Commentaires sur l'édition 2009

Cette réédition du rapport "GANIL RI 89 07" diffère des précédentes par l'ajout des pages 5.6 à 5.9 qui exposent dans le détail le calcul des gradients du champ électrique observé au niveau de la particule de référence. En effet, ces calculs n'étaient pas explicités. D'autre part, il nous apparaît essentiel de rappeler que tous les calculs sont opérés dans le référentiel du laboratoire (espace absolu) et à un instant donné.

Les grandeurs que nous qualifions de "relatives" répondent à la définition cidessus. Elles peuvent être mesurées au moyen d'un émittance-mètre occupant une position fixe par rapport au laboratoire.

Le champ magnétique et le champ électrique sont ceux observés dans le laboratoire.

Les masses sont affectées du facteur relativiste "gamma".

Le vecteur que nous appelons ici "position relative de la particule voisine de la particule de référence" est défini comme étant la différence des vecteurs des positions absolues de la particule de référence et de la particule voisine. A titre indicatif, la composante de la position relative selon la direction de la tangente à la trajectoire de la particule de référence serait à multiplier par le facteur "gamma" pour un observateur qui serait lié au déplacement de cette particule de référence (ce qui n'est heureusement pas le cas !).

De même, le vecteur "vitesse relative" de la particule voisine de la particule de référence est calculé comme étant la différence des vecteurs des vitesses absolues. Cette vitesse relative ne coïncide pas avec la vitesse relative que pourrait mesurer un observateur se déplaçant avec la particule de référence. Au premier ordre, la composante longitudinale de la vitesse relative mesurée dans le référentiel mobile de la particule de référence est à multiplier par le facteur "gamma au carré" conformément à la théorie de la relativité restreinte.

De même, l'accélération appelée relative est ici égale à la différence des accélérations absolues.

La méthode vectorielle ici présentée convient idéalement au calcul des huit coefficients des équations du mouvement relatif radial (valeurs explicites : voir page 5.2).

Le calcul de ces huit coefficients peut aussi se faire à partir de la différentiation (à un instant donné) des équations du mouvement de la particule de référence, et aboutit évidemment au même résultat que le calcul vectoriel ; mais au prix d'une démarche laborieuse impliquant de regrouper, et cela n'est pas vraiment évident, les très nombreux termes d'un développement pléthorique.

____________________________

Commentaires sur le calcul des gradients de champ électrique, page 5.4.

Cet additif donne le détail des calculs relatifs au formalisme, figurant en page 5.4, concernant les gradients de champ électrique en coordonnées polaires cylindriques.

Il faut au préalable se rappeler que les paramètres de l'ensemble des termes matriciels sont calculés à l'instant " t ". Aucune action de dérivation par rapport au temps ne doit intervenir pendant le déroulement du calcul de ces paramètres. En d'autres termes, le temps est figé. De ce fait, incidemment, les calculs s'appliquent aussi au cas d'un champ électrique variable en fonction du temps.

Le but du calcul est la détermination des composantes du champ et de son gradient au point de référence M, point origine du dièdre Mαβ. Portons sur l'axe Mα le vecteur MT de module "ds". Rappel : ds 2 = dρ 2 + (ρ * dθ) 2 Par "dα" nous désignerons le module du vecteur ainsi défini : vecteur dα = ds * vecteur unitaire de la tangente Autrement dit, le module "dα" a pour longueur "ds" La composante du vecteur unitaire de la tangente sur le rayon vecteur a pour module : "dρ/ds". La composante de ce vecteur unitaire sur l'axe normal au rayon vecteur a pour module : "ρ * dθ/ds".

Posons : dρ/ds = cos(V) et ρ * dθ/ds = sin(V) Ces deux paramètres, qui interviennent dans les expressions de "Εα" et de "Eβ", ne sont pas des constantes. Leur valeur varie lorsque l'on passe du point M au point T. Le parcours de M à T s'accompagne en effet d'une rotation "dθ" du rayon polaire. L'angle "V" varie lui aussi en fonction de Entre M et T, la variation "dV" a pour valeur : dV =dθ Par dérivation de "dρ/ds" et de "ρ * dθ/ds" par rapport à "ds", on obtient : Dans le calcul des quatre gradients "δEα/δα", "δEβ/δα", "δEα/δβ", "δEβ/δβ", aucune hypothèse n'est faite sur la nature du champ "E". Rappelons d'autre part que l'espace Mαβ est cartésien.

Concernant le divergent, nous trouvons :

δEα/δα + δEβ/δβ = Eρ/ρ + δEρ/δρ + δEθ/(ρ * δθ) Concernant la composante en "z" du rotationnel, nous trouvons :

δEβ/δα -δEα/δβ = Eθ/ρ + δEθ/δρ -δEρ/(ρ * δθ)

Faisons maintenant les hypothèses restrictives suivantes :

-champ est un champ électrique. champ magnétique est statique. Le deuxième membre du divergent s'identifie alors au terme "-dEz/dz" du divergent selon Maxwell.

Et le deuxième membre du rotationnel devient identiquement nul conformément à Maxwell. _____________________________________________________________________________________

  Les modules des composantes du champ électrique dans l'espace cartésien Mαβ sont : Eα = (dρ/ds) * Eρ + (ρ * dθ/ds) * Eθ Eβ = (-ρ * dθ/ds) * Eρ + (dρ/ds) * Eθ Les gradients correspondants, "δEα/δα" et "δEβ/δα", entrent directement, eux aussi, dans la définition des coefficients matriciels figurant page 5.2. Ces deux gradients sont évalués au point M et dans la direction de la tangente Mα. Le divergent et le rotationnel permettent ensuite, par déduction, de calculer les deux autres gradients, "δEα/δβ" et "δEβ/δβ", lesquels sont évalués au point M et dans la direction de la normale en M, c'est-à-dire dans la direction de l'axe Mβ. Calcul de la dérivation de "Eα α α α" et "Eβ β β β" dans la direction de la tangente, c'est-à-dire selon l'axe Mα. Se référer à la figure qui suit.

  d(dρ/ds)/ds =sin(V) * (dV/ds) et d(ρ * dθ/ds)/ds = cos(V) * (dV/ds) avec : dV/ds = -dθ/ds Après ces calculs préliminaires, procédons à la dérivation de "Eα". Eα = cos(V) * Eρ +  sin(V) * Eθ δEα/δα = cos(V) * δEρ/δα -Eρ * sin(V) * (dV/dα) + sin(V) * δEθ/δα + Eθ * cos(V) * (dV/dα) Procédons de même à la dérivation de "Eβ". Eβ =sin( V) * Eρ + cos(V) * Eθ δEβ/δα =sin( V) * δEρ/δα -Eρ * cos(V) (dV/dα) + cos(V) * δEθ/δα -Eθ * sin(V) * (dV/dα) D'autre part, en tenant compte de l'égalité dα = ds : δEρ/δα = (δEρ/δρ) * (dρ/ds) + (δEρ/(ρ * δθ)) * (ρ * dθ/ds) δEθ/δα = (δEθ/δρ) * (dρ/ds) + (δEθ/(ρ * δθ)) * (ρ * dθ/ds) On obtient alors : δEα/δα = (dρ/ds) * δEρ/δα -Eρ * sin(V) * (-dθ/ds) + (ρ * dθ/ds) * δEθ/δα + Eθ * cos(V) * (-dθ/ds) δEβ/δα = (-ρ * dθ/ds) * δEρ/δα -Eρ * cos(V) * (-dθ/ds) + (dρ/ds) * δEθ/δα -Eθ * sin(V)*(-dθ/ds) Soit, en définitive, après regroupement des termes en "Eρ" et "Eθ", les formules suivantes, qui correspondent à celles de la page 5.4 : δEα/δα = (dρ/ds) * δEρ/δα + (ρ * dθ/ds) * δEθ/δα -(ρ * dθ/ds)* (Eβ/ρ) δEβ/δα = (-ρ * dθ/ds) * δEρ/δα + (dρ/ds) * δEθ/δα + (ρ * dθ/ds) * (Eα/ρ) ou bien encore, en faisant intervenir le module "v" de la vitesse : δEρ/δα = [(δEρ/δρ) * (dρ/dt) + (δEρ/(ρ * δθ)) * (ρ * dθ/dt)] / v δEθ/δα = [(δEθ/δρ) * (dρ/dt) + (δEθ/(ρ * δθ)) * (ρ * dθ/dt)] / v δEα/δα = [(dρ/dt) * δEρ/δα + (ρ * dθ/dt) * δEθ/δα -(ρ * dθ/dt)* (Eβ/ρ)] / v δEβ/δα = [(-ρ * dθ/dt) * δEρ/δα + (dρ/dt) * δEθ/δα + (ρ * dθ/dt) * (Eα/ρ)] / v Comme indiqué plus haut, "δΕα/δα" et "δΕβ/δα" rentrent dans les expressions des coefficients de la matrice, page 5.2. Les deux autres gradients, "δΕ δΕ δΕ δΕα α α α/δβ /δβ /δβ /δβ" et "δΕ δΕ δΕ δΕβ β β β/δβ /δβ /δβ /δβ", se déduisent des précédents par application du divergent et du rotationnel, comme indiqué page 5.4, sous réserve que le champ pris en compte réponde aux critères de Maxwell, ce qui est le cas ici, s'agissant d'un champ électrique. _________________________ D'après ce qui précède, le calcul direct des gradients "δEα/δβ" et "δEβ/δβ", dans la direction de la normale, n'est donc pas nécessaire. Néanmoins, nous allons faire ce calcul, et cela selon la même procédure que celle que nous venons d'utiliser pour le calcul de "δEα/δα" et "δEβ/δα". Le calcul de "δ δ δ δEα α α α/δβ /δβ /δβ /δβ" et "δ δ δ δEβ β β β/δβ /δβ /δβ /δβ" fait appel au vecteur MN, de module "dβ" porté en M dans la direction de la normale. Ce vecteur est choisi de la manière suivante : vecteur dβ = ds * vecteur unitaire de la normale Autrement dit, le module "dβ" a pour longueur "ds" Sur la figure, le rayon vecteur passant par le point N ainsi créé, est différent de celui qui passe par le point T. L'angle "V" de départ reste cependant exactement le même. Mais sa dérivée "dV/ds" a changé de valeur : dV/ds = (-dθ/ds) * (dρ/(ρ * dθ)) soit : dV/ds = dV/dβ = -δρ/(ρ * ds) Procédons à la dérivation de "Eα" dans le sens de la normale. = cos(V) * Eρ +  sin(V) * Eθ δEα/δβ = cos(V) * δEρ/δβ -Eρ * sin(V) * (dV/dβ) + sin(V) * δEθ/δβ + Eθ * cos(V) * (dV/dβ) Procédons de même à la dérivation de "Eβ". Eβ =sin( V) * Eρ + cos(V) * Eθ δEβ/δβ =sin( V) * δEρ/δβ -Eρ * cos(V) (dV/dβ) + cos(V) * δEθ/δβ -Eθ * sin(V) * (dV/dβ) D'autre part, toujours dans la direction de la normale, les dérivées de "Eρ" et "Eθ" sont : δEρ/δβ = (δEρ/δρ) * (-ρ * dθ/ds) + (δEρ/(ρ * δθ)) * (dρ/ds) δEθ/δβ = (δEθ/δρ) * (-ρ * dθ/ds) + (δEθ/(ρ * δθ)) * (dρ/ds) On obtient alors : δEα/δβ = (dρ/ds) * δEρ/δβ -Eρ * sin(V) * (-dρ/(ρ * ds)) + (ρ * dθ/ds) * δEθ/δβ + Eθ * cos(V) * (-dρ/(ρ * ds)) δEβ/δβ = (-ρ * dθ/ds) * δEρ/δβ -Eρ * cos(V) * (-dρ/(ρ * ds)) + (dρ/ds) * δEθ/δβ -Eθ * sin(V)*(-dρ/(ρ * ds)) Soit, en définitive, après regroupement des termes en "Eρ" et "Eθ", les formules suivantes : δEα/δβ = (dρ/ds) * δEρ/δβ + (ρ * dθ/ds) * δEθ/δβ -(dρ/(ρ * ds)) * (Eβ/ρ) δEβ/δβ = (-ρ * dθ/ds) * δEρ/δβ + (dρ/ds) * δEθ/δβ + (δρ/(ρ * ds)) * (Eα/ρ) ou bien encore en faisant intervenir le module "v" de la vitesse : δEρ/δβ = [(δEρ/δρ) * (-ρ * dθ/dt) + (δEρ/(ρ * δθ)) * (dρ/dt)] / v δEθ/δβ = [(δEθ/δρ) * (-ρ * dθ/dt)) + (δEθ/(ρ * δθ)) * (dρ//dt)] / v δEα/δβ = [(dρ/dt) * δEρ/δβ + (ρ * dθ/dt) * δEθ/δβ -(dρ/dt) * (Eβ/ρ)] / v δEβ/δβ = [(-ρ * dθ/dt) * δEρ/δβ + (dρ/dt) * δEθ/δβ + (δρ/dt) * (Eα/ρ)] / v _____________________________________________ Vérifications.