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Dynamics of the neck degree of freedom during fusioning process between heavy ions
is studied. Time scales of the three degrees of freedom (the relative distance, the neck
and the mass-asymmetry) are studied, showing an early equilibration of the neck. This
means that a di-nucleus formed by the incident combination of ions quickly forms a
mono-nucleus with a superdeformation during the fusion process and that the other two
degrees of freedom have to be solved in a coupled way. A brief introduction of Langevin
approach and dissipation-fluctuation dynamics is also given and of the application to
the synthesis of the superheavy elements.

1. Motivation : Historical Background

It is well known that the collective motions in excited nuclei are governed by the

potential landscape and dissipation. When the system has to cross a barrier, the

fluctuation, associated with the dissipation according to the Dissipation-Fluctuation

theorem, play an essential role.

For multi-dimensional problems, the Langevin equation appears to be easier to

solve numerically than the equivalent Fokker-Planck equation also used for the anal-

ysis of heavy-ion collisions, say, of the fast-fission process1. The Langevin equation

1



January 5, 2009 13:21 WSPC/INSTRUCTION FILE F-J˙final.hyper26419

2 Y. Abe, C. Shen, D. Boilley and B.G. Giraud

was first used in nuclear physics for a dynamical description of the fission process.2

Combined with particle emission, it was applied to analyse the anomalous mul-

tiplicities of pre-scission neutrons,3 which, together with the total kinetic energy

of fission fragments, supports a strong friction of the one-body type, (Wall-and-

Window4) rather than the two-body viscosity.5

More recently, this Langevin formalism has been used to study the fusion of

heavy nuclei in order to propose an explanation of the fusion hindrance6 which has

been experimentally known to exist in fusion of massive systems7 without theoret-

ical explanation. The DNC (Di-Nucleus Configuration) formed by the contact of

two ions of the incident channels has an extremely large deformation and then is

located outside of the conditional saddle point in LDM (Liquid Drop Model), as

is shown in Fig. 1. The system has then to cross two barriers to fuse. In order to

calculate probability of the hindered fusion, we use a Two-Step Model and apply

it to the synthesis of the superheavy elements.8,9

Fig. 1. A schematic illustration of LDM energy surface for heavy systems. The x-axis is the
distance between two centers and the y-axis is the mass-asymmetry. Two examples of incident
combinations of ions are indicated for the hot and cold fusion paths, respectively.

The over-passing probability of the inner barrier is dominated by the diffusion

of the distance parameter between two ions.10,11,12,13 This is briefly recapitulated

in section 2 with a simplified model. In section 3, time development of the neck

motion is analysed with the Smolchowski equation during the fusion process.

2. Brief Reminder of One-Dimensional Parabolic Barrier

Reducing the inner barrier to an inverted parabola and assuming that the transport

coefficients are constant near the barrier, the problem is amenable to a simple
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analytic explanation of the origin of the fusion hindrance. Here, we will recapitulate

one-dimensional case and refer to Ref.10 for the N-dimensional case with a coupled

Langevin equation.

The equation to be solved is given as follows,

d

dt

[
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p

]

=

[
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where µ and ω denote the inertia mass and the frequency of the parabola, respec-

tively. The reduced friction β = γ/µ is defined with the friction coefficient γ. R

denotes a Langevin force associated to the friction γ, which is assumed to sat-

isfy the dissipation-fluctuation theorem, and to be a Markovian with a Gaussian

distribution. The probability of passing over the barrier, which we call formation

probability of the compound nucleus, is simply given by an error function, whose

argument is expressed by the average trajectory < q(t) > and its variance,
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For a time long enough, the probability converges to a finite value,
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where B = µω2q2
0/2, the saddle point height measured from the initial point q0,

while K = p2
0/(2µ). x denotes the critical parameter β/(2ω). The probability be-

comes when the initial kinetic energy K = (x +
√

x2 + 1)2B, which we call an

effective barrier Beff for the case of dissipative dynamics. This simply explains

the origin of the hindrance. As we discussed elsewhere,14,8 the distribution of p0 is

expected to be a Boltzmann distribution, and then, an averaging over the initial

momentum p0 that is thermally distributed with an average value equal to zero,

gives an extremely simple expression for the formation probability,

Pform(Ec.m.) =
1

2
erfc

(
√

B

T

)

. (5)

As is clearly seen in Eq. (5), even if we give a larger incident kinetic energy, the

formation and then the fusion probability increase very slowly through the increase

of the temperature of the system, which appears in agreement with the experiment.7

Before proceeding to a discussion on the motion of the neck degree of freedom,

it is meaningful to have a close look at the time evolution of the fusion. We analyse

time-developments of the trajectory, the formation probability and the current over

the saddle by the use of the analytic solution. The results are shown in the first,

the second, and the bottom rows of Fig. 2, respectively. 13
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Fig. 2. Average trajectory, over-passing probability and current at the top of the barrier as a
function of time for four regimes, K = 0 (first column), K = Beff /2 (second column), K = Beff

(third column) and K = 2Beff (last column). For each case, two temperatures were chosen,

T = B/5 (solid line) and T = B/2 (dashed line). Note that each column has a different time scale.

Our case corresponds to the leftmost column, for incident kinetic energy K = 0.

Firstly, the average trajectory never passes over the saddle, but retreats back. Sec-

ondly, the formation probability becomes saturated as time goes. Finally, the cur-

rent has a peak structure around several ~/MeV, which shows that the probability

current at the saddle starts slowly and then terminates gradually. This means that

the formation of the compound nucleus is not due to a dynamical motion, but due

to the fluctuation, i.e., due to a tail part of the Gaussian distribution around the

average trajectory. The time scale of the radial fusion is important for the discussion

of the neck degree of freedom in the next section.

3. From Di-Nucleus to Mono-Nucleus : Filling-in of the Neck Cleft

For a description of fusion processes between heavy ions, there are at least three pa-

rameters or variables. In two-center parameterization,15 they are distance between

two mass centers, mass-asymmetry, and the neck correction. Since the neck degree

of freedom is weakly coupled to the others, it is meaningful to analyse its time evo-

lution separately. The LDM potential for the symmetric incident systems turns out

to be approximately linear in the neck parameter. To analyse the time evolution of

the neck parameter, starting at ǫ = 1.0 or around, a Langevin equation is solved.

It appears that the average value of the neck parameter changes very quickly, far

quicker than the radial fusion for most systems including very heavy ones.16 This

is due to the action of the linear driving force in the neck ǫ, while the radial fusion

is governed by diffusion. Thus, it is inferred that the neck degree of freedom is in

the thermal equilibrium during the fusion.

Next, in order to know how the distribution reaches the equilibrium, we try

to obtain a time-dependent distribution function of the neck, starting from the
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delta-function at ǫ0 = 1.0, i.e., at the initial DNC. The Smoluchowski equation is

solved, since we know that the momentum space can be approximated to be in an

equilibrium, due to a very small inertia mass.17 Then, with a linear potential, the

equation to be solved is as follows,

∂N

∂t
= D

∂2N

∂ǫ2
+ C

∂N

∂ǫ
, (6)

where the diffusion coefficient is D = T/γ, and the drift one C = f/γ, f being the

slope parameter calculated with LDM15: V (ǫ) = fǫ. The friction coefficient γ is

calculated with the usual one body model. For simplicity, we take the range of the

variable ǫ to be [0.0,∞], instead of the realistic [0.0, 1.0] (in this case, a little more

complicated expression has been obtained, but the results are essentially the same

as the present case.18). The boundary condition at ǫ = 0.0 is reflective. With the

initial and the above boundary conditions, the solution is obtained as follows,19
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For long times, this expression becomes a Boltzmann distribution. In Fig. 3, the

time dependence is shown by distributions at various times after the contact, for

the case of 100Mo+100Mo system.
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Fig. 3. Time evolution of the neck distribution function is shown with examples at various times
for 100 Mo+100Mo system, for which typical values of the parameters are D = T/γ=1/8 and
C = f/γ=20/8 in the unit of MeV/~. The time unit is ~/MeV.

Apparently, the Boltzmann distribution in the coordinate space is established

at several tenths of ~/MeV. It is worth noticing that this time scale is far shorter

than that of the 1-dimensional radial fusion discussed in the previous section. This

means that before the radial motion for fusion starts, the neck cleft is filled in, i.e.,
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the initial DNC becomes a superdeformed mono-nucleus. During fusioning motion,

we can approximately take ǫ to be 0.0, because it is the most probable value of the

Boltzmann distribution obtained above.

A similar analysis has been made for the mass-asymmetry,18 which turned out

that the time scale is the same order with that of the radial fusion, and thus, the

two degrees of freedom have to be solved in a coupled way.20
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