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Abstract. We experimentally demonstrate the high-sensitivity optical monitoring

of moving micromirrors, made of low-loss dielectric coatings upon silicon resonators

of various shapes and sizes. The record optical finesses obtained (F ≃ 30 000) has

allowed us to measure the thermal noise of the micromirrors at room temperature with

a quantum-limited sensitivity at the 10−19 m/
√

Hz level and to completely characterize

their mechanical behaviour, in excellent agreement with the results of a finite-element

computation. Applications of such optomechanical systems range from quantum optics

experiments to the experimental demonstration of the quantum ground state of a

macroscopic mechanical resonator.
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1. Introduction

Optomechanical systems, in which the intrinsic low-noise operation of optical

measurements and moving mirrors yield very high-sensitivity displacement- or force-

measurements, have been studied for over three decades in the framework of

interferometric gravitational-wave detection [1, 2] and their ultimate quantum limits

have been theoretically investigated [3, 4]. Such systems have also been considered

to perform quantum optics experiments such as squeezing of the light field [5], QND

measurements [6], or creation of non-classical states of the mirror motion [7, 8], even

though very few experiments were actually performed [9, 10, 11], and always at a level

far from the quantum domain.

Optomechanical systems have anyhow been central to world-record force-

measurement in an optical AFM [12], and further progress with low- [13], medium-[14]

or high-finesse optical cavities [15, 16, 17] as well as silica microtoroids [18], has allowed

to enter a new regime where not only does the mirror motion impact the light field,

but the coupling also acts the reverse way: back-action effect induced by the intracavity

radiation field may for example cool the moving mirror.

In this article, we describe the high-sensitivity displacement monitoring of a silicon

micromirror. The high finesse of the optical cavity, combined with the quantum-limited

operation of the laser source and the detection system, has allowed us to monitor

displacements at the level of 4 × 10−19 m/
√

Hz. This enables a careful comparison of

the whole optomechanical behaviour of the micromirror with a finite-element modeling

of the system. Sec. 2 is dedicated to a brief overview of the design, etching and optical

coating of the micromirrors. In Sec. 3, we describe the optomechanical sensor, including

the laser source and the optical detection setup we use throughout the paper. Sec. 4

is dedicated to the optomechanical characterization of the different vibration modes of

the resonator, with a comparison to the results of a finite-element computation. In

Sec. 5, we present further results which underline the multi-mode character of the

resonator, summing up the single-mode results and using them to account for the

observed wideband thermal noise spectrum of the micromirror. We also discuss the

optomechanical characteristics obtained for a micromirror with a different geometry.

We finally present a force-cancellation effect induced by the multi-mode behaviour of

the micro-resonator, which is similar to the back-action cancellation mechanism recently

observed for the radiation pressure exerted on a moving mirror [19].

2. Micro-resonator design and fabrication

Fabrication of the resonators proceeds as follows: we use 1 cm2 chips, cut in a 4-inch SOI

wafer (60 µm Si||2 µm SiO2||500 µm Si), each with up to 4 micro-resonator structures.

The structures are obtained by double-sided lithography and etched by Deep Reactive

Ion Etching [20], in order to insure sharp edges. All resonators are 60 µm thick. The

resonators under discussion in the following consist of 1 mm × 1 mm (R1, see Fig. 1)
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Figure 1. Left: Optical image of a chip with 4 micro-resonators (including R2 on the

left). Center: Geometry of resonator R1. Right: Geometry of resonator R3. The red

spot gives the relative size of the optical waist.

and 1 mm× 800 µm (R2) doubly-clamped beams, and a 1-mm triply-clamped disk (R3,

see Fig. 1). With such dimensions, resonance frequencies are in the MHz range and the

corresponding effective masses down to the µg level.

Each resonator chip is then cut and coated at the Laboratoire des Matériaux Avancés

on the upper side with a very high-reflectivity and low-loss dielectric coating for 1064

nm. The micromirror is used as the back-mirror of an optical cavity. It is inserted

in a mechanical structure which both guarantees optical parallelism and allows for its

accurate transverse translation in order to provide a fine centering of the resonator and

an optimization of its optomechanical behaviour. The input mirror has a 5 cm curvature

radius, a transmission of 100 ppm, and losses of the order of 10 ppm. In order to lower

the frequency noise, the cavity length is 2.4 mm, yielding an optical waist of 60 µm at the

micromirror. The optical finesse of the cavity is deduced from the measurement of its

bandwidth. The low roughness of the SOI substrate, together with the high quality of

the optical coating, has allowed us to obtain very high optical finesses, up to F = 30 000,

with typical overall losses (residual transmission and losses of the micro-resonator) on

the order of 100 ppm.

The whole cavity is set inside a vacuum chamber, in order to immune it from

acoustic perturbations, to lower the optical index fluctuations, and to increase the

mechanical quality factors (see Sec. 4.5). The cavity is temperature-stabilized around

room temperature with residual fluctuations below 10 mK.

3. Optomechanical sensing

The optical sensor is based upon a highly-stabilized Nd:YaG laser working at λ =

1064 nm (Fig. 2). The laser beam is sent through a wide-band electro-optic modulator

(EOM) used as an intensity-modulation device, and a triangular spatial filtering

cavity, locked onto resonance with the tilt-locking technique [21]. Our laser source

therefore delivers a nearly perfect TEM00 gaussian mode with well-defined intensity and

wavelength, and mode-matched to the high-finesse cavity by focussing lenses.

The laser frequency is locked at resonance by the Pound-Drever-Hall (PDH)

technique via a resonant electro-optical modulator which provides a phase modulation

of the incident beam at the sideband frequency of 12 MHz. The resonator displacements

are monitored by the high-frequency part of the PDH error signal, and the displacements
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Figure 2. Experimental setup used to monitor the displacements of the micro-

mechanical oscillator. A Nd:YAG laser beam (red) is intensity-stabilized with an

electro-optic modulator (EOM) and spatially filtered before entering the resonator

cavity. The displacement signal is extracted by means of a Pound-Drever-Hall phase

modulation scheme using a resonant electro-optic phase modulator. The low-frequency

part of the signal is used to lock the laser frequency to the cavity resonance. A voltage

modulation applied to a metallic tip in the vicinity of the resonator allows to further

check its mechanical behaviour.

are calibrated by comparison with the effect of a frequency modulation of the laser beam

[9, 15].

Curves b and c of Fig. 3 represent relevant noises. Optical index fluctuations are

irrelevant once the optical cavity is operated in vacuum. The frequency noise of the

laser has been independently characterized with the filtering cavity: curve b presents an

overestimated envelope. Frequency noise does not affect the sensitivity of our experiment

for frequencies higher than 1 MHz: the sensitivity is then only limited by the quantum

phase noise of the reflected field (curve c) to a level of 4 × 10−19 m/
√

Hz at 1 MHz, in

excellent agreement with the expected level, once taking into account every detail and

imperfection of the optical setup.

4. Single-mode optomechanical characterization

4.1. Finite-element computation of the resonator

As the mechanical parameters (resonance frequencies, effective masses...) of doubly-

clamped beams only have exact expressions for certain limits of their shape factors, we

have used a finite-element modeling (FEM) program (Comsol Multiphysics) to compute
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Figure 3. Thermal noise spectrum at room temperature, over a 4MHz span (a), for

resonator R1. Other curves represent relevant noise levels: overestimated frequency

noise (b) and shot-noise (c).

Figure 4. The three-step finite-element computation. (a) The geometry of the

resonator and the mechanical constraints are defined. (b) The FEM program defines

the mesh. (c) It computes the resonance frequencies along with the spatial profile of

each vibration mode. Note the (low but finite) vibration amplitude at some vibration

anti-nodes outside of the resonator.

the mechanical properties of the micromirrors.

Fig. 4 summarizes the three-step computation. The geometry of the micromirror is

first defined. All the 1 cm2 silicon chips are divided in three different zones. The silicon

chip is firmly clamped on a brass piece on the front part of zone 1, whereas the back

surface of both zones 1 and 2 is clamped to a copper piece. These constraints are given

to the FEM program. Only zone 3, with up to four micromirrors, may freely move. The

program then defines the required mesh, before computing the resonance frequencies

and the corresponding vibration profiles, which enables to compute the stored elastic

energy and therefore the effective mass of each mode.

For doubly-clamped beams (such as R1 and R2), the modes have a rectangular

symmetry and can be indexed by two integers (p, q), each equal to the number of modes

in an orthogonal direction. We will mainly focus in the following on pure transverse

modes, i.e. (0, q) modes with limited vibration in the direction of the clamping (see
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Figure 5. Left: thermal noise spectrum around the 814 kHz resonance of resonator R1,

at room temperature. Right: mechanical response of the same mode to a modulated

electrostatic force (squares) and corresponding lorentzian fit (dashed line).

Sec. 4.4). For disks (such as resonator R3), the modes can be as well indexed by two

integers, one related to the radial symmetry, and one to the orthoradial one.

4.2. Experimental determination of the optomechanical parameters

Curve a of Fig. 3 presents the calibrated thermal noise spectrum obtained at room

temperature, with a resolution bandwidth of 20 Hz and for an incident laser intensity of

1.5 mW. This spectrum exhibits sharp peaks with a high dynamics, which can be used

to pinpoint the mechanical resonances of the micro-resonator.

The observed wideband thermal noise spectrum can be seen as the sum of thermal

peaks and off-resonance tails of every vibration mode [22], which our setup allows to

study in great detail. Left curve of Fig. 5 presents for instance the noise spectrum

acquired over a 4 kHz span centered around the mechanical resonance at 814 kHz. A

lorentzian fit of the resonance gives access to the optomechanical characteristics of the

mode: resonance frequency Ω02/2π ≃ 814 kHz, effective mass meff

02
≃ 190 µg, in good

agreement with the expected values (890 kHz and 130 µg), computed with FEM.

Table 1 shows the measured resonance frequencies and effective masses, together

with the FEM results and the measured mechanical quality factors for pure transverse

(0, q) modes as well as for the (2, 2) one. In vacuum, the mechanical quality factors vary

from a few thousands to 15 000.

The discrepancy between the measured and computed values of the resonance

frequency decreases quickly and is below 5% for higher pure transverse modes. It appears

to be mainly due to the coupling of the resonator modes with the wafer modes, as show

both the dependence of the computed frequencies with the location of the resonator

over the chip and the remaining discrepancy for longitudinal modes such as (2, 2).

The agreement between measured and computed effective masses is quite

satisfactory for even transverse modes. For odd modes, the displacement vanishes at

the center and the effective mass should be infinite: the finite effective masses measured

are due to an off-centering of the resonator with respect to the optical axis of the cavity,
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Mode Ωpq/2π (kHz) Ωpq/2π (kHz) Qpq meff
pq (µg) meff

pq (µg)

(p, q) measured computed measured measured computed

(0,0) 367 436 6 000 101 148

(0,1) 477 525 500 350 000 330 000

(0,2) 814 893 10 000 197 130

(0,3) 1 612 1 659 10 000 6 000 5 000

(0,4) 2 824 2 822 15 000 210 203

(0,5) 4 366 4 365 15 000 8 000 5 000

(2,2) 2 384 2 798 3 000 464 470

Table 1. Comparison between the measured and computed mechanical parameters

(resonance frequency Ωpq/2π and effective mass meff
pq

), and measured quality factors

Qpq of a few vibration modes of resonator R1.

which is not known accurately. Computed values -typically a factor 1000 larger than

for even modes- are determined with an off-centering of 5 µm, which accounts quite well

for the experimental data.

4.3. Electrostatic actuation

In order to confirm which of the observed peaks are related to a mechanical resonance of

the silicon micromirror, we have implemented an electrostatic actuation of the resonator.

It consists of a voltage modulation applied to a metallic tip close to the back surface

of the resonator. The metallic tip is positioned with a 3-axis translation stage, its

transverse position being optimized by monitoring it on a CCD camera set behind the

optical cavity.

A quick order-of-magnitude estimate of the electrostatic force yields a force of the

order of 1 nN for a few Volts modulation. Taking into account the expected resonance

frequencies and effective masses, this corresponds to displacements on the order of

10−12 m at the resonance frequencies: the thermal noise level (10−15 m/
√

Hz) is therefore

quite negligible as long as the measurement bandwidth is small enough (usually in the

10-Hz range).

As the electrostatic force is quadratic with respect to the applied voltage, the voltage

can be either modulated at half-frequency or applied together with a DC voltage. In

both cases, the corresponding DC displacement is compensated by the frequency-locking

of the laser to the moving mirror cavity. We have mainly used the latter mechanism,

using the DC offset as a variable modulation depth.

The right curve of Fig. 5 shows the observed mechanical response as the actuation

frequency is swept around the resonance frequency, along with the corresponding

lorentzian fit. It confirms the mechanical origin of the resonance peak and the values

of the resonance frequency Ω02/2π and mechanical quality factor Q02. It also yields an

estimate of the effective mass meff

02
in good agreement with the measured value, as far
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Figure 6. Decay of the modulated displacement once the electrostatic actuation is

turned off (at t = 0). The right curve is a close-up of the left one, and displays the

remaining oscillations. The vibration mode under study is the (0, 2) mode of resonator

R2 at 919 kHz.

as the electrostatic force exerted on the micromirror can be accurately calculated.

We have checked the linearity of the observed mechanical response with respect

to both the DC and AC voltages. We have also checked the dependence of the force

with the tip-resonator distance. For distances in the 50-300µm range, when the tip

is surrounded by the silicon substrate, we find the expected dependence for a sphere-

plate system. For larger distances, the force no longer obeys that simple law, as the

applied voltage can be electrostatically screened by the silicon wafer. In the following,

the distance is set at 200µm, which insures a large electrostatic force.

We have also taken advantage of this electrostatic actuation setup to further check

the quality factor of the mechanical resonances. Once the resonator is driven into

motion, we switch the modulation off and monitor the slow decay of the modulated

displacement. Fig. 6 shows both the decay of the vibration envelope and a detail of the

modulated displacement for the (0, 2) mode (at 919 kHz) of resonator R2. The measured

time constant of this decay is τ = 2.36 ms, yielding a mechanical quality factor of 6 800,

in excellent agreement with the 6 900 value deduced from the thermal noise spectrum.

4.4. Spatial profiles

The spatial profile can be mapped by translating a point-like actuation along the

resonator surface while monitoring the amplitude of the response, as performed with

radiation pressure actuation of larger fused silica mirrors [23]. Taking into account the

small size of the resonator as well as the intrinsic long range feature of the electrostatic

force, we have used a different approach: as the observed displacements depend on the

overlap between the spatial structure of the mode and the optical intensity profile inside

the cavity [23], the spatial profile is mapped by translating the resonator with respect

to the laser beam while monitoring the level of the thermal noise at the mechanical

resonance frequency. Fig. 7 presents the measured thermal noise level of the different

modes of resonator R1, as a function of the transverse displacement between the
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Figure 7. Variations of the thermal noise level as a function of the lateral position

of the optical spot, for various vibration modes of resonator R1. Dots: experimental

points; dotted line: fit with the expected spatial profile. The vertical error bars are

mainly due to the optical finesse variation, especially at the edge of the resonator.

Inserts show the corresponding computed spatial profiles.

resonator and the laser beam. The results are in excellent agreement with the noise

levels expected from the computed spatial structure of the modes.

4.5. Mechanical quality factor

The mechanical quality factor Q is a very important feature for optomechanical

experiments, as it concentrates the noise spectrum in the vicinity of the mechanical

resonance. It therefore increases both thermal and quantum-mechanical noise levels

at the resonance frequency, which may be of great help in the quest of the quantum

ground state of the resonator, and lowers the same noise levels for out-of-resonance

frequencies, thereby helping to experimentally demonstrate effects of radiation pressure

in quantum optics experiments for instance. This subsection is devoted to an analysis

of the variation of Q with respect to the surrounding pressure.

The quality factors are experimentally deduced from the widths Γpq = Ωpq/Qpq of

the thermal noise spectra. Left curves of Fig. 8 show the observed pressure-dependence

of the thermal noise spectrum of the (0, 4) mode of resonator R1. As the pressure is

varied in the vacuum tank, the optical length of the cavity changes and the laser has

to be locked on the new optical resonance frequency of the cavity. The mechanical

damping Γ04/2π shifts from its ambient pressure value of 1 100 Hz to a value of 190 Hz

at 10−3 mbar, corresponding to a quality factor of 15 000.

Different kinds of behaviour have been experimentally observed. The damping of

the (0, 2) mode appears to have a linear dependence with pressure P above 20 mbar

(see ◦ in the right chart of Fig. 8), which can be explained by acoustic emission from
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Figure 8. Left: thermal noise spectrum of the (0,4) mode of resonator R1, at ambient

pressure (a) and in vacuum (b). The corresponding experimental points have the same

color on the right chart. Right: dependence of the mechanical Qpq factors for various

modes of resonator R1 (◦ : (0,2) - ⋄: (0,3) - ¤: (0,4) and △: (0,5)), as a function of

pressure. The green line represents a fit by a model with a viscous damping, whereas

the blue line represents damping by acoustic emission.

the vibrating resonator (with lower pressure leading to lower acoustic emission and

therefore lower losses). However, the (0, 4) mode obeys a different law: it appears to

have a damping term proportional to
√

P (see ¤ in Fig. 8), which can be explained

by the viscous damping of the resonator by the surrounding air. Other modes, such

as (0, 3), have a too important damping constant at low pressure for any model to be

tested on the limited pressure range experimentally available.

The mechanical damping appears to reach a minimum for pressures around and

below 1 mbar. The corresponding value is somehow connected to clamping losses, as

the highest values (up to 15 000) are obtained for pure transverse (0, q) modes, with

a low displacement at the clamping location [24]. Much higher values have however

already been reported for resonators of similar dimensions or material [25, 26]. Such

a discrepancy can be attributed to a number of reasons, including coating losses or

coupling to the silicon chip, all of which still have to be investigated.

5. Multimode optomechanical behaviour

5.1. Multimode spectrum of resonator R1

Performing an individual study of each acoustic mode of the resonator allows us to

quantitatively explain the observed multimode noise spectrum of Fig. 3. Curve b of

Fig. 9 presents the thermal noise spectrum expected from the FEM simulation and the

experimental optomechanical characterization: only modes predicted by the FEM were

taken into account, with the experimental values (Ωpq, meff

pq , Qpq) obtained by fitting the

individual thermal noise spectra, together with the quantum shot-noise.

The remaining discrepancy between these two curves, around 1 200 or 1 800 kHz,

can be mainly attributed to the coupling between the resonator modes and neighbouring
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Figure 9. Left: experimental thermal noise spectrum of resonator R1, over a 4 MHz

span (same as curve a of Fig. 3), and thermal noise spectrum expected from the

FEM simulation and the single-mode characterizations (b). Right: zoom of the high-

frequency part of the thermal noise spectrum, from 3.6 to 3.7 MHz, which exhibits

a large number of small and thin peaks, probably related to vibration modes of the

input mirror.

modes of the silicon chip, as accounted for by a noise spectrum monitored with the

optical beam reflected upon the silicon wafer, but outside the resonator, which clearly

exhibits the same vibration modes.

The number of smaller peaks which constitute a quasi-continuum at higher

frequency (see right curve in Fig. 9) can probably be related to the modes of the

input fused silica mirror, which is expected to have a comparable density of modes in

this frequency range.

5.2. Multimode spectrum of resonator R3

In order to discuss the impact of the suspension of the system over its overall

optomechanical features (as attested by the faint vibration amplitudes displayed outside

the resonator on the theoretical vibration profile of resonator R1 on Fig. 4), we now

turn to the thermal noise spectrum of resonator R3, displayed on Fig. 10.

The first significant vibration mode -at 272 kHz- is mainly a vibration mode of the

loaded clampings, with the central resonator moving almost as a whole, without any

major internal strain. Other modes (corresponding to the upper inserts if Fig. 10) are

vibrations modes of the main resonator, with a low vibration amplitude at the clamping

level, and a 3-fold symmetry due to the clamping geometry. Their effective masses are

of the order of the mass of the resonator. The quality factors of such modes are notably

enhanced by the suspension, up to a factor 4 with respect to a disk of similar dimensions

but fully clamped over its border.

The spectrum finally displays highly-coupled modes of both the resonator and the

suspension clampings. All experimental resonance frequencies are in excellent agreement

(with relative discrepancy below 5%) with a FEM model of the resonator and its
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Figure 10. Thermal noise spectrum of resonator R3, at room temperature. Inserts

show the vibration profiles of a number of significant vibration modes.

suspension design. The intrinsic angular degeneracy of the bare disk-shaped resonator is

only slightly lifted by the 3-fold symmetry of the suspension, yielding the experimental

observation of very broad (multi-mode) peaks in the noise spectrum.

The design of a resonator with a lower impact of the wafer upon its motion is

currently under investigation.

5.3. Force cancellation

Up to now, the multi-mode optomechanical behaviour of the resonators can be seen as

the sum of uncorrelated single-mode responses. We present in this subsection a different

mechanism where the electrostatical actuation of the micromirror leads to a coherent

excitation of both a resonant mode and the off-resonance mechanical response of all

other vibration modes, leading to an effective cancellation of the mechanical response

of the micromirror.

Fig. 11 presents the thermal noise spectrum of resonator R1 (curve a), in the

vicinity of the (0, 4) resonance frequency. It can be fit (curve b) as:

ST
x [Ω] =

∣

∣

∣

∣

1

m04 (Ω2
04
− Ω2 − iΓ04Ω)

∣

∣

∣

∣

2

ST [Ω] + ST
0
, (1)

where ST [Ω] = 2m04Γ04ΩkBT is the driving Langevin force and ST
0

the level of

the background thermal noise, which we will assume frequency-independent in this

frequency span. The fit yields the following optomechanical parameters: m04 = 211 µg,

Ω04/2π = 2824 kHz, Γ04/2π = 1050 Hz and ST
0

= 4.0 × 10−34 m2/Hz.

When driven by an external force characterized by a spectrum SF [Ω], the

modulation level can be fit as:

SF
x [Ω] =

∣

∣

∣

∣

1

m04 (Ω2
04
− Ω2 − iΓ04Ω)

+ χ0

∣

∣

∣

∣

2

SF [Ω], (2)
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Figure 11. Thermal noise spectrum (a) and optomechanical response of the

micromirror to an electrostatic force (e), in the vicinity of the (0, 4) mechanical

resonance at 2 824 kHz. Curves b and f display the theoretical fit (eqs. 1 and 2),

with the contributions of both the resonant mode (c and g) and the off-resonance

modes (d and h).

where χ0 is the off-resonance mechanical susceptibility of all other vibration modes of

the micromirror. χ0 is real and positive as higher frequency modes (with a positive

single-mode mechanical susceptibility 1/mpqΩ
2

pq) have an overall higher contribution

than the low-frequency ones (with −1/mpqΩ
2 contributions). As the driving frequency is

swept across the (0, 4) resonance frequency, the relative phase between the resonant and

non-resonant terms therefore shifts from 0 to π: the mechanical responses accordingly

either strengthen or cancel one another, leading to a dissymetrical mechanical response,

including a cancellation of the response at a frequency slightly higher than the resonance

frequency.

Fig. 11 presents the experimental results obtained with a modulated electrostatic

force, which clearly exhibits a cancellation effect at a frequency slightly higher than the

resonance frequency. The discrepancy around the cancellation frequency with the fit

given by eq. (2) (curve f) may be due to electromagnetic interference signals. A related

effect, in response to radiation pressure fluctuations, has already been experimentally

demonstrated with a high-finesse optical cavity with twin fused silica mirrors [19] and

might be used in a back-action evasion scheme in the context of the detection of

gravitational-waves with resonant detectors [27].

6. Conclusion

We have presented an experiment where the motion of micromirrors is monitored at the

10−19 m/
√

Hz level with a stabilized laser source and a very high-finesse optical cavity.

The motion and the optomechanical behavior have been fully studied and accounted for,

both at and off-resonance, at frequencies of interest for quantum optics experiments.

There is still room for improvement, both optical and mechanical: the cavity finesse

achieved so far is mainly limited by the roughness of the commercial silicon wafer, and
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higher values have already been obtained for the mechanical quality factor [26].

Low temperature operation of such a resonator opens the way to quantum optics

experiments, as well as the experimental observation of the quantum ground state of

a macroscopic mechanical resonator [28, 29]. A specific scheme, based upon radiation

pressure cavity-cooling, has already been demonstrated [14, 16, 17, 18] and shown to

allow for ground-state cooling [30, 31]. The single-mode resonant behavior observed over

more than 40 dB with our resonator seems especially promising in that purpose. The

knowledge of the other modes’ dynamical behaviour indeed appears as a major issue on

the road to the quantum ground state, as the out-of-resonance tails of other vibration

modes will no longer be negligible compared to the resonant noise, and in fact already

matter in our experiment [16] for extreme cooling ratios.
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