
HAL Id: in2p3-00394333
https://hal.in2p3.fr/in2p3-00394333v2

Submitted on 25 Nov 2009

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

On the background estimation by time slides in a
network of gravitational wave detectors

Michal Was, Marie-Anne Bizouard, Violette Brisson, Fabien Cavalier, Michel
Davier, Patrice Hello, Nicolas Leroy, Florent Robinet, Vavoulidis Miltiadis

To cite this version:
Michal Was, Marie-Anne Bizouard, Violette Brisson, Fabien Cavalier, Michel Davier, et al.. On the
background estimation by time slides in a network of gravitational wave detectors. Classical and
Quantum Gravity, 2010, 27, 015005 (12 p.). �10.1088/0264-9381/27/1/015005�. �in2p3-00394333v2�

https://hal.in2p3.fr/in2p3-00394333v2
https://hal.archives-ouvertes.fr


On the ba
kground estimation by time slides in anetwork of gravitational wave dete
torsMi
haª W¡s, Marie-Anne Bizouard, Violette Brisson, FabienCavalier, Mi
hel Davier, Patri
e Hello, Ni
olas Leroy, FlorentRobinet and Miltiadis Vavoulidis.LAL, Univ Paris-Sud, CNRS/IN2P3, Orsay, Fran
e.E-mail: mwas�lal.in2p3.frAbstra
t. Time shifting the outputs of Gravitational Wave dete
tors operating in
oin
iden
e is a 
onvenient way to estimate the ba
kground in a sear
h for shortduration signals. However this pro
edure is limited as in
reasing inde�nitely thenumber of time shifts does not provide better estimates. We show that the falsealarm rate estimation error saturates with the number of time shifts. In parti
ular, fordete
tors with very di�erent trigger rates this error saturates at a large value. Expli
it
omputations are done for 2 dete
tors, and for 3 dete
tors where the dete
tion statisti
relies on the logi
al �OR� of the 
oin
iden
es of the 3 
ouples in the network.PACS numbers: 04.80.Nm, 07.05.K



Ba
kground estimation by time slides 21. Introdu
tionKilometri
 interferometri
 Gravitational Wave (GW) dete
tors su
h as LIGO [1℄ orVirgo [2℄ have been taking data with in
reasing sensitivities over the past years[3, 4, 5, 6, 7, 8, 9℄. It is expe
ted that short duration GW events, e.g. the so-
alled burstsemitted by gravitational 
ollapses or the signals emitted by 
ompa
t binary inspirals,are very rare. Moreover the output of the dete
tors is primarily (non Gaussian) noise,and this ba
kground noise is in general not modeled. This implies that with a single GWdete
tor it is very di�
ult to estimate the ba
kground event rate, and then to assessthe signi�
an
e of some GW 
andidate.On the 
ontrary when dealing with a network of dete
tors (that means in pra
ti
eat least two dete
tors of the same 
lass), there is a 
onventional and simple way toestimate the ba
kground, that is the rate of 
oin
ident events due to dete
tor noise.This 
onsists of time shifting the sear
h algorithm outputs (or triggers) of ea
h dete
torwith respe
t to the other(s), by some unphysi
al delays, mu
h larger than the light traveltime between the dete
tors and mu
h larger than the typi
al duration of an expe
tedGW signal. The next step is then to look for 
oin
iden
es between shifted triggers justas if the shifted streams were syn
hronized. As we deal with a priori rare events, weneed to set in pra
ti
e low false alarm rates in the analysis. The question then arises ofhow many time slides are needed for 
orre
tly estimating the ba
kground and espe
iallyits tails where rare (non-Gaussian noise) events lay. Note, that in pra
ti
e in burstor binary inspiral sear
hes, a hundred or more time slides are done [3, 6, 7℄, due inparti
ular to limited 
omputational resour
es. Su
h a limitation of 
ourse depends onthe duration of the di�erent dete
tors data streams and on the 
omplexity of 
onsisten
ytests performed on 
oin
ident triggers. For example, time slides 
omputation for oneyear of data sampled at 16384 Hz (LIGO) or 20 kHz (Virgo) 
an rapidly be
ome a
omputational burden, espe
ially when 
omputationally intensive 
onsisten
y tests likethe χ2 veto [10℄ are used.In this paper, we show that the pre
ision on the ba
kground estimation, using timeslides of trigger streams, is in fa
t limited. Indeed the varian
e of the false alarm rateestimation does not inde�nitely de
rease as the number of time slides in
reases as wewould naively believe. On the 
ontrary this varian
e saturates at some point, dependingon the trigger rates 
hosen in ea
h individual dete
tor and on the 
oin
iden
e timewindow set for identifying 
oin
ident events in the network of dete
tors.After introdu
ing the general de�nitions in se
tion 2, we give expli
it formulas forthe two-dete
tor and the three-dete
tor 
ase in respe
tively Se
. 3 and 4. In the latterwe restri
t ourselves to the parti
ular analysis s
heme where we are looking at the union(logi
al �OR�) of the three 
ouples of dete
tors. This is a
tually the 
on�guration ofinterest, sin
e it is more sensitive than simply sear
hing for triple 
oin
iden
es (logi
al�AND�) [11℄. In ea
h 
ase (2 or 3 dete
tors) we 
he
k the analyti
al result with a MonteCarlo simulation and �nd ex
ellent agreement. In se
tion 5 these results are appliedand dis
ussed using typi
al parameters of a GW data analysis.



Ba
kground estimation by time slides 32. De�nitions2.1. Poisson approximation for trigger generationBa
kground triggers in the dete
tors are due to rare glit
hes. Often these glit
hes 
omein groups, but most analysis pipelines 
luster their triggers, so ea
h glit
h group resultsin only one �nal trigger. This 
lustering pro
edure is reasonable as long as the resultingtrigger rate is mu
h lower than the inverse of the typi
al 
lustering time length. In thislimit the 
lustered triggers are independent events. Thus, throughout this paper wewill assume that ea
h dete
tor produ
es random ba
kground triggers, whi
h are Poissondistributed in time.2.2. Problem des
riptionWe look then at the 
oin
iden
e between two Poisson pro
esses. The singleinterferometer trigger rate will be noted FA1, FA2, ..., the 
oin
iden
e rate will besimply noted FA. We denote by F̃A(T ) the rate resulting from 
ounting the number of
oin
iden
e between two data streams, that are shifted by some time T . In parti
ularfor zero lag (T = 0) the measured rate is F̃A(0). So the quantities with tildes are theexperimentally measured rates, and the quantities without tildes are the a
tual Poissondistribution parameters. The purpose of the paper is to study the properties of the timeshifting method, whi
h uses F̂A = 1
R

∑R

k=1 F̃A(Tk) as an estimator of FA, where R is thenumber of time slides and Tk is the kth time slide stride.2.3. Poisson pro
ess modelTo model a Poisson pro
ess with event rate FA1 we dis
retize the data stream duration
T with bins of length ∆t, the dis
retization time s
ale, e.g. either the dete
tor samplingrate or the 
lustering time s
ale. Thus, for ea
h bin an event is present with a probability
p = FA1∆t ‡.To ease the 
al
ulation we des
ribe the Poisson pro
ess realizations with a
ontinuous random variable. We take x uniformly distributed in the volume [0, 1]Nwhere N = T

∆t
is the number of samples, then 
ompare xk (the kth 
oordinate of x)with p. When xk < p there is an event in time bin k, otherwise there is none. Thus

x 
hara
terizes one realization of a Poisson pro
ess, and it 
an be easily seen that theuniform distribution of x leads to a Poisson distribution of events.2.4. Coin
iden
esWe 
hoose the sampling ∆t to be equal to twi
e the 
oin
iden
e time window τc, in orderto simplify the modeling of the 
oin
iden
e between two pro
esses. More pre
isely, fortwo Poisson pro
esses with event rates respe
tively FA1 and FA2, we de�ne a 
oin
iden
e
‡ Here we model the Poisson pro
ess by a binomial distribution, re
alling that when p ≪ 1 the binomialdistribution tends toward a Poisson distribution



Ba
kground estimation by time slides 4when there is an event in the same time bin k for both pro
esses. This is di�erent fromthe usual de�nition, where events are said in 
oin
iden
e when they are less than a timewindow apart. This binning time 
oin
iden
e has on average the same e�e
ts as de�ningas 
oin
ident events that are less than ±1
2
∆t = ±τc apart. The analyti
al results arederived using this non standard de�nition, but they are in pre
ise agreement with MonteCarlo simulations that are performed using the usual de�nition of time 
oin
iden
e.3. The 
ase of two dete
tors3.1. Time slides between two dete
torsLet x, y ∈ [0, 1]N be two realizations of Poisson pro
esses with respe
tively p = FA1∆tand q = FA2∆t. There is a 
oin
ident event in time bin k when xk < p and yk < q. Sothe total number of 
oin
iden
es for this realization is

N∑

k=1

1(xk < p)1(yk < q) (1)where {1(a) = 1 if a is true1(a) = 0 if a is false (2)Thus the mean number of 
oin
iden
es without time slides is as expe
ted
Mean =

∫

x1

· · ·

∫

xN

∫

y1

· · ·

∫

yN

N∑

k=1

1(xk < p)1(yk < q) dx1 · · ·dxNdy1 · · ·dyN︸ ︷︷ ︸dV

= Npq.(3)To 
onsider a number R of time slides we take a set of R 
ir
ular permutations of
[[1, N ]]. Time-sliding a ve
tor x by the 
ir
ular permutation π transforms the ve
tor xinto the ve
tor of 
oordinates xπ(k). Then the mean number of 
oin
iden
es is simply

Mean =

∫

x1

· · ·

∫

xN

∫

y1

· · ·

∫

yN

1

R

∑

π

∑

k

1(xk < p)1(yπ(k) < q)dV = Npq, (4)thus there is no bias resulting from the use of time slides.3.2. Computation of the varian
eIn order to have an estimate of the statisti
al error, we 
ompute the varian
e with Rtime slides. The se
ond moment is
M2 =

∫

x1

· · ·

∫

xN

∫

y1

· · ·

∫

yN

[
1

R

∑

π

∑

k

1(xk < p)1(yπ(k) < q)

]2 dV
=

∫
· · ·

∫
1

R2

∑

π1

∑

π2

∑

k

∑

l

1(xk < p)1(xl < p)1(yπ1(k) < q)1(yπ2(l) < q)dV. (5)
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analytical formula
Monte Carlo

Figure 1. The solid line is the analyti
al formula (7) of the varian
e and the dashedline is the Monte Carlo varian
e as a fun
tion of the number of times slides. The MonteCarlo has been performed with FA1 = 0.7 Hz, FA2 = 0.8 Hz, τc = 1 ms, 500 trials anda T = 104 s data stream length.We 
an then ex
hange integrals and sums. To 
ompute the integrals we distinguishtwo 
ases: when k 6= l the integrals on xk and xl are independent, and the integrationover x1, . . . , xN gives a p2 
ontribution; otherwise the integration gives a p 
ontribution.Analogously for the y variables we obtain q or q2 depending on whether π1(k) = π2(l)or not.The 
omputation of this integral, detailed in Appendix A, yields
Var = Npq

[
1

R
+ p + q +

pq − (p + q)

R
− 2pq

] (6)
≃ Npq

[
1

R
+ p + q

]
, (7)where the last line is an approximation in the limit p, q, 1

R
≪ 1, whi
h is reasonable asfar as GW analysis is 
on
erned.3.3. InterpretationEa
h term in equation (7) 
an be interpreted. The 1

R
is what we would expe
t ifwe 
onsidered R independent Poisson pro
ess realizations instead of R time slides. The

p+q 
omes from the estimation of the Poisson pro
ess event rate. Indeed, the estimation



Ba
kground estimation by time slides 6of the event probability p from a single realization of a Poisson pro
ess with a meannumber of events Np is p̂ = p+δp, where δp is the random statisti
al error with varian
e
〈δp2〉 = p

N
. This yields the mean rate of 
oin
iden
esMean = Np̂q̂ = N (p + δp) (q + δq) ≃ Npq + Npδq + Nqδp (8)whi
h 
orresponds to a varian
e of 〈N2p2δq2 + Nq2δp2〉 = Npq(p + q), be
ause δp and

δq are independent errors. Thus, when using only one realization for the single dete
tortriggers, we have a statisti
al error on the single dete
tor pro
ess rate. This statisti
alerror is systemati
ally propagated to the 
oin
iden
e rate of ea
h time slide, that yieldsthe extra terms in the varian
e as 
ompared to independent pro
ess realizations. One 
ansee that this extra term is important when 1
R

< max(p, q); for 
ases where the 
oin
identfalse alarm rate is maintained �xed (pq 
onstant), the e�e
t is most noti
eable when pand q are very di�erent.This gives an estimate of the varian
e of the number of 
oin
ident events in a datastream of length T . After 
onverting to the estimation of the 
oin
iden
e false alarmrate we obtain
MeancFA =

Mean

T
= FA1FA2∆t, (9)

VarcFA =
Var

T 2
≃ FA1FA2

∆t

T

[
1

R
+ FA1∆t + FA2∆t

]
. (10)To verify these results, a Monte Carlo simulation has been performed. The Poissonpro
esses are 
reated as des
ribed in se
tion 2, using a sampling rate of 16384 Hz, then asimple 
oin
iden
e test with a window of τc = 1 ms is applied. The time shifts are doneby adding an integer number of se
onds to all events and applying a modulo T operation.The formula has been tested using 500 realizations of T = 104 s long Poisson pro
esses,and using between 1 and 104 time slides for ea
h realization. Figure 1 shows that theanalyti
al formula (7) and the Monte Carlo agree well for any number of time slides, andthat the varian
e starts saturating when a few hundred time slides are used. We 
ansee that the identi�
ation of the sampling time and the 
oin
iden
e time window has no
onsequen
e on the result, the 
hoi
e between binning and windowing the 
oin
iden
esis a higher order e�e
t.3.4. Straightforward extensions of the modelIn real data analysis, there are times when one of the dete
tors does not take s
ien
equality data for te
hni
al reasons. Thus, the data set is divided into disjoint segments,and the ba
kground estimation is often done by 
ir
ular time slides on ea
h segmentseparately. Afterwards the results from all the segments are 
ombined to get theba
kground false alarm estimation. The 
omputation dis
ussed above extends to this
ase with minimal 
hanges. The 
ir
ular permutations have to be 
hanged to 
ir
ularby blo
k permutations, everything else being kept identi
al.



Ba
kground estimation by time slides 7Another 
aveat is that for real data analysis the 
oin
iden
e pro
edure is oftenmore 
ompli
ated. Some of those 
ompli
ations are event 
onsisten
y tests, e.g. do thetwo 
oin
ident events have a similar frequen
y? We 
an model this by adding someparameter f distributed uniformly in [0, 1] atta
hed to ea
h event, and then requestinga 
oin
iden
e in the parameter f .For this model the results will be the same as those above, up to a fa
tor of order1. Indeed, instead of applying a window of size ∆t to our events, we are now workingin a 2 dimensional (for instan
e time-frequen
y) spa
e and using a re
tangular windowin this 2D parameter spa
e. The pro
edure in both 
ases is the same � applying Ddimensional re
tangular windows to events distributed uniformly in a D dimensionalspa
e � up to the dimension of the spa
e.4. The 
ase of three dete
tors4.1. Time slides between three dete
torsIn the 
ase of three dete
tors one natural extension is to ask for events that are seenby at least two dete
tors, whi
h means look for 
oin
iden
e between two dete
tors forea
h dete
tor pair, but 
ounting the 
oin
iden
es between three dete
tors only on
e.This �OR� strategy in a interferometer network has been shown to be more e�
ientthan a dire
t three fold 
oin
iden
e strategy (�AND� strategy) [11℄. For time slides,when shifting the events of the se
ond dete
tor with some permutation π, we also shiftthe events of the third dete
tor by the same amount but in the opposite dire
tion with
π−1. To write 
ompa
t equations we abbreviate X = 1(xk < p), Y = 1(yπ(k) < q),
Z = 1(zπ−1(k) < r), dV = dx1 · · ·dxNdy1 · · ·dyNdz1 · · ·dzN , where r = FA3∆t is theevent probability per bin of the third dete
tor and the ve
tor z des
ribes its realizations.Thus, the mean number of 
oin
iden
es in the framework des
ribed in se
tion 3.1 is
Mean =

∫
· · ·

∫
1

R

∑

π

∑

k

[XY + Y Z + XZ − 2XY Z] dV = N [pq + pr + qr − 2pqr] .(11)4.2. Computation of the varian
eThe se
ond moment 
an be written 
ompa
tly as
M2 =

∫
· · ·

∫
1

R2

∑

π1

∑

π2

∑

k

∑

l

[XY X ′Y ′ + XZX ′Z ′ + Y ZY ′Z ′ + 4XY ZX ′Y ′Z ′ + 2XY X ′Z ′ + 2XY Y ′Z ′

+2XZY ′Z ′ − 4XY X ′Y ′Z ′ − 4XZX ′Y ′Z ′ − 4Y ZX ′Y ′Z ′] dV, (12)where the ′ denotes whether the hidden variables are π1, k or π2, l.
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Figure 2. The solid line is the analyti
al formula (14) of the varian
e and the dottedline is the Monte Carlo varian
e as a fun
tion of the number of time slides. The MonteCarlo has been performed with FA1 = 0.04 Hz, FA2 = 0.08 Hz, FA3 = 0.16 Hz, τc =

31 ms, 500 trials and a T = 10
4
s data stream length.The 
omputation of this integral, detailed in Appendix B, yields

M2 =
N

R

{
(pq + pr + qr − 2pqr)

+(R − 1) [pq(p + q + pq) + pr(p + r + pr) + qr(q + r + qr) + 6pqr − 4pqr(p + q + r)]

+ [(R − 1)(N − 3) + (N − 1)] (pq + pr + qr − 2pqr)2
}

, (13)and 
an be approximated in the limit p, q, r, 1
R
≪ 1 by

Var ≃ N(pq + pr + qr)

(
1

R
+ p + q + r +

3pqr

pq + pr + qr

)
. (14)4.3. InterpretationSimilarly to se
tion 3.3 the extra terms in equation (14) 
an be explained through theerror in the estimation of the single dete
tor event rate. Using the same notations as inse
tion 3.3 the mean 
oin
iden
e number isMean = N (p̂q̂ + p̂r̂ + q̂r̂) ≃ N [pq + pr + qr + (q + r)δp + (p + r)δq + (p + q)δr] .(15)



Ba
kground estimation by time slides 9Using the independen
e of estimation errors and re
alling that 〈δp2〉 = p

N
we obtain thevarian
e of this mean valueVar = N2

[
〈δp2〉(q + r)2 + 〈δq2〉(p + r)2 + 〈δr2〉(p + q)2

]

= N [(pq + pr + qr)(p + q + r) + 3pqr] , (16)that 
orresponds to the extra terms in equation (14).After 
onverting to the estimation of the false alarm rate we obtain
MeancFA ≃ (FA1FA2 + FA1FA3 + FA2FA3)∆t, (17)

VarcFA ≃ (FA1FA2 + FA1FA3 + FA2FA3)
∆t

T(
1

R
+ FA1∆t + FA2∆t + FA3∆t +

3FA1FA2FA3

FA1FA2 + FA1FA3 + FA2FA3
∆t

)
. (18)To 
he
k the 3 dete
tor results we performed a Monte Carlo similar to the one ofthe 2 dete
tor 
ase (see se
tion 3.3). The only di�eren
e is the number of dete
tors, andwe 
hoose a di�erent 
oin
iden
e window: τc = 31 ms §. To 
he
k that the assumptionof equal and opposite time slides does not in�uen
e the result, in the Monte Carlo thedata in the se
ond dete
tor are shifted by Tk and in the third dete
tor by 3Tk. Figure2 shows that the Monte Carlo and the 3 dete
tor �OR� formula (14) agree really well.4.4. The 
ase of D dete
torsFor the sake of 
ompleteness we 
an generalize the interpretation done in se
tion 3.3 tothe 
ase of D dete
tors in the �AND� 
on�guration. This generalization of equation (8)to D dete
tors yields a varian
e on the number of 
oin
iden
es

Var ≃ N
D∏

i=1

pi

(
1

R
+

D∑

i=1

∏

j 6=i

pj

)
, (19)where pi is the probability for dete
tor i to have an event in a given time bin.The interpretation 
an also be generalized in the �OR� 
ase, that is 
oin
iden
ebetween any pair of dete
tors, although the 
omputation is more 
umbersome as detailedin Appendix C and yields

Var ≃ N

[(
∑

i<j

pipj

)(
1

R
+

D∑

i=1

pi

)
+

1

2

∑

i6=j, j 6=k, k 6=i

pipjpk

]
, (20)where pi is the event probability per bin in the ith dete
tor.

§ This a

ounts for the largest light travel time in the LIGO-Virgo network (27 ms) and some timingerror in ea
h dete
tor.



Ba
kground estimation by time slides 105. Dis
ussionWe �nally dis
uss the 
onsequen
es of the above results on GW data analysis. To beable to put numbers into the equations we will look at a �du
ial GW data taking run.We 
hoose the run properties to be:
• a duration of T = 107 s, that is roughly 4 months
• two dete
tors with a light travel time separation of 25 ms, and we use the same timeas the 
oin
iden
e window, so that ∆t = 50 ms‖, assuming perfe
t timing a

ura
yof trigger generators.
• a desired 
oin
iden
e false alarm rate of 10−8 Hz, i.e. one event every three years.We will look at two spe
ial 
ases of single dete
tor threshold 
hoi
e. One symmetri

ase, where thresholds are set so that the single dete
tor trigger rate in ea
h dete
tor isroughly the same. One asymmetri
 
ase, where in one of the dete
tors there is only onetrigger. This asymmetri
 
ase is extreme but instru
tive, be
ause tuning the thresholdsto obtain the best sensitivity often yields asymmetri
 trigger rates between di�erentdete
tors.Symmetri
 dete
tor 
ase In this 
ase we have the single dete
tor trigger rate FA1 =

FA2 = FAs =
√

FA
∆t

≃ 4.5 × 10−4 Hz, whi
h gives using equation (10) the fra
tionalerror of the false alarm estimation
σFA

FA
≃ 3.2

(
1

R
+ 4.5 × 10−5

) 1
2

p = q = 2.25 × 10−5

≃ 0.32 for R = 100

≃ 0.02 for R → ∞.So for 100 time slides we get a typi
al error of 30% in the false alarm estimation,and the error saturates at 2% for R & 20000.Asymmetri
 dete
tor 
ase In this extreme 
ase the single dete
tor trigger rates are
FA1 = 1

T
= 10−7 Hz and FA2 = FA

FA1∆t
= 2 Hz, whi
h gives using equation (10) thefra
tional error of the false alarm estimation

σFA

FA
≃ 3.2

(
1

R
+ 0.1

)1
2

p = 5 × 10−9, q = 0.1

≃ 1.05 for R = 100

≃ 1 for R → ∞.So the error saturates at 100%, and this saturation is a
hieved for R & 10.Those two examples show that the maximal number of useful time slides and thefalse alarm estimation pre
ision strongly depends on the relative properties of the two
‖ As noted in se
tion 2.4, 
oin
ident triggers are de�ned as less that ± 1

2
∆t apart.



Ba
kground estimation by time slides 11dete
tors. In parti
ular when there are mu
h more triggers in one dete
tor than in theother, the ba
kground 
an be badly estimated and in
reasing the number of time slidesdoes not solve the issue.6. Con
lusionsWe have studied the statisti
al error in the ba
kground estimation of event-based GWdata analysis when using the time slide method. Under the assumption of stationarynoise we analyti
ally 
omputed this error in both the two-dete
tor and three-dete
tor
ase, and found ex
ellent agreement with Monte Carlo simulations.The important resulting 
onsequen
es are: the pre
ision on the ba
kgroundestimation saturates as a fun
tion of the number of time slides, this saturation is mostrelevant for dete
tors with a very di�erent trigger rate where the ba
kground estimationpre
ision 
an be poor for any number of time slides.Let us note that the time slide method 
an be used in other situations thanGW data ba
kground estimation. For example it 
an be used to estimate the rateof a

idental 
oin
iden
es between a GW 
hannel and an environmental 
hannel in aGW interferometer; or in any experiment where 
oin
iden
es between two (or more)trigger generators are looked for. The results of this paper 
an be straightforwardlyextended to su
h an experiment.Another limitation, the non stationarity of the data, has not been investigated inthis paper. Data non stationarity is a well known issue in GW data analysis [12℄. Inthe 
ontext of the time slides method it raises the question whether the time shifteddata are still representative of the zero lag data, when large time shifts are used. Itinvolves both the problem of the measure of the level of data non stationarity, and theestimation of the error it indu
es on the ba
kground estimation. Further work on thisissue will be the subje
t of a future paper.Appendix A. Two-dete
tor integralTo 
ompute the integral
M2 =

∫

x1

· · ·

∫

xN

∫

y1

· · ·

∫

yN

[
1

R

∑

π

∑

k

1(xk < p)1(yπ(k) < q)

]2

=

∫
· · ·

∫
1

R2

∑

π1

∑

π2

∑

k

∑

l

1(xk < p)1(xl < p)1(yπ1(k) < q)1(yπ2(l) < q), (A.1)we put the sums outside the integrals. When k 6= l, the integrals on xk and xl areindependent, and the integration over x1, . . . , xN gives a p2 
ontribution. Otherwisethe integration gives a p 
ontribution. Analogously for the y variables we get q2 or qdepending on whether π1(k) 6= π2(l) or not.
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kground estimation by time slides 12Thus we get four types of integralsintegral× number of su
h integrals
k = l,π−1

2 ◦ π1(k) = l
1

R2
pq × NR (A.2a)

k 6= l,π−1
2 ◦ π1(k) = l

1

R2
p2q × NR(R − 1) (A.2b)

k = l,π−1
2 ◦ π1(k) 6= l

1

R2
pq2 × NR(R − 1) (A.2
)

k 6= l,π−1
2 ◦ π1(k) 6= l

1

R2
p2q2 × N [R(R − 1)(N − 2) + R(N − 1)] (A.2d)Here we used that the 
omposition of two 
ir
ular permutation is a 
ir
ular permutation,and that the only 
ir
ular permutation with a �xed point is the identity.The details of the 
ombinatori
s are as follows.

• k = l, π−1
2 ◦ π1(k) = l : There are N di�erent k values. For ea
h of them there isonly one l that is equal to it. Here π−1

2 ◦ π1 is a 
ir
ular permutation with a �xedpoint, so it is the identity. There are R di�erent π1, and for ea
h of them only
π2 = π1 gives the identity.

• k 6= l, π−1
2 ◦ π1(k) = l : There are N di�erent k values. For every pair π1 6= π2 weget π−1

1 ◦ π2(k) 6= k. And the 
hoi
e of this pair determines uniquely an l that isnot equal to k. There are R(R − 1) su
h pairs.
• k = l, π−1

2 ◦ π1(k) 6= l : There are N di�erent k values. The value of l isdetermined by the equality k = l. And there are R(R − 1) pairs of π1, π2 su
hthat π−1
1 ◦ π2(k) 6= k.

• k 6= l, π−1
2 ◦ π1(k) 6= l : There are N di�erent k values. In the 
ase where π1 6= π2,we need that l 6= k and l 6= π−1

2 ◦ π1(k), there are N − 2 su
h l. In the 
ase where
π1 = π2 we get k = π−1

2 ◦ π1(k), so there is only one inequality on l, and there are
N − 1 possible l.By summing the 4 terms above and subtra
ting Mean2 we obtain

Var =
1

R
Npq

[
1 + p(R − 1) + q(R − 1) + pq

(
(R − 1)(N − 2) + (N − 1)

)]
− (Npq)2(A.3)

= Npq

[
1

R
+ p + q +

pq − (p + q)

R
− 2pq

] (A.4)
≃ Npq

[
1

R
+ p + q

]
, (A.5)
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tor integralWe want to 
ompute the integral
M2 =

∫
· · ·

∫
1

R2

∑

π1

∑

π2

∑

k

∑

l

[XY X ′Y ′ + XZX ′Z ′ + Y ZY ′Z ′ + 4XY ZX ′Y ′Z ′ + 2XY X ′Z ′ + 2XY Y ′Z ′

+2XZY ′Z ′ − 4XY X ′Y ′Z ′ − 4XZX ′Y ′Z ′ − 4Y ZX ′Y ′Z ′] , (B.1)where the ′ denotes whether the hidden variables are π1, k or π2, l.Similarly to Appendix A we have here eight kind of integrals.
X Y Z number of su
h integrals

k = l, π−1
2 ◦ π1(k) = l, π2 ◦ π−1

1 (k) = l, NR

k = l, π−1
2 ◦ π1(k) = l, π2 ◦ π−1

1 (k) 6= l, 0

k = l, π−1
2 ◦ π1(k) 6= l, π2 ◦ π−1

1 (k) = l, 0

k = l, π−1
2 ◦ π1(k) 6= l, π2 ◦ π−1

1 (k) 6= l, NR(R − 1)

k 6= l, π−1
2 ◦ π1(k) = l, π2 ◦ π−1

1 (k) = l, 0

k 6= l, π−1
2 ◦ π1(k) = l, π2 ◦ π−1

1 (k) 6= l, NR(R − 1)

k 6= l, π−1
2 ◦ π1(k) 6= l, π2 ◦ π−1

1 (k) = l, NR(R − 1)

k 6= l, π−1
2 ◦ π1(k) 6= l, π2 ◦ π−1

1 (k) 6= l, NR [(R − 1)(N − 3) + (N − 1)]In these 
ombinatori
 
omputations we need to assume that all translations are smallerthan N/4, to ensure that π−1
2 ◦ π1 ◦ π−1

2 ◦ π1(k) = k ⇒ π1 = π2. This assumption isreally reasonable, and the result would not be signi�
antly di�erent without it.The �nal result is
M2 =

N

R

{
(pq + pr + qr − 2pqr)

+(R − 1) [pq(p + q + pq) + pr(p + r + pr) + qr(q + r + qr) + 6pqr − 4pqr(p + q + r)]

+ [(R − 1)(N − 3) + (N − 1)] (pq + pr + qr − 2pqr)2
}
, (B.2)Appendix C. �OR� 
ase for D dete
torsUsing the same heuristi
 as in se
tion 3.3 and 4.3 we 
ompute the varian
e of the timeslide estimation method for D dete
tors in the �OR� 
ase. This heuristi
 yielded thesame results as the exa
t 
omputation for the 2 and 3 dete
tor 
ase, thus we may expe
tit to stay true in the general 
ase.As in equation (14), the varian
e is the sum of the normal Poisson varian
e

VarPoiss = N

(
D∑

j=1

j−1∑

i=1

pipj

)
1

R
, (C.1)and the varian
e due to time slides.
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Mean = N

[
D∑

j=1

j−1∑

i=1

(pi + δpi) (pj + δpj)

] (C.2)
≃ N




D∑

j=1

j−1∑

i=1

pipj +
D∑

j=1

δpj




D∑

i=1
i6=j

pi





 , (C.3)whi
h leads to a varian
e due to multiple reuse of the data (assuming 〈δp2

i 〉 = pi

N
)

VarSlides/N =

D∑

j=1

pj




D∑

i=1
i6=j

pi







D∑

k=1
k 6=j

pk


 (C.4)

=




D∑

j=1

D∑

i=1
i6=j

pipj



(

D∑

k=1

pk

)
−

D∑

j=1

p2
j

D∑

i=1
i6=j

pi (C.5)
=

(
D∑

j=1

j−1∑

i=1

pipj

)(
D∑

k=1

pk

)
+

1

2

D∑

j=1

D∑

i=1
i6=j

pipj


pj + pi +

D∑

k=1
k 6=i, k 6=j

pk




−

D∑

j=1

D∑

i=1
i6=j

pip
2
j (C.6)

=

(
D∑

j=1

j−1∑

i=1

pipj

)(
D∑

k=1

pk

)
+

1

2

D∑

j=1

D∑

i=1
i6=j

D∑

k=1
k 6=i, k 6=j

pipjpk. (C.7)This general formula (C.7) is 
orre
tly giving ba
k the extra terms in equations (7) and(14) for respe
tively the 2 and 3 dete
tor 
ase.Referen
es[1℄ B. P. Abbott et al. LIGO: the laser interferometer gravitational-wave observatory. Rep. Prog.Phys., 72(7):076901, 2009.[2℄ F. A
ernese et al. Status of Virgo. Class. Quantum Grav., 25(11):114045, 2008.[3℄ B. P. Abbott et al. Sear
h for gravitational-wave bursts in LIGO data from the fourth s
ien
e run.Class. Quantum Grav., 24(22):5343, 2007.[4℄ B. P. Abbott et al. Sear
h for gravitational-wave bursts in the �rst year of the �fth LIGO s
ien
erun. a

epted in Phys. Rev. D, arXiv/0905.0020[5℄ B. P. Abbott et al. Sear
h for High Frequen
y Gravitational Wave Bursts in the First CalendarYear of LIGO's Fifth S
ien
e Run. a

epted in Phys. Rev. D, arXiv/0904.4910[6℄ B. P. Abbott et al. Sear
h for gravitational waves from binary inspirals in S3 and S4 LIGO data.Phys. Rev. D, 77(6):062002, 2008[7℄ B. P. Abbott et al. Sear
h for Gravitational Waves from Low Mass Binary Coales
en
es in theFirst Year of LIGO's S5 Data. Phys. Rev. D, 79(12):122001, 2009.



Ba
kground estimation by time slides 15[8℄ B. P. Abbott et al. Sear
h for gravitational waves from low mass 
ompa
t binary 
oales
en
e in186 days of LIGO's �fth s
ien
e run Phys. Rev. D, 80(4):047101, 2009.[9℄ F. A
ernese et al. Gravitational wave burst sear
h in the Virgo C7 data. Class. Quantum Grav.,26(8):085009, 2009.[10℄ B. Allen. χ2 time-frequen
y dis
riminator for gravitational wave dete
tion. Phys. Rev. D,71(6):062001, 2005.[11℄ F. Beauville et al. A 
omparison of methods for gravitational wave burst sear
hes from LIGO andVirgo. Class. Quantum Grav., 25:045002, 2008.[12℄ S. D. Mohanty. Robust test for dete
ting nonstationarity in data from gravitational wave dete
tors.Phys. Rev. D, 61:122002, 2000.


