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We report observation of the electroweak production of single top quarks in pp collisions at
/5 = 1.96 TeV based on 2.3 fb~! of data collected by the DO detector at the Fermilab Tevatron
Collider. Using events containing an isolated electron or muon and missing transverse energy,
together with jets originating from the fragmentation of b quarks, we measure a cross section of
o(pp — tb+ X, tgb+ X) = 3.94+ 0.88 pb. The probability to measure a cross section at this value
or higher in the absence of signal is 2.5x 107", corresponding to a 5.0 standard deviation significance
for the observation.

PACS numbers: 14.65.Ha; 12.15.Ji; 13.85.Qk; 12.15.Hh

At hadron colliders, top quarks can be produced
in pairs via the strong interaction or singly via the
electroweak interaction @] Top quarks were first
observed via pair production at the Fermilab Tevatron
Collider in 1995 ﬂa] Since then, pair production has

been used to make precise measurements of several top
quark properties, including the top quark mass B] Single
top quark production, on the other hand, serves as a
probe of the Wtb interaction M], and its production cross
section provides a direct measurement of the magnitude



of the quark mixing matrix element V4, without assuming
three quark generations ﬂﬂ] However, measuring the
yield of single top quarks is difficult because of the small
production rate and large backgrounds.

In 2007, we presented the first evidence for single top
quark production and the first direct measurement of
\Vis| 6, [7] using 0.9 fb=! of Tevatron data at a center-
of-mass energy of 1.96 TeV. Recently, the CDF collab-
oration has also presented such evidence in 2.2 fb~! of
data B] This Letter describes the observation of a single
top quark signal in 2.3 fb~! of Tevatron data. The CDF
collaboration is also reporting observation of single top
quark production [9].

When top quarks are produced singly, they are accom-
panied by a bottom quark in the s-channel production
mode ﬂﬁ}, or by both a bottom quark and a light quark
in t-channel production [1, [11], as illustrated in Fig. [0
We search for both of these processes at once. The sum
of their predicted cross sections is 3.46 + 0.18 pb ﬂﬂ]
for a top quark mass m; = 170 GeV, at which this
analysis is performed. We refer to the s-channel process
as “tb” production, where tb includes both tb and b
states. The t-channel process is abbreviated as “tqb,”
where this includes tqb, tgb, tgh, and fgb states.

FIG. 1: Representative Feynman diagrams for (a) s-channel
single top quark production and (b) ¢-channel production,
showing the top quark decays of interest.

The analysis presented in this Letter is an improved
version of the one from 2007 [6, [7], with a larger
dataset. Most definitions and abbreviations used here
are explained in detail in Ref. ﬂ] The measurement
focuses on the final state containing one high trans-
verse momentum (pr) lepton (¢ = electron or muon) not
near a jet (“isolated”), large missing transverse energy
(Fr) indicative of the passage of a neutrino v, a b-
quark jet from the decay of the top quark (t—Wb—{vb),
and possibly another b jet and a light jet as indicated
above. The data were collected with the DO detector ]
using a logical OR of many trigger conditions in place of
only the single-lepton plus jets triggers used previously.
Several offline selection criteria, including b-jet identifi-
cation requirements for double-tagged events, have been
loosened. These improvements have increased the signal
acceptance by 18%. The backgrounds are W bosons
produced in association with jets, top quark pair (tt)
production with decay into the lepton+jets and dilepton
final states (when a jet or a lepton is not reconstructed),

and multijet production, where a jet is misreconstructed
as an electron or a heavy-flavor quark decays to a
muon that passes isolation criteria. Z+jets and diboson
processes form minor additional background components.

We consider events with two, three, or four jets (which
allows for additional jets from initial-state and final-state
radiation), reconstructed using a cone algorithm in (y, ¢)
space, where y is the rapidity and ¢ is the azimuthal
angle, and the cone radius is 0.5 ﬂ] The highest-pr
(leading) jet must have pr > 25 GeV, and subsequent jets
have pr > 15 GeV; all jets have pseudorapidity |n| < 3.4.
We require 20 < Ep < 200 GeV for events with two jets
and 25 < Fp < 200 GeV for events with three or four
jets. Events must contain only one isolated electron with
pr > 15 GeV and |n| < 1.1 (pr > 20 GeV for three- or
four-jet events), or one isolated muon with pr > 15 GeV
and |n| < 2.0. The background from multijets events is
kept to ~5% by requiring high total transverse energy
and by demanding that the £ is not along the direction
of the lepton or the leading jet. To enhance the signal
fraction, one or two of the jets are required to originate
from long-lived b hadrons. We achieve this goal by using
a neural network (NN) b-jet tagging algorithm M] The
variables used to identify such jets rely on the character-
istics of a secondary vertex and tracks with large impact
parameters. After b-jet identification, we require the
leading b-tagged jet to have ppr > 20 GeV. To further
improve the sensitivity, we split the data by lepton flavor,
number of jets and b-tagged jets, and data collection
period.

We model the signal using the COMPHEP-based
next-to-leading order (NLO) Monte Carlo (MC) event
generator SINGLETOP E] The decays of the top quark
and resulting W boson, both with standard model (SM)
widths, are modeled in SINGLETOP to preserve spin infor-
mation. PYTHIA HE] is used to model the hadronization
of generated partons. We assume the SM prediction for
the ratio of the tb and tgb cross sections ﬂﬂ]

The tt, W+jets, and Z-+jets backgrounds are
simulated using the ALPGEN leading-log MC event
generator ﬂﬂ] and PYTHIA to model hadronization. The
tt background is normalized to the predicted cross
section ﬂ%] The diboson backgrounds are modeled using
PYTHIA. In the simulation of the W +jets backgrounds,
we scale the ALPGEN cross sections for events with heavy
flavor jets by factors derived from calculations of NLO
effects [19]: Wbb and W cé are scaled by 1.47, and Wej
by 1.38.

All MC events are passed through a GEANT-based
simulation of the D0 detector and are reconstructed using
the same software as for the data. Data events from
random beam crossings are overlaid on the simulation to
better model the effects of detector noise and multiple
pp interactions. Small differences between data and
simulation in the lepton and jet reconstruction efficiencies
and resolutions are corrected in the simulation as



measured from separate data samples. We also correct
the n(jets), Ag¢(jetl,jet2), and An(jetl,jet2) distribu-
tions in the W+jets samples to match data.

The multijets background is modeled using
independent data samples containing leptons that
are not isolated. The multijets background, combined
with the background from W+jets, is normalized to the
lepton+jets data with other backgrounds subtracted,
using the pr(¢), Er, and the W boson transverse mass
distributions before b-jet identification is applied.

The b-tagging algorithm is modeled in simulated events
by applying weights (“tag-rate functions”) measured
from data that account for the probability for each jet
to be tagged as a function of jet flavor, pp, and 7. After
b tagging, an empirical correction of 0.95 + 0.13 for the
Wbb and W e fractions is derived from the b-tagged and
not-b-tagged two-jet data and simulated samples.

The above selections give 4,519 b-tagged lepton+jets
events, which are expected to contain 223 + 30 single top
quark events. Table [ shows the event yields, separated
by jet multiplicity. The acceptances are (3.7 +0.5)% for
tb and (2.5 £+ 0.3)% for tgb, expressed as percentages of
the inclusive single top quark production cross section in
each channel.

TABLE I: Number of expected and observed events in 2.3 fb~*
for e and p, and 1 and 2 b-tagged analysis channels combined.
The uncertainties include both statistical and systematic
components.

Source 2 jets 3 jets 4 jets
tb+tqb signal 139 + 18 63 £ 10 21+£5
W +jets 1,829 4+ 161 637 £61 180+ 18
Z+jets and dibosons 229 £+ 38 85+ 17 267
tt 222 + 35 436 4+ 66 4844+ 71
Multijets 196 + 50 73+17 30£6
Total prediction 2,615 +192 1,2944+107 742480
Data 2,579 1,216 724

Systematic uncertainties arise from each correction
factor or function applied to the background and signal
models. Most affect only the normalization, but three
corrections modify in addition the shapes of the distri-
butions; these are the jet energy scale corrections, the
tag-rate functions, and the reweighting of the distribu-
tions in W+jets events. The largest uncertainties come
from the jet energy scale (the normalization part is (1.1-
13.1)% for signal and (0.1-2.1)% for background), the
tag-rate functions (the normalization part is (2.1-7.0)%
for single-tagged events and (9.0-11.4)% for double-
tagged events), and the correction for jet-flavor compo-
sition in W+jets events (13.7%), with smaller contribu-
tions from the integrated luminosity (6.1%), jet energy
resolution (4.0%), initial-state and final-state radiation
(0.6-12.6%), b-jet fragmentation (2.0%), ¢t cross section
(12.7%), and lepton efficiency corrections (2.5%). All

other contributions have a smaller effect. The values
given are the relative uncertainties on the individual
sources. The total uncertainty on the background is (8-
16)% depending on the analysis channel.

After event selection, we expect single top quark
events to constitute (3-9)% of the data sample. Since
the uncertainty on the background is larger than the
expected signal, we improve discrimination by using
multivariate analysis techniques. We have developed
three independent analyses based on boosted decision
trees (BDT) [20], Bayesian neural networks (BNN) [21],
and the matrix element (ME) method [22]. Our appli-
cation of these techniques to DO0’s single top quark
searches is described in Refs. [d] and [7]. The analyses
presented in this Letter differ from previous implementa-
tions in the choice of input variables and some detailed
tuning of each technique.

The BDT analysis has re-optimized the input
variables ﬂﬁ] into a common set of 64 variables for all
analysis channels. The variables fall into five categories,
single-object kinematics, global event kinematics, jet
reconstruction, top quark reconstruction, and angular
correlations. Separate sets of trees are created with these
variables for each channel. The BNN analysis uses the
RuleFitJF algorithm M] to select the most sensitive
of these variables, then combines 18-28 of them into a
single separate discriminant for each channel. The ME
analysis uses only two-jet and three-jet events, divided
into a W+jets-dominated set and a tt-dominated set. It
includes matrix elements for more background sources,
adding tt, WW, W Z, and ggg diagrams in the two-jet bin
and Wugg in the three-jet bin, to improve background
rejection.

Each analysis uses the same data and background
model and has the same sources of systematic uncer-
tainty. We test the analyses using ensembles of pseudo-
datasets created from background and signal at different
cross sections to confirm linear behavior and thus an
unbiased cross section measurement. The analyses are
also checked extensively before b-tagging is applied, and
using two control regions of the data, one dominated by
W +jets and the other by tf backgrounds, as shown in
Fig. Bl These studies confirm that backgrounds are well
modeled across the full range of the discriminant output.

The cross section is determined using the same
Bayesian approach as in our previous studies ﬂa, B] This
involves forming a binned likelihood as a product over all
bins and channels, evaluated separately for each multi-
variate discriminant, with no cuts applied to the outputs.
The central value of the cross section is defined by the
position of the peak in the posterior density, and the
68% interval about the peak is taken as the uncertainty
on the measurement. Systematic uncertainties, including
all correlations, are reflected in this posterior interval.

We extract inclusive single top quark cross sections
0'(]9]5 — th+ X, tqb+X) of ogpT = 3744185;3 pb, NN =
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FIG. 2: The combination discriminant outputs for (a) W+jets
and (b) tt cross-check samples. Hr is the scalar sum of the
transverse momenta of the final state objects (lepton, Zr, and
jets).

4707555 pb, and oye = 4.307099 pb. The sensitivity
of the analyses to a contribution from single top quark
production is estimated by generating an ensemble of
pseudodatasets that sample the background model and
its uncertainties, with no signal present. We measure a
cross section from each pseudodataset, and hence obtain
the probability that the SM cross section is reached.
This provides expected sensitivities (stated in terms of
Gaussian standard deviations, SD) of 4.3, 4.1, and 4.1 SD
for the BDT, BNN, and ME analyses respectively. The
measured significances, obtained by counting the number
of pseudodatasets with cross sections at least as large
as the measured cross section, are 4.6, 5.2, and 4.9 SD
respectively.

The three multivariate techniques use the same data
sample but are not completely correlated: the corre-
lation of the measured cross section using pseudodatasets
with background and SM signal is BDT:BNN = 74%,
BDT:ME = 60%, BNN:ME = 57%. Their combination
therefore leads to increased sensitivity and a more precise
measurement of the cross section. We use the three
discriminant outputs as inputs to a second set of Bayesian
neural networks, and obtain the combined cross section
and its signal significance from the new discriminant
output. The resulting expected significance is 4.5 SD.
Figure [3 illustrates the importance of the signal when
comparing data to prediction.

The measured cross section is

o(pp — th+ X, tgb+ X) = 3.94 4+ 0.88 pb.

The measurement has a p-value of 2.5 x 1077, corre-
sponding to a significance of 5.0 SD. The expected and
measured posterior densities and the background-only
pseudodataset measurements are shown in Fig. [l

We use the cross section measurement to determine
the Bayesian posterior for |V;3|? in the interval [0,1] and
extract a limit of |Vip| > 0.78 at 95% C.L. within the
SM [7. When the upper constraint is removed, we
measure | Vi f{| = 1.07 & 0.12, where f{ is the strength
of the left-handed Wtb coupling.

In summary, we have measured the single top quark
production cross section using 2.3 fb~! of data at the DO
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FIG. 3: Distribution of the combination output for all 24
analysis channels combined, (a) full range, and (b) high
signal region. The bins have been ordered by their expected
signal:background ratio and the signal is normalized to the
measured cross section. The hatched band indicates the total
uncertainty on the background. These distributions are not
used in the cross section measurement and are for illustration
only. For the ranked combination output > 0.92, (c) shows
the distribution of lepton charge times pseudorapidity of the
leading not-b-tagged jet, and (d) shows the reconstructed top
quark mass.
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FIG. 4: (a) Expected SM and measured Bayesian posterior
probability densities for the tb+tgb cross section. The shaded
regions indicate one standard deviation above and below
the peak positions. (b) Measured cross sections using the
ensemble of background-only pseudodatasets (containing full
systematics and no signal) used to measured the significance
of the result.

experiment. We measure a cross section for the combined
tb+tgb channels of 3.94 + 0.88 pb. Our result provides
an improved direct measurement of the amplitude of
the CKM matrix element V;,. The measured single top
quark signal corresponds to an excess over the predicted
background with a significance of 5.0 SD — observation
of single top quark production.
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