter::

: Combinaison logique d'entrée à tester (point d'entrée de la table de vérité)

ComputeAgainstFormula (int in_vector, int bit_a_affecter, int masque)

 Combinaison logique d'entrée à tester (point d'entrée de la table de vérité) bit_a_affecter : Sortie à positionner en fonction du résultat de la formule et de la combinaison d'entrée masque : entier dont un des bit est à modifier

	Parameters:
	in_vector :
	Fonction de calcul.

Cette fonction est un wrap up de la méthode ComputeAgainstFormula(int in_vector), car elle permet d'évaluer le résultat de la formule au regard du vecteur d'entrée, mais aussi de modifier le bit approprié dans une table de vérité gérant déja 32 sorties (d'où le type du paramètre de sortie).

int Tcpt_trigger_API::ConfigureFPGA (char * FPGAConfigFile) Methode de configuration du FPGA. L'appel a cette fonction met en mémoire les données de configuration fournie par FPGAConfigFile et génère toute la séquence de communication requise avec le hardware.

Parameters:

FPGAConfigFile : Nom et chemin du fichier contenant les données de configuration du FPGA.

Returns: 0 : Succès.

-1 : Problème de lecture du fichier de configuration ou d'allocation mémoire.

-2 : Echec à la requete d'effacement du FPGA.

-3 : Echec de la requete de status de l'effacement.

-4 : Echec de l'effacement.

-5 : Erreur de transfert des données de configuration.

-6 : Echec de la requete de status de configuration.

-7 : Echec de récupération du status de la configuration.

-

Parameters:

Vector_counter : buffer de destination pour les 16 valeurs de compteurs (24 bit significatifs).

See also: INST_READ_COUNTERS bool Tcpt_trigger_API::mode_pretemps_select (bool active)

Méthode d'activation du mode pretemps. Un appel a cette méthode avec le paramètre approprié active ou desactive le mode pretemps.

Parameters:

active : true active le mode pretemps.

See also:

SetPretemps(unsigned int pretemps)

bool Tcpt_trigger_API::reset_counters () Fonction de remise à zéro de l'ensemble des compteurs.

See also:

SetCTRL_reg()

TLogicInterpreter Class Reference

Classe offrant toutes les méthodes permettant de faire un calcul logique à partir d'une chaîne de caractères.

#include <LogicInterpreter.h>

Public Member Functions

string GetStatus ()

Installation sur une plateforme LINUX

A venir

Installation sur une plateforme MAC

A venir