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On the bakground estimation by time slides in anetwork of gravitational wave detetorsMihaª W¡s, Marie-Anne Bizouard, Violette Brisson, FabienCavalier, Mihel Davier, Patrie Hello, Niolas Leroy, FlorentRobinet and Miltiadis Vavoulidis.LAL, Univ Paris-Sud, CNRS/IN2P3, Orsay, Frane.E-mail: mwas�lal.in2p3.frAbstrat. Time shifting the outputs of Gravitational Wave detetors operating inoinidene is a onvenient way to estimate the bakground in a searh for shortduration signals. However this proedure is limited as inreasing inde�nitely thenumber of time shifts does not provide better estimates. We show that the falsealarm rate estimation error saturates with the number of time shifts. In partiular, fordetetors with very di�erent trigger rates this error saturates at a large value. Expliitomputations are done for 2 detetors, and for 3 detetors where the detetion statistirelies on the logial �OR� of the oinidenes of the 3 ouples in the network.PACS numbers: 04.80.Nm, 07.05.K



Bakground estimation by time slides 21. IntrodutionKilometri interferometri Gravitational Wave (GW) detetors suh as LIGO [1℄ orVirgo [2℄ have been taking data with inreasing sensitivities over the past years[3, 4, 5, 6, 7, 8, 9℄. It is expeted that short duration GW events, e.g. the so-alled burstsemitted by gravitational ollapses or the signals emitted by ompat binary inspirals,are very rare. Moreover the output of the detetors is primarily (non Gaussian) noise,and this bakground noise is in general not modeled. This implies that with a single GWdetetor it is very di�ult to estimate the bakground event rate, and then to assessthe signi�ane of some GW andidate.On the ontrary when dealing with a network of detetors (that means in pratieat least two detetors of the same lass), there is a onventional and simple way toestimate the bakground, that is the rate of oinident events due to detetor noise.This onsists of time shifting the searh algorithm outputs (or triggers) of eah detetorwith respet to the other(s), by some unphysial delays, muh larger than the light traveltime between the detetors and muh larger than the typial duration of an expetedGW signal. The next step is then to look for oinidenes between shifted triggers justas if the shifted streams were synhronized. As we deal with a priori rare events, weneed to set in pratie low false alarm rates in the analysis. The question then arises ofhow many time slides are needed for orretly estimating the bakground and espeiallyits tails where rare (non-Gaussian noise) events lay. Note, that in pratie in burstor binary inspiral searhes, a hundred or more time slides are done [3, 6, 7℄, due inpartiular to limited omputational resoures. Suh a limitation of ourse depends onthe duration of the di�erent detetors data streams and on the omplexity of onsistenytests performed on oinident triggers. For example, time slides omputation for oneyear of data sampled at 16384 Hz (LIGO) or 20 kHz (Virgo) an rapidly beome aomputational burden, espeially when omputationally intensive onsisteny tests likethe χ2 veto [10℄ are used.In this paper, we show that the preision on the bakground estimation, using timeslides of trigger streams, is in fat limited. Indeed the variane of the false alarm rateestimation does not inde�nitely derease as the number of time slides inreases as wewould naively believe. On the ontrary this variane saturates at some point, dependingon the trigger rates hosen in eah individual detetor and on the oinidene timewindow set for identifying oinident events in the network of detetors.After introduing the general de�nitions in setion 2, we give expliit formulas forthe two-detetor and the three-detetor ase in respetively Se. 3 and 4. In the latterwe restrit ourselves to the partiular analysis sheme where we are looking at the union(logial �OR�) of the three ouples of detetors. This is atually the on�guration ofinterest, sine it is more sensitive than simply searhing for triple oinidenes (logial�AND�) [11℄. In eah ase (2 or 3 detetors) we hek the analytial result with a MonteCarlo simulation and �nd exellent agreement. In setion 5 these results are appliedand disussed using typial parameters of a GW data analysis.



Bakground estimation by time slides 32. De�nitions2.1. Poisson approximation for trigger generationBakground triggers in the detetors are due to rare glithes. Often these glithes omein groups, but most analysis pipelines luster their triggers, so eah glith group resultsin only one �nal trigger. This lustering proedure is reasonable as long as the resultingtrigger rate is muh lower than the inverse of the typial lustering time length. In thislimit the lustered triggers are independent events. Thus, throughout this paper wewill assume that eah detetor produes random bakground triggers, whih are Poissondistributed in time.2.2. Problem desriptionWe look then at the oinidene between two Poisson proesses. The singleinterferometer trigger rate will be noted FA1, FA2, ..., the oinidene rate will besimply noted FA. We denote by F̃A(T ) the rate resulting from ounting the number ofoinidene between two data streams, that are shifted by some time T . In partiularfor zero lag (T = 0) the measured rate is F̃A(0). So the quantities with tildes are theexperimentally measured rates, and the quantities without tildes are the atual Poissondistribution parameters. The purpose of the paper is to study the properties of the timeshifting method, whih uses F̂A = 1
R

∑R

k=1 F̃A(Tk) as an estimator of FA, where R is thenumber of time slides and Tk is the kth time slide stride.2.3. Poisson proess modelTo model a Poisson proess with event rate FA1 we disretize the data stream duration
T with bins of length ∆t, the disretization time sale, e.g. either the detetor samplingrate or the lustering time sale. Thus, for eah bin an event is present with a probability
p = FA1∆t ‡.To ease the alulation we desribe the Poisson proess realizations with aontinuous random variable. We take x uniformly distributed in the volume [0, 1]Nwhere N = T

∆t
is the number of samples, then ompare xk (the kth oordinate of x)with p. When xk < p there is an event in time bin k, otherwise there is none. Thus

x haraterizes one realization of a Poisson proess, and it an be easily seen that theuniform distribution of x leads to a Poisson distribution of events.2.4. CoinidenesWe hoose the sampling ∆t to be equal to twie the oinidene time window τc, in orderto simplify the modeling of the oinidene between two proesses. More preisely, fortwo Poisson proesses with event rates respetively FA1 and FA2, we de�ne a oinidene
‡ Here we model the Poisson proess by a binomial distribution, realling that when p ≪ 1 the binomialdistribution tends toward a Poisson distribution



Bakground estimation by time slides 4when there is an event in the same time bin k for both proesses. This is di�erent fromthe usual de�nition, where events are said in oinidene when they are less than a timewindow apart. This binning time oinidene has on average the same e�ets as de�ningas oinident events that are less than ±1
2
∆t = ±τc apart. The analytial results arederived using this non standard de�nition, but they are in preise agreement with MonteCarlo simulations that are performed using the usual de�nition of time oinidene.3. The ase of two detetors3.1. Time slides between two detetorsLet x, y ∈ [0, 1]N be two realizations of Poisson proesses with respetively p = FA1∆tand q = FA2∆t. There is a oinident event in time bin k when xk < p and yk < q. Sothe total number of oinidenes for this realization is

N∑

k=1

1(xk < p)1(yk < q) (1)where {1(a) = 1 if a is true1(a) = 0 if a is false (2)Thus the mean number of oinidenes without time slides is as expeted
Mean =

∫

x1

· · ·

∫

xN

∫

y1

· · ·

∫

yN

N∑

k=1

1(xk < p)1(yk < q) dx1 · · ·dxNdy1 · · ·dyN︸ ︷︷ ︸dV

= Npq.(3)To onsider a number R of time slides we take a set of R irular permutations of
[[1, N ]]. Time-sliding a vetor x by the irular permutation π transforms the vetor xinto the vetor of oordinates xπ(k). Then the mean number of oinidenes is simply

Mean =

∫

x1

· · ·

∫

xN

∫

y1

· · ·

∫

yN

1

R

∑

π

∑

k

1(xk < p)1(yπ(k) < q)dV = Npq, (4)thus there is no bias resulting from the use of time slides.3.2. Computation of the varianeIn order to have an estimate of the statistial error, we ompute the variane with Rtime slides. The seond moment is
M2 =

∫

x1

· · ·

∫

xN

∫

y1

· · ·

∫

yN

[
1

R

∑

π

∑

k

1(xk < p)1(yπ(k) < q)

]2 dV
=

∫
· · ·

∫
1

R2

∑

π1

∑

π2

∑

k

∑

l

1(xk < p)1(xl < p)1(yπ1(k) < q)1(yπ2(l) < q)dV. (5)
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Figure 1. The solid line is the analytial formula (7) of the variane and the dashedline is the Monte Carlo variane as a funtion of the number of times slides. The MonteCarlo has been performed with FA1 = 0.7 Hz, FA2 = 0.8 Hz, τc = 1 ms, 500 trials anda T = 104 s data stream length.We an then exhange integrals and sums. To ompute the integrals we distinguishtwo ases: when k 6= l the integrals on xk and xl are independent, and the integrationover x1, . . . , xN gives a p2 ontribution; otherwise the integration gives a p ontribution.Analogously for the y variables we obtain q or q2 depending on whether π1(k) = π2(l)or not.The omputation of this integral, detailed in Appendix A, yields
Var = Npq

[
1

R
+ p + q +

pq − (p + q)

R
− 2pq

] (6)
≃ Npq

[
1

R
+ p + q

]
, (7)where the last line is an approximation in the limit p, q, 1

R
≪ 1, whih is reasonable asfar as GW analysis is onerned.3.3. InterpretationEah term in equation (7) an be interpreted. The 1

R
is what we would expet ifwe onsidered R independent Poisson proess realizations instead of R time slides. The

p+q omes from the estimation of the Poisson proess event rate. Indeed, the estimation



Bakground estimation by time slides 6of the event probability p from a single realization of a Poisson proess with a meannumber of events Np is p̂ = p+δp, where δp is the random statistial error with variane
〈δp2〉 = p

N
. This yields the mean rate of oinidenesMean = Np̂q̂ = N (p + δp) (q + δq) ≃ Npq + Npδq + Nqδp (8)whih orresponds to a variane of 〈N2p2δq2 + Nq2δp2〉 = Npq(p + q), beause δp and

δq are independent errors. Thus, when using only one realization for the single detetortriggers, we have a statistial error on the single detetor proess rate. This statistialerror is systematially propagated to the oinidene rate of eah time slide, that yieldsthe extra terms in the variane as ompared to independent proess realizations. One ansee that this extra term is important when 1
R

< max(p, q); for ases where the oinidentfalse alarm rate is maintained �xed (pq onstant), the e�et is most notieable when pand q are very di�erent.This gives an estimate of the variane of the number of oinident events in a datastream of length T . After onverting to the estimation of the oinidene false alarmrate we obtain
MeancFA =

Mean

T
= FA1FA2∆t, (9)

VarcFA =
Var

T 2
≃ FA1FA2

∆t

T

[
1

R
+ FA1∆t + FA2∆t

]
. (10)To verify these results, a Monte Carlo simulation has been performed. The Poissonproesses are reated as desribed in setion 2, using a sampling rate of 16384 Hz, then asimple oinidene test with a window of τc = 1 ms is applied. The time shifts are doneby adding an integer number of seonds to all events and applying a modulo T operation.The formula has been tested using 500 realizations of T = 104 s long Poisson proesses,and using between 1 and 104 time slides for eah realization. Figure 1 shows that theanalytial formula (7) and the Monte Carlo agree well for any number of time slides, andthat the variane starts saturating when a few hundred time slides are used. We ansee that the identi�ation of the sampling time and the oinidene time window has noonsequene on the result, the hoie between binning and windowing the oinidenesis a higher order e�et.3.4. Straightforward extensions of the modelIn real data analysis, there are times when one of the detetors does not take sienequality data for tehnial reasons. Thus, the data set is divided into disjoint segments,and the bakground estimation is often done by irular time slides on eah segmentseparately. Afterwards the results from all the segments are ombined to get thebakground false alarm estimation. The omputation disussed above extends to thisase with minimal hanges. The irular permutations have to be hanged to irularby blok permutations, everything else being kept idential.



Bakground estimation by time slides 7Another aveat is that for real data analysis the oinidene proedure is oftenmore ompliated. Some of those ompliations are event onsisteny tests, e.g. do thetwo oinident events have a similar frequeny? We an model this by adding someparameter f distributed uniformly in [0, 1] attahed to eah event, and then requestinga oinidene in the parameter f .For this model the results will be the same as those above, up to a fator of order1. Indeed, instead of applying a window of size ∆t to our events, we are now workingin a 2 dimensional (for instane time-frequeny) spae and using a retangular windowin this 2D parameter spae. The proedure in both ases is the same � applying Ddimensional retangular windows to events distributed uniformly in a D dimensionalspae � up to the dimension of the spae.4. The ase of three detetors4.1. Time slides between three detetorsIn the ase of three detetors one natural extension is to ask for events that are seenby at least two detetors, whih means look for oinidene between two detetors foreah detetor pair, but ounting the oinidenes between three detetors only one.This �OR� strategy in a interferometer network has been shown to be more e�ientthan a diret three fold oinidene strategy (�AND� strategy) [11℄. For time slides,when shifting the events of the seond detetor with some permutation π, we also shiftthe events of the third detetor by the same amount but in the opposite diretion with
π−1. To write ompat equations we abbreviate X = 1(xk < p), Y = 1(yπ(k) < q),
Z = 1(zπ−1(k) < r), dV = dx1 · · ·dxNdy1 · · ·dyNdz1 · · ·dzN , where r = FA3∆t is theevent probability per bin of the third detetor and the vetor z desribes its realizations.Thus, the mean number of oinidenes in the framework desribed in setion 3.1 is
Mean =

∫
· · ·

∫
1

R

∑

π

∑

k

[XY + Y Z + XZ − 2XY Z] dV = N [pq + pr + qr − 2pqr] .(11)4.2. Computation of the varianeThe seond moment an be written ompatly as
M2 =

∫
· · ·

∫
1

R2

∑

π1

∑

π2

∑

k

∑

l

[XY X ′Y ′ + XZX ′Z ′ + Y ZY ′Z ′ + 4XY ZX ′Y ′Z ′ + 2XY X ′Z ′ + 2XY Y ′Z ′

+2XZY ′Z ′ − 4XY X ′Y ′Z ′ − 4XZX ′Y ′Z ′ − 4Y ZX ′Y ′Z ′] dV, (12)where the ′ denotes whether the hidden variables are π1, k or π2, l.
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Figure 2. The solid line is the analytial formula (14) of the variane and the dottedline is the Monte Carlo variane as a funtion of the number of time slides. The MonteCarlo has been performed with FA1 = 0.04 Hz, FA2 = 0.08 Hz, FA3 = 0.16 Hz, τc =

31 ms, 500 trials and a T = 10
4
s data stream length.The omputation of this integral, detailed in Appendix B, yields

M2 =
N

R

{
(pq + pr + qr − 2pqr)

+(R − 1) [pq(p + q + pq) + pr(p + r + pr) + qr(q + r + qr) + 6pqr − 4pqr(p + q + r)]

+ [(R − 1)(N − 3) + (N − 1)] (pq + pr + qr − 2pqr)2
}

, (13)and an be approximated in the limit p, q, r, 1
R
≪ 1 by

Var ≃ N(pq + pr + qr)

(
1

R
+ p + q + r +

3pqr

pq + pr + qr

)
. (14)4.3. InterpretationSimilarly to setion 3.3 the extra terms in equation (14) an be explained through theerror in the estimation of the single detetor event rate. Using the same notations as insetion 3.3 the mean oinidene number isMean = N (p̂q̂ + p̂r̂ + q̂r̂) ≃ N [pq + pr + qr + (q + r)δp + (p + r)δq + (p + q)δr] .(15)



Bakground estimation by time slides 9Using the independene of estimation errors and realling that 〈δp2〉 = p

N
we obtain thevariane of this mean valueVar = N2

[
〈δp2〉(q + r)2 + 〈δq2〉(p + r)2 + 〈δr2〉(p + q)2

]

= N [(pq + pr + qr)(p + q + r) + 3pqr] , (16)that orresponds to the extra terms in equation (14).After onverting to the estimation of the false alarm rate we obtain
MeancFA ≃ (FA1FA2 + FA1FA3 + FA2FA3)∆t, (17)

VarcFA ≃ (FA1FA2 + FA1FA3 + FA2FA3)
∆t

T(
1

R
+ FA1∆t + FA2∆t + FA3∆t +

3FA1FA2FA3

FA1FA2 + FA1FA3 + FA2FA3
∆t

)
. (18)To hek the 3 detetor results we performed a Monte Carlo similar to the one ofthe 2 detetor ase (see setion 3.3). The only di�erene is the number of detetors, andwe hoose a di�erent oinidene window: τc = 31 ms §. To hek that the assumptionof equal and opposite time slides does not in�uene the result, in the Monte Carlo thedata in the seond detetor are shifted by Tk and in the third detetor by 3Tk. Figure2 shows that the Monte Carlo and the 3 detetor �OR� formula (14) agree really well.4.4. The ase of D detetorsFor the sake of ompleteness we an generalize the interpretation done in setion 3.3 tothe ase of D detetors in the �AND� on�guration. This generalization of equation (8)to D detetors yields a variane on the number of oinidenes

Var ≃ N
D∏

i=1

pi

(
1

R
+

D∑

i=1

∏

j 6=i

pj

)
, (19)where pi is the probability for detetor i to have an event in a given time bin.The interpretation an also be generalized in the �OR� ase, that is oinidenebetween any pair of detetors, although the omputation is more umbersome as detailedin Appendix C and yields

Var ≃ N

[(
∑

i<j

pipj

)(
1

R
+

D∑

i=1

pi

)
+

1

2

∑

i6=j, j 6=k, k 6=i

pipjpk

]
, (20)where pi is the event probability per bin in the ith detetor.

§ This aounts for the largest light travel time in the LIGO-Virgo network (27 ms) and some timingerror in eah detetor.



Bakground estimation by time slides 105. DisussionWe �nally disuss the onsequenes of the above results on GW data analysis. To beable to put numbers into the equations we will look at a �duial GW data taking run.We hoose the run properties to be:
• a duration of T = 107 s, that is roughly 4 months
• two detetors with a light travel time separation of 25 ms, and we use the same timeas the oinidene window, so that ∆t = 50 ms‖, assuming perfet timing aurayof trigger generators.
• a desired oinidene false alarm rate of 10−8 Hz, i.e. one event every three years.We will look at two speial ases of single detetor threshold hoie. One symmetriase, where thresholds are set so that the single detetor trigger rate in eah detetor isroughly the same. One asymmetri ase, where in one of the detetors there is only onetrigger. This asymmetri ase is extreme but instrutive, beause tuning the thresholdsto obtain the best sensitivity often yields asymmetri trigger rates between di�erentdetetors.Symmetri detetor ase In this ase we have the single detetor trigger rate FA1 =

FA2 = FAs =
√

FA
∆t

≃ 4.5 × 10−4 Hz, whih gives using equation (10) the frationalerror of the false alarm estimation
σFA

FA
≃ 3.2

(
1

R
+ 4.5 × 10−5

) 1
2

p = q = 2.25 × 10−5

≃ 0.32 for R = 100

≃ 0.02 for R → ∞.So for 100 time slides we get a typial error of 30% in the false alarm estimation,and the error saturates at 2% for R & 20000.Asymmetri detetor ase In this extreme ase the single detetor trigger rates are
FA1 = 1

T
= 10−7 Hz and FA2 = FA

FA1∆t
= 2 Hz, whih gives using equation (10) thefrational error of the false alarm estimation

σFA

FA
≃ 3.2

(
1

R
+ 0.1

)1
2

p = 5 × 10−9, q = 0.1

≃ 1.05 for R = 100

≃ 1 for R → ∞.So the error saturates at 100%, and this saturation is ahieved for R & 10.Those two examples show that the maximal number of useful time slides and thefalse alarm estimation preision strongly depends on the relative properties of the two
‖ As noted in setion 2.4, oinident triggers are de�ned as less that ± 1

2
∆t apart.



Bakground estimation by time slides 11detetors. In partiular when there are muh more triggers in one detetor than in theother, the bakground an be badly estimated and inreasing the number of time slidesdoes not solve the issue.6. ConlusionsWe have studied the statistial error in the bakground estimation of event-based GWdata analysis when using the time slide method. Under the assumption of stationarynoise we analytially omputed this error in both the two-detetor and three-detetorase, and found exellent agreement with Monte Carlo simulations.The important resulting onsequenes are: the preision on the bakgroundestimation saturates as a funtion of the number of time slides, this saturation is mostrelevant for detetors with a very di�erent trigger rate where the bakground estimationpreision an be poor for any number of time slides.Let us note that the time slide method an be used in other situations thanGW data bakground estimation. For example it an be used to estimate the rateof aidental oinidenes between a GW hannel and an environmental hannel in aGW interferometer; or in any experiment where oinidenes between two (or more)trigger generators are looked for. The results of this paper an be straightforwardlyextended to suh an experiment.Another limitation, the non stationarity of the data, has not been investigated inthis paper. Data non stationarity is a well known issue in GW data analysis [12℄. Inthe ontext of the time slides method it raises the question whether the time shifteddata are still representative of the zero lag data, when large time shifts are used. Itinvolves both the problem of the measure of the level of data non stationarity, and theestimation of the error it indues on the bakground estimation. Further work on thisissue will be the subjet of a future paper.Appendix A. Two-detetor integralTo ompute the integral
M2 =

∫

x1

· · ·

∫

xN

∫

y1

· · ·

∫

yN

[
1

R

∑

π

∑

k

1(xk < p)1(yπ(k) < q)

]2

=

∫
· · ·

∫
1

R2

∑

π1

∑

π2

∑

k

∑

l

1(xk < p)1(xl < p)1(yπ1(k) < q)1(yπ2(l) < q), (A.1)we put the sums outside the integrals. When k 6= l, the integrals on xk and xl areindependent, and the integration over x1, . . . , xN gives a p2 ontribution. Otherwisethe integration gives a p ontribution. Analogously for the y variables we get q2 or qdepending on whether π1(k) 6= π2(l) or not.



Bakground estimation by time slides 12Thus we get four types of integralsintegral× number of suh integrals
k = l,π−1

2 ◦ π1(k) = l
1

R2
pq × NR (A.2a)

k 6= l,π−1
2 ◦ π1(k) = l

1

R2
p2q × NR(R − 1) (A.2b)

k = l,π−1
2 ◦ π1(k) 6= l

1

R2
pq2 × NR(R − 1) (A.2)

k 6= l,π−1
2 ◦ π1(k) 6= l

1

R2
p2q2 × N [R(R − 1)(N − 2) + R(N − 1)] (A.2d)Here we used that the omposition of two irular permutation is a irular permutation,and that the only irular permutation with a �xed point is the identity.The details of the ombinatoris are as follows.

• k = l, π−1
2 ◦ π1(k) = l : There are N di�erent k values. For eah of them there isonly one l that is equal to it. Here π−1

2 ◦ π1 is a irular permutation with a �xedpoint, so it is the identity. There are R di�erent π1, and for eah of them only
π2 = π1 gives the identity.

• k 6= l, π−1
2 ◦ π1(k) = l : There are N di�erent k values. For every pair π1 6= π2 weget π−1

1 ◦ π2(k) 6= k. And the hoie of this pair determines uniquely an l that isnot equal to k. There are R(R − 1) suh pairs.
• k = l, π−1

2 ◦ π1(k) 6= l : There are N di�erent k values. The value of l isdetermined by the equality k = l. And there are R(R − 1) pairs of π1, π2 suhthat π−1
1 ◦ π2(k) 6= k.

• k 6= l, π−1
2 ◦ π1(k) 6= l : There are N di�erent k values. In the ase where π1 6= π2,we need that l 6= k and l 6= π−1

2 ◦ π1(k), there are N − 2 suh l. In the ase where
π1 = π2 we get k = π−1

2 ◦ π1(k), so there is only one inequality on l, and there are
N − 1 possible l.By summing the 4 terms above and subtrating Mean2 we obtain

Var =
1

R
Npq

[
1 + p(R − 1) + q(R − 1) + pq

(
(R − 1)(N − 2) + (N − 1)

)]
− (Npq)2(A.3)

= Npq

[
1

R
+ p + q +

pq − (p + q)

R
− 2pq

] (A.4)
≃ Npq

[
1

R
+ p + q

]
, (A.5)



Bakground estimation by time slides 13Appendix B. Three-detetor integralWe want to ompute the integral
M2 =

∫
· · ·

∫
1

R2

∑

π1

∑

π2

∑

k

∑

l

[XY X ′Y ′ + XZX ′Z ′ + Y ZY ′Z ′ + 4XY ZX ′Y ′Z ′ + 2XY X ′Z ′ + 2XY Y ′Z ′

+2XZY ′Z ′ − 4XY X ′Y ′Z ′ − 4XZX ′Y ′Z ′ − 4Y ZX ′Y ′Z ′] , (B.1)where the ′ denotes whether the hidden variables are π1, k or π2, l.Similarly to Appendix A we have here eight kind of integrals.
X Y Z number of suh integrals

k = l, π−1
2 ◦ π1(k) = l, π2 ◦ π−1

1 (k) = l, NR

k = l, π−1
2 ◦ π1(k) = l, π2 ◦ π−1

1 (k) 6= l, 0

k = l, π−1
2 ◦ π1(k) 6= l, π2 ◦ π−1

1 (k) = l, 0

k = l, π−1
2 ◦ π1(k) 6= l, π2 ◦ π−1

1 (k) 6= l, NR(R − 1)

k 6= l, π−1
2 ◦ π1(k) = l, π2 ◦ π−1

1 (k) = l, 0

k 6= l, π−1
2 ◦ π1(k) = l, π2 ◦ π−1

1 (k) 6= l, NR(R − 1)

k 6= l, π−1
2 ◦ π1(k) 6= l, π2 ◦ π−1

1 (k) = l, NR(R − 1)

k 6= l, π−1
2 ◦ π1(k) 6= l, π2 ◦ π−1

1 (k) 6= l, NR [(R − 1)(N − 3) + (N − 1)]In these ombinatori omputations we need to assume that all translations are smallerthan N/4, to ensure that π−1
2 ◦ π1 ◦ π−1

2 ◦ π1(k) = k ⇒ π1 = π2. This assumption isreally reasonable, and the result would not be signi�antly di�erent without it.The �nal result is
M2 =

N

R

{
(pq + pr + qr − 2pqr)

+(R − 1) [pq(p + q + pq) + pr(p + r + pr) + qr(q + r + qr) + 6pqr − 4pqr(p + q + r)]

+ [(R − 1)(N − 3) + (N − 1)] (pq + pr + qr − 2pqr)2
}
, (B.2)Appendix C. �OR� ase for D detetorsUsing the same heuristi as in setion 3.3 and 4.3 we ompute the variane of the timeslide estimation method for D detetors in the �OR� ase. This heuristi yielded thesame results as the exat omputation for the 2 and 3 detetor ase, thus we may expetit to stay true in the general ase.As in equation (14), the variane is the sum of the normal Poisson variane

VarPoiss = N

(
D∑

j=1

j−1∑

i=1

pipj

)
1

R
, (C.1)and the variane due to time slides.
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Mean = N

[
D∑

j=1

j−1∑

i=1

(pi + δpi) (pj + δpj)

] (C.2)
≃ N




D∑

j=1

j−1∑

i=1

pipj +
D∑

j=1

δpj




D∑

i=1
i6=j

pi





 , (C.3)whih leads to a variane due to multiple reuse of the data (assuming 〈δp2

i 〉 = pi

N
)

VarSlides/N =

D∑

j=1

pj




D∑

i=1
i6=j

pi







D∑

k=1
k 6=j

pk


 (C.4)

=




D∑

j=1

D∑

i=1
i6=j

pipj



(

D∑

k=1

pk

)
−

D∑

j=1

p2
j

D∑

i=1
i6=j

pi (C.5)
=

(
D∑

j=1

j−1∑

i=1

pipj

)(
D∑

k=1

pk

)
+

1

2

D∑

j=1

D∑

i=1
i6=j

pipj


pj + pi +

D∑

k=1
k 6=i, k 6=j

pk




−

D∑

j=1

D∑

i=1
i6=j

pip
2
j (C.6)

=

(
D∑

j=1

j−1∑

i=1

pipj

)(
D∑

k=1

pk

)
+

1

2

D∑

j=1

D∑

i=1
i6=j

D∑

k=1
k 6=i, k 6=j

pipjpk. (C.7)This general formula (C.7) is orretly giving bak the extra terms in equations (7) and(14) for respetively the 2 and 3 detetor ase.Referenes[1℄ B. P. Abbott et al. LIGO: the laser interferometer gravitational-wave observatory. Rep. Prog.Phys., 72(7):076901, 2009.[2℄ F. Aernese et al. Status of Virgo. Class. Quantum Grav., 25(11):114045, 2008.[3℄ B. P. Abbott et al. Searh for gravitational-wave bursts in LIGO data from the fourth siene run.Class. Quantum Grav., 24(22):5343, 2007.[4℄ B. P. Abbott et al. Searh for gravitational-wave bursts in the �rst year of the �fth LIGO sienerun. aepted in Phys. Rev. D, arXiv/0905.0020[5℄ B. P. Abbott et al. Searh for High Frequeny Gravitational Wave Bursts in the First CalendarYear of LIGO's Fifth Siene Run. aepted in Phys. Rev. D, arXiv/0904.4910[6℄ B. P. Abbott et al. Searh for gravitational waves from binary inspirals in S3 and S4 LIGO data.Phys. Rev. D, 77(6):062002, 2008[7℄ B. P. Abbott et al. Searh for Gravitational Waves from Low Mass Binary Coalesenes in theFirst Year of LIGO's S5 Data. Phys. Rev. D, 79(12):122001, 2009.



Bakground estimation by time slides 15[8℄ B. P. Abbott et al. Searh for gravitational waves from low mass ompat binary oalesene in186 days of LIGO's �fth siene run Phys. Rev. D, 80(4):047101, 2009.[9℄ F. Aernese et al. Gravitational wave burst searh in the Virgo C7 data. Class. Quantum Grav.,26(8):085009, 2009.[10℄ B. Allen. χ2 time-frequeny disriminator for gravitational wave detetion. Phys. Rev. D,71(6):062001, 2005.[11℄ F. Beauville et al. A omparison of methods for gravitational wave burst searhes from LIGO andVirgo. Class. Quantum Grav., 25:045002, 2008.[12℄ S. D. Mohanty. Robust test for deteting nonstationarity in data from gravitational wave detetors.Phys. Rev. D, 61:122002, 2000.


