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We present a measurement of the mass difference between t and t quarks in lepton+jets final
states of tt events in 1 fb−1 of data collected with the D0 detector from Fermilab Tevatron Collider
pp̄ collisions at

√
s = 1.96 TeV. The measured mass difference of 3.8 ± 3.7 GeV is consistent with

the equality of t and t masses. This is the first direct measurement of a mass difference between a
quark and its antiquark partner.

PACS numbers: 14.65.Ha, 11.30.Er, 12.15.Ff

The CPT theorem [1], which is fundamental to any lo-
cal Lorentz-invariant quantum field theory, requires that
the mass of a particle and that of its antiparticle be iden-
tical. Tests of CPT invariance for many of the elemen-
tary particles accommodated within the standard model

(SM) are available in the literature [2]. Despite the fact
that no violations have ever been observed, it is impor-
tant to search for the possibility of CPT violation in
all sectors of the standard model. Because quarks carry
color, they cannot be observed directly, but must first
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evolve through quantum chromodynamic (QCD) inter-
actions into jets of colorless particles. These jet rem-
nants reflect the characteristics of the initially produced
quarks, such as their charges, spin states, and masses.
If the lifetimes of quarks are much longer than the time
scale for QCD processes, the quarks form hadrons be-
fore they emerge from collisions, and decay from within
bound hadronic states. This makes it difficult to measure
a q− q mass difference because of the model dependence
of QCD binding and evolution processes. However, since
the lifetime of the top quark is far shorter than the time
scale for QCD interactions, the top-quark sector provides
a way to measure the mass difference less ambiguously [3].

In this Letter, we report a measurement of the dif-
ference between the mass of the top quark (t) and that
of its antiparticle (t) produced in pp collisions at

√
s =

1.96 TeV. Our measurement is based on data correspond-
ing to ∼1 fb−1 of integrated luminosity collected with
the D0 detector [4] during Run II of the Fermilab Teva-
tron Collider. The events used in this analysis, identical
to those in Ref. [5], are top quark pair (tt̄) events in
the lepton + jets channel (ℓ+jets) where each top quark
is assumed to always decay into a W boson and a b
quark. One of the W bosons decays via W → ℓν into
two leptons, and the other one through W → qq′ into
two quarks, and all four quarks (qq′bb) evolve into jets.

We select events having one isolated electron (muon)
with transverse momentum pT > 20 GeV and |η| < 1.1
(|η| < 2), missing transverse momentum p/T > 20 GeV,
and exactly four jets with pT > 20 GeV and |η| < 2.5,
where the pseudorapidity η = − ln [tan(θ/2)], and θ is
the polar angle with respect to the proton beam direc-
tion. At least one of the jets is required to be identi-
fied as a b-jet candidate. A minimum azimuthal sepa-
ration is required between lepton pT and p/T vectors to
further reduce multijet background arising from lepton or
jet energy mismeasurements. The positively (negatively)
charged leptons are used to tag the t (t) in each event. To
reduce instrumental effects that can cause charge depen-
dent asymmetries in lepton energy scale and resolution,
solenoid and toroid magnetic field polarities are routinely
reversed.

The selected data sample consists of 110 e+jets and
110 µ+jets events. The W+ (W−) boson decays into
hadrons in 105 (115) events and into leptons in 115 (105)
events, consistent with invariance under charge conjuga-
tion. The fraction of tt̄ events in this sample is estimated
to be 74%. The background consists of W+jets and mul-
tijet events, with the latter comprising 12% of the entire
background.

This analysis uses the matrix element (ME) method
which relies on the extraction of the properties of the
top quark (e.g., the mass) through a likelihood technique
based on probability densities (PD) for each event, cal-
culated from the ME for the two major processes (tt
and W+jets production) that contribute to the selected

ℓ+jets sample. In calculating the PD for tt production,
we include only the leading order (LO) ME from qq → tt̄
production [6]. We assume SM-like tt̄ production and
decay, where identical particle and antiparticle masses
are assumed for b quarks and W bosons but not for top
quarks. For W+jets production, we use the ME provided
in vecbos [7]. The PD for each event is given in terms
of the fraction of signal (f) and of background (1− f) in
the data and the masses of the t (mt) and the t (mt):

Pevt = A(x)[fPsig(x; mt,mt) + (1− f)Pbkg(x)] , (1)

where x denotes the measured jet and lepton energies
and angles, A(x) is a function only of x and accounts
for the geometrical acceptance and efficiencies, and Psig

and Pbkg represent the PD for tt̄ and W+jets production,
respectively. Multijet events are also represented by Pbkg

since Pbkg ≫ Psig for such events [8].
The free parameters in Eq. 1 are determined from a

likelihood L(x; mt,mt, f) constructed from the product
of the Pevt for all events. Jet energies are scaled by an
overall jet energy scale (JES) calibration factor derived
by constraining the reconstructed mass of the two jets
from W → qq′ decays in tt̄ events to 80.4 GeV [2, 5].
The likelihood is maximized as a function of f for each
(mt,mt) hypothesis to determine fbest. An integration of
the likelihood for f = fbest over the sum msum = (mt +
mt)/2 results in a one-dimensional likelihood L(x; ∆) as
a function of mass difference ∆ = mt −mt. This is used
to extract the mean value of ∆ and its uncertainty. A
similar procedure involving an integration over ∆ gives
L(x;msum) which is used to extract the mean value of
msum and its uncertainty.
The variables in any ME refer to nascent produced par-

ticles (leptons and partons), but the measured quantities
correspond to physical leptons and jets. This difference
is taken into account in the calculation of the event prob-
ability by convoluting over phase space a transfer func-
tion, W (y, x), that provides the resolution for the lepton
in question or a mapping of the observed jet variables in
an event (x) to their progenitor parton variables (y):

Psig =
1

σtt
norm

×
∫ ∑

dσ(y;mt,mt)dq1dq2F (q1)F (q2)W (y, x),

(2)

where dσ(y;mt,mt) is the leading-order partonic differ-
ential cross section, q1 and q2 are the momentum frac-
tions of the colliding partons (assumed to be massless)
within the incident p and p, and the sum runs over all
possible combinations of initial-state parton flavors, jet-
to-parton assignments, and all W → ℓν neutrino solu-
tions [9]. In the sum over jet-to-parton assignments in
Psig, each permutation of jets carries a weight wi, which
is the normalized product of probabilities for tagging any
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FIG. 1: Values of the measured mean ∆ from MC pseudo ex-
periments as a function of ∆in, parameterized by straight lines
for (a) e+jets and (b) µ+jets MC events. Dotted lines rep-
resent complete equality between measured and input values.
Results from pseudo experiments with same ∆in but different
msum correspond to the extra points for fixed ∆in (see text).

jet under a given parton flavor hypothesis [5]. The F (qi)
include the probability densities for finding a parton of
given flavor and longitudinal momentum fraction in the
p or p assuming the CTEQ6L1 [10] parton distribution
functions (PDF), as well as the probability densities for
the transverse components of the qi obtained from the
LO event generator pythia [11]. The normalization term
σtt̄
norm is described below.
The overall detection efficiency for tt̄ depends on the

values of both mt and mt. This is taken into account
through the normalization by the observed cross section
σtt̄
norm = ∫ A(x)Psigdx = σtt(mt,mt) 〈A(mt,mt)〉, where

σtt(mt,mt) is the total cross section calculated by inte-

grating the partonic cross section σtt
qq [12], corresponding

to the specific ME used in the analysis, over initial and fi-
nal parton distributions and summing over initial parton
flavors. 〈A(mt,mt)〉 is the mean acceptance determined
from the generated tt events. The expressions for Pbkg

are similar, except that the probability does not depend
on mt or mt.
Samples of tt̄MC events with different values ofmt and

mt are required to simulate tt̄ production and decay in
order to calibrate the results of the analysis. These events
are generated with a version of the pythia generator [11]
modified to provide independent values of mt and mt.
The specific values chosen for (mt, mt) form a square
grid spaced at 5 GeV intervals between (165,165) and
(180,180), excluding the two extreme points at (165,180)
and (180,165). The MC events for equal values of mt and
mt are generated with the default version of pythia.
Approximations made in formulating the likelihood

can bias the final result. This issue is examined by com-
paring the measured and input values of ∆ in pseudo ex-
periments composed of MC tt̄ and W+jets events. The
calibration is shown in Fig. 1 in terms of the measured
mean ∆ as a function of its input value (∆in), separately
for the e+jets and µ+jets MC samples, for all MC sam-
ples generated at the input reference points on the (mt,
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FIG. 2: Fitted contours of equal probability for the two-
dimensional likelihoods as a function of mt and mt for (a)
e+jets and (b) µ+jets data. The boxes, representing the bins
in the two-dimensional histograms of the likelihoods, have ar-
eas proportional to the bin contents, set equal to the value of
the likelihood evaluated at the bin center.

mt) grid. There are 2, 3, 4, 3, and 2 different (mt, mt)
points with a common ∆in of −10, −5, 0, +5, and +10
GeV, respectively. The dispersions in the measured val-
ues of mean ∆ for different (mt, mt) points, but with
same values of ∆in, are consistent with expected statis-
tical fluctuations, as can be observed in Fig. 1. The fit
χ2/d.o.f. for the points in Figs. 1(a) and 1(b) are 1.8
and 0.84, respectively. The parameterizations shown in
Fig. 1 are used to calibrate L(x; ∆) for the selected data
sample.

We define the pull as (∆ − 〈∆〉)/σ(∆) where ∆ is the
measured mass difference for a given pseudo experiment,
〈∆〉 is the mean measured mass difference for all pseudo
experiments, and σ(∆) is the uncertainty of the mea-
sured mass difference for the given pseudo experiment.
The mean widths of the pull distributions for all sam-
ples used in Fig. 1 are 1.2 and 1.1 for e+jets and µ+jets,
respectively. The deviations of these widths from 1 are
used to correct the measured uncertainties in data.

Fitted two-dimensional Gaussian contours of equal
probability (in terms of the standard deviation sd) for
L(x; mt,mt) are shown for the electron and muon data
samples in Figs. 2(a) and 2(b), respectively. The corre-
sponding L(x; ∆) for both channels are given in Figs. 3(a)
and 3(b). The two sets of data are consistent within
their respective uncertainties, and the small correlations
(ρe+jets = −0.05, ρµ+jets = −0.01) extracted from the
fits in Fig. 2 between mt and mt are not statistically sig-
nificant, nor are the shifts in the projections shown in
Fig. 3.

Results from the two channels are combined through
a weighted average of the separate electron and muon
values. This has the advantage of using their respective
pulls to adjust the uncertainties of each measurement
before combining the two results. Using this averaging
process, we quote the final combined means and their
statistical uncertainties as ∆ = 3.8± 3.4(stat.) GeV and
msum = 170.9 ± 1.5(stat.) GeV. The latter is consistent
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FIG. 3: Projections of the likelihoods onto the ∆ axis for (a)
e+jets and (b) µ+jets data.

with the previous measurement of Ref. [5] (see also Ref.
[13]).

The systematic uncertainties are summarized in Ta-
ble I. The first category, Physics modeling, comprises the
uncertainties in MC modeling of tt and W+jets events.
The second category, Detector modeling, addresses uncer-
tainties in the calibration of jet energy and simulation of
detector response. The last category, Method, addresses
uncertainties in the calibration and possible systematic
effects due to assumptions made in the analysis. Ex-
cept for two, all systematic uncertainties are identical
to those described previously [5]. Many of these uncer-
tainties (e.g., uncertainties in JES, PDF, jet resolution,
multijet contamination) are expected to partially cancel
in the measurement of the mass difference, but are of-
ten dominated by the statistics of the samples used to
evaluate them. The two new contributions address the
possibilities of (i) reconstructing leptons with the wrong
charge, and (ii) uncertainties from modeling differences
in the response of the calorimeter to b and b jets [14],
which can affect the measurement of the mass difference.
These were evaluated for (i) by estimating the effect of
an increase in charge misidentification in MC simulations
that would match that found in data (∼1% for both e
and µ). For (ii), studies were performed on MC samples
and on data seeking any difference in detector response
to b and b quarks beyond expectations from interactions
of their decay products, which are accommodated in the
MC simulations. The observed differences were limited
by the statistics of both samples. The total systematic
uncertainty is 1.2 GeV. Combining the systematic and
statistical uncertainties of the measurement in quadra-
ture yields ∆ = 3.8 ± 3.7 GeV, a value consistent with
CPT invariance.

In summary, we have measured the t and t mass dif-
ference in ∼1 fb−1 of data in ℓ+jets tt events and find
the mass difference to be mt −mt = 3.8± 3.7 GeV, cor-
responding to a relative mass difference of ∆/msum =
(2.2 ± 2.2)%. This is the first direct measurement of a
mass difference between a quark and its antiquark part-
ner.

TABLE I: Summary of systematic uncertainties on ∆.

Source Uncertainty (GeV)
Physics modeling

Signal ±0.85
PDF uncertainty ±0.26
Background modeling ±0.03
Heavy flavor scale factor ±0.07
b fragmentation ±0.12

Detector modeling:
b/light response ratio ±0.04
Jet identification ±0.16
Jet resolution ±0.39
Trigger ±0.09
Overall jet energy scale ±0.08
Residual jet energy scale ±0.07
Muon resolution ±0.09
Wrong charge leptons ±0.07
Asymmetry in bb response ±0.42

Method:
MC calibration ±0.25
b-tagging efficiency ±0.25
Multijet contamination ±0.40
Signal fraction ±0.10

Total (in quadrature) ±1.22
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