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Abstract

This paper is the deliverable of the EUROTeV Post Collision Line Design (PCDL)
task and gives an overview of the published results.
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1 Introduction

At high-energy e™e™ linear colliders, the incoming beams must be focused to extremely
small spot sizes in order to achieve high charge densities and, in turn, to reach the desired
luminosity. As a result, the colliding beams experience very strong electromagnetic fields
at the interaction point (IP). The subsequent bending of their trajectories leads to the
emission of beamstrahlung photons, which may then even turn into e*e™ pairs. This
leads to an emittance growth as well as a large energy spread for the outgoing beams.
In the EUROTeV framework, the PCDL task aims at a conceptual design of the post-
collision beam line between the IP and the final beam dump for:

e the International Linear Collider (ILC),
e the multi-TeV Compact Linear Collider (CLIC).

This report summarizes the beam dynamics simulation results obtained to complete this
task. In addition, suitable instrumentation options in order to measure relevant IP beam
parameters, and especially luminosity-related signals, are discussed.

2 ILC studies

The study of the ILC extraction line has been pursued in EUROTeV within an interna-
tional design team, as part of the Global Design Effort (GDE) responsible for the ILC
Technical Design Phase. In this context, several designs with different crossing angles
between the beams at the IP have been examined, emphasizing different aspects both
of the beam line design and of detector and physics capabilities.

The baseline configuration chosen for the ILC consists of a single IP with a crossing
angle of 14 mrad. While this layout allows more convenient spent beam extraction and
hence also makes the spent beam easier to use for diagnostics purposes (a desirable
feature for instance to enable additional post-IP beam polarisation and energy measure-
ments), it adds some complexity to the incoming beam dynamics and a dependence on
an effective crab-crossing scheme to deliver the full luminosity. Alternative designs with
either head-on collisions or a very small crossing angle of 2 mrad have been studied
to mitigate these disadvantages. These designs trade simpler pre-collision dynamics for
increased extraction difficulty and also allow better calorimetric coverage in the very
forward region of the detector, which is critical for part of the ILC physics program,
and easier calibration procedures to monitor field distortions in the tracking volume of
the detector, which matters to achieve optimum track resolution in case a large Time
Projection Chamber is used.

The PCDL task mainly focused on establishing a credible and economical minimal de-
sign for the 2 mrad alternative scheme. The initial design [la-b] attempted to include
special optics for additional post-IP energy and polarisation measurements, as in the



EUROTeV-Report-2008-063

baseline 14 mrad layout. It however proved inadequate as it could not cover all specified
ILC beam parameters and turned out too complex and expensive. The improved design
[2a-b] minimises the number of magnets in order to reduce costs and incorporates a
flexibility in the overall geometry in order to accommodate various dump layouts under
discussion. It does not include the originally planned additional energy and polarisation
diagnostics, but the possibility exists to add such measurements in future upgrades and
with novel techniques. Figure 1 shows a schematic layout of this design.
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Figure 1: Schematic layout of the 2 mrad ILC extraction line.

Using tracking studies of beam losses with high statistics to optimise the superconduc-
tive part of the final doublet [3a-b] and the downstream optics [4a-b|, and expected
beamstrahlung losses evaluated in realistic conditions [5] to determine beam stay-clear
requirements, it was shown that acceptable power losses and magnet parameters could
be obtained for the full range of specified ILC beam parameters. High-statistics beam
tracking was also pursued to explore possibilities of inferring beam transverse sizes and
offsets at the IP for tuning purposes, by measuring the spent beam tail profiles at a few
well-chosen protection collimators [6]. Known techniques to detect secondary emission
currents off Tungsten wires or Titanium strips built into the collimator, or newer ideas
to count Compton scattering from showers in a distant absorber, could then be used
to instrument these collimators. Finally, the higher-order chromatically-corrected final
focus optics was successfully re-fitted to integrate the 2 mrad extraction line, including
the effects of fringe field from a few closely located extraction line magnets. Preliminary
designs of all warm magnets allowed checking their feasibility. As an example of the
latter, the physical geometry and magnetic field lines of the C-shaped large aperture
bending magnet BHEX1 and of the large aperture quadrupole magnet QEX1 are shown
in Figure 2. The superconductive quadrupole and large aperture sextupole in the final
doublet are based on NbTi technology and are scaled from similar designs for LHC and
the initial 2 mrad layout.
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Figure 2: Left: Physical geometry and field lines of the BHEX1 bending magnet. For
the incoming beam passing at 27 cm to the left of the extracted beam, the only
component of the leakage field of any significance is the quadrupole. It can be
absorbed by re-fitting the final focus optics. Right: Field lines in the QEX1
quadrupole, which is located at the entrance of the 2 mrad ILC extraction line:
for the incoming beam line on the left-hand side part of the quadrupole, the
magnetic field remains smaller than 10 G.

The PCDL task also included an evaluation of the rate of back-scattered photons into
the ILC detectors from beam losses along the extraction line, as well as of their impact
to background hits in the first layers in the vertex detector [7], benchmarking studies
of different beam tracking codes and comparisons of beam losses in the earlier designs
of the different extraction lines [8a-d], contributions to the alternative head-on design,
to estimate power losses in the sensitive electrostatic separators and to evaluate the
luminosity reduction from parasitic collisions [9a-d], and a dedicated beam parameter
and performance optimisation for the e-e- mode of operation [10a-b].

3 CLIC studies

At CLIC, the incoming beams a much larger energy and a much smaller emittance than
at ILC. The beamstrahlung emission is therefore far more important and, in contrast
with ILC, a significant number of eTe™ coherent pairs are also produced. We started our
studies by investigating the suitability of the 20 mrad configuration of the ILC extraction
beam line optics for the CLIC post-collision line for CLIC and showed that such a design
is not adapted to CLIC, because of the larger amount of low-energy particles found in
both the disrupted beam and the coherent pairs, which would lead to much larger power
losses than at ILC [11]. Indeed, if there are quadrupoles in the post-collision line and
if their focusing strength is adapted for the main beam, then the low-energy tail of the
beam is over-focused and lost downstream. This triggered an investigation into a simpler
beam line design without any beam focusing elements [12].



EUROTeV-Report-2008-063

The CLIC post-collision line design has to ensure safe propagation of the colliding beams
with large momentum and angular spread to their dump, but it must also transport par-
ticles even when beams are not colliding, which favors a long post-collision line in order
to maximize the beam spot size on the exit window. A further difficulty comes from
the fact that ete™ coherent pairs are generated with energies peaking at about 10%
of the primary beam energy: these particles need to be transported and dumped in a
coordinated way in order to prevent large power losses and the generation of background
in the detector at the IP, through back-scattered particles.

In our design, the CLIC post-collision line mainly consists of a vertical dog-leg chicane
which displaces the main disrupted beam downwards by a few cm and the wrong-sign
charged particles of the ete™ coherent pairs upwards. These are not transported until
the final dump, but absorbed in an intermediate dump, placed about 50 m for the IP. A
first design was reported in [13a-b| but, following changes of the CLIC beam parameters,
it was revised and then updated in [14]. Figures 3 and 4 respectively show a general
layout of the CLIC post-collision line and the beam profiles at the final dump.
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Figure 3: Schematic layout of the CLIC post-collision line.
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Figure 4: Vertical profiles for the charged beam (full line), including the particles of
the eTe™ coherent pairs with the right-sign charge (dashed line), and for the
beamstrahlung photons (dotted line), as obtained at the end of the CLIC
post-collision line, 150 m downstream of the IP.
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Figure 5 shows the distribution of the power losses along the CLIC post-collision line.
Most of them occur in the collimators placed between the first magnets, as well as in
the intermediate dump. In the first magnets, less than 100 W/m are deposited and, in
the four magnets placed behind the intermediate dump, the beam transport is loss free.
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Figure 5: Relative energy spread of the lost particles as a function of the position of loss
in the CLIC post-collision line, obtained when tracking the charged beams.
The wrong-sign charged particles absorbed in their dump are not shown.

The dog-leg chicane consists of wide-aperture normal-conducting magnets of 4 m in
length, with a field of approximately 1 T. The chicane has the added benefit to separate
the main disrupted beam from the beamstrahlung photons by 11 cm. This allows use
of the beamstrahlung photons for diagnostics purposes in a beamstrahlung detector
sensitive to muon-pairs generated in the beam dump and placed behind it, see Figure 6.
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Figure 6: Cerenkov beamstrahlung detector based on the conversion of high-energy
beamstrahlung photons into muon pairs, that are the only charged particles
penetrating the beam dump and can be detected by their emission of Cerenkov
light in a gas detector. Note that the high-energy muons generated by the pri-
mary beam are predominantly forward peaked and miss the Cerenkov detector.
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Furthermore, the wrong-sign charged particles of the eTe™ coherent pairs are deflected
upwards in the first magnets, which allows them to collect and analyse them in the
intermediate beam dump, for diagnostics means. A fraction of the disrupted beam will
be lost in collimators that are placed between the first four chicane magnets. Instru-
menting these collimators with e.g. embedded pin-diodes or scintillation counters will
allow detection of the low-energy particles produced during the collision. A summary of
several diagnostics is given in [15].

Finally, we have performed a design of the exit window at the end of the post-collision
line, which has to sustain the full load of the 14 MW beam power on top of being rather
thick to cope with the pressure difference. We found that a design similar to the one
chosen for the LHC beam dump window is suitable. We propose an exit window made
of a thick layer of carbon-carbon composite, with a thin aluminum leak-tight foil [16].
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