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A search is performed for the standard model Higgs boson in 5.2 fb~! of pp collisions at
Vs = 1.96 TeV, collected with the DO detector at the Fermilab Tevatron Collider. The final state
considered is a pair of b jets and large missing transverse energy, as expected from pp — ZH — visbb
production. The search is also sensitive to the W H — fvbb channel when the charged lepton is not
identified. For a Higgs boson mass of 115 GeV, a limit is set at the 95% C.L. on the cross section
multiplied by branching fraction for [pp — (Z/W)H|(H — bb) that is a factor of 3.7 larger than the
standard model value, consistent with the factor of 4.6 expected.

PACS numbers: 14.80.Bn, 13.85.Ni, 13.85.Qk, 13.85.Rm

The existence of the Higgs boson is the only fundamen-
tal element of the standard model (SM) that has yet to be
confirmed. Its observation would be a key step in estab-
lishing the mechanism of electroweak symmetry breaking
and mass generation. Associated ZH production in pp
collisions, with Z — v and H — bb, is among the most

sensitive processes for seeking a Higgs boson with a mass
my < 135 GeV at the Fermilab Tevatron Collider [g].
The DO Collaboration published a search for this process
based on 0.9 fb~! of integrated luminosity [9]. The CDF
Collaboration recently released the results of a search us-
ing 2.1 b1 [10]. A lower limit of 114.4 GeV was set by



the LEP experiments on the mass of the Higgs boson
from searches for the reaction ete™ — ZH [11], while
an indirect upper limit of 157 GeV can be inferred from
precision electroweak data [12]. These limits and those
given below are all defined at the 95% C.L.

This Letter presents a new search using an integrated
luminosity more than 5 times larger than in [9]. The
final-state topology considered consists of a pair of b jets
from H — bb and missing transverse energy (Fr) from
Z — vi. The search is therefore also sensitive to the
W H process when the charged lepton from W — /fv
decay is not identified. The main backgrounds arise
from (W/Z)+heavy flavor jets (jets initiated by b and ¢
quarks), top quark production, and multijet (MJ) events
with Fr arising from mismeasurement of jet energies.

The DO detector is described in [13]. The data used in
this analysis were recorded using triggers designed to se-
lect events with jets and Er |9, [14]. After imposing data
quality requirements, the total integrated luminosity [15]
is 5.2 fb~!. The analysis relies on (i) charged particle
tracks, (ii) calorimeter jets reconstructed in a cone of ra-
dius 0.5, using the iterative midpoint cone algorithm [16],
and (iii) electrons or muons identified through the associ-
ation of tracks with electromagnetic calorimeter clusters
or with hits in the muon detector, respectively. The Er
is reconstructed as the opposite of the vectorial sum of
transverse components of energy deposits in the calorime-
ter and is corrected for identified muons. Jet energies are
calibrated using transverse energy balance in photon+jet
events [17], and these corrections are propagated to the
Er.

Backgrounds from SM processes are determined
through Monte Carlo simulation, while instrumental
MJ background is estimated from data. FEvents from
(W/Z)+jets processes are generated with ALPGEN [1§],
interfaced with PyTHIA |19] for initial and final-state ra-
diation and for hadronization. The pp spectrum of the
Z is reweighted to match the DO measurement [20]. The
pr spectrum of the W is reweighted using the same ex-
perimental input, corrected for the differences between
the Z and W pr spectra predicted in next-to-next-to-
leading order (NNLO) QCD |21)]. For ¢f and electroweak
single top quark production, the ALPGEN and COM-
PHEP [22] generators, respectively, are interfaced with
PYTHIA, while vector boson pair production is generated
with PYTHIA. The ZH and W H signal processes are gen-
erated with PyTHIA for Higgs boson masses (my) from
100 to 150 GeV, in 5 GeV steps. All these simulations
use CTEQG6L1 parton distribution functions (PDFs) [23].

The absolute normalizations for (W/Z)+jets produc-
tion are obtained from NNLO calculations of total cross
sections based on [24], using the MRST2004 NNLO
PDFs [25]. The heavy-flavor fractions are obtained using
MCFM [26]. Cross sections for other SM backgrounds are
taken from [27], or calculated with MCFM, and the cross
sections for signal are taken from [28].

Signal and background samples are passed through a
full GEANT3-based simulation [29] of detector response
and processed with the same reconstruction program as
used for data. Events from randomly selected beam
crossings are overlaid on simulated events to account for
detector noise and contributions from additional pp in-
teractions. Parametrizations of trigger efficiency are de-
termined using events collected with independent trig-
gers based on information from the muon detectors.
Weight factors compensating for residual differences be-
tween data and simulation are applied for electron, muon
and jet identification. Jet energy calibration and reso-
lution are adjusted in simulated events to match those
measured in data.

A preselection that greatly reduces the overwhelm-
ing background from multijet events is performed as fol-
lows. The primary vertex must be reconstructed within
the acceptance of the silicon vertex detector, and at
least three tracks must originate from that vertex. Jets
with associated tracks (using only tracks that meet min-
imal quality criteria to ensure that the b-tagging algo-
rithm operates efficiently) are denoted as “taggable” jets.
There must be two or three taggable jets, one of which
is the leading (highest pr) jet. These jets must have
transverse momentum pr > 20 GeV and pseudorapidity
[n] < 2.5 [30]. The two leading taggable jets must not
be back-to-back in the plane transverse to the beam di-
rection: A¢(jetq,jety) < 165°. Finally, Er > 20 GeV is
required.

Additional selection criteria define four distinct sam-
ples: (i) an analysis sample used to search for a Higgs
boson signal, (ii) an electroweak (EW) control sample,
enriched in W(— pv)+jets events where the jet system
has a topology similar to that of the analysis sample, that
is used to validate the SM background simulation, (iii) a
“MJ-model” sample, dominated by multijet events, used
to model the MJ background in the analysis sample, and
(iv) a large “MJ-enriched” sample, used to validate this
modeling procedure.

The analysis sample is selected by requiring Er >
40 GeV and a measure of the Fr significance S > 5 [31].
Larger values of S correspond to Fr values that are less
likely to be caused by fluctuations in jet energies. In sig-
nal events, the missing track pr, pr, defined as the op-
posite of the vectorial sum of the charged particle trans-
verse momenta, is expected to point in a direction close
to that of K. Such a strong correlation is not expected
in multijet events, where £ originates mainly from mis-
measurement of jet energies. Advantage is taken of this
feature by requiring D < 7/2, where D = A¢p(Er, pr).
Events containing an isolated electron or muon [32] with
pr > 15 GeV are rejected to reduce backgrounds from
W +jets, top quark, and diboson production.

The EW-control sample is selected in a way similar
to the analysis sample, except that an isolated muon
with ppr > 15 GeV is required. The multijet content of



this sample is rendered negligible by requiring the trans-
verse mass of the muon and Er system to be larger than
30 GeV. To ensure similar jet topologies for the anal-
ysis and EW-control samples, E1 not corrected for the
selected muon is required to exceed 40 GeV. Excellent
agreement with the SM expectation is found for the num-
ber of selected events. The agreement for all kinematic
distributions is also very good once a reweighting of the
distribution of An between the two leading taggable jets
is performed, as suggested by a simulation of (W/Z)+jets
using the SHERPA generator [33].

The MJ-model sample, used to determine the MJ back-
ground, is selected as the analysis sample, except that the
requirement of D < 7/2 is inverted. The small contribu-
tion from non-MJ SM processes in the D > 7/2 region
is subtracted, and the resulting sample is used to model
the MJ background in the analysis sample. After adding
contributions from SM backgrounds, the MJ background
is normalized so that the expected number of events is
identical to the number observed in the analysis sample.

The MJ-enriched sample is used to test the validity
of this approach and is defined as the analysis sample,
except that the K7 threshold is reduced to 30 GeV and
no requirement is imposed on §. As a result, the MJ
background dominates the entire range of D values, and
this sample is used to verify that the events with D > 7/2
correctly model those with D < 7/2.

The large branching fraction for H — bb is exploited
by requiring that one or both of the two leading tag-
gable jets be b tagged. The double-tag sample is se-
lected with asymmetric requirements on the outputs of a
b-tagging neural network algorithm [34], such that one
jet is tagged with an efficiency of ~ 70% (“loose tag”),
and the other with an efficiency of ~ 50% (“tight tag”).
These values apply for taggable jets with pr ~ 45 GeV
and |n| = 0.8. The mistag rates , i.e., the probablilities to
tag light (u,d, s, g) jets as b jets, are ~ 6.5% and =~ 0.5%
for the loose and tight tags, respectively. The sensitiv-
ity of the search is improved by defining an independent
single-tag sample in which one of the two leading tag-
gable jets passes the tight tag and the other one fails the
loose tag. The flavor-dependent b-tagging efficiencies are
adjusted in simulated events to match those measured in
dedicated data samples.

A boosted-decision-tree (DT) technique [35] takes ad-
vantage of different kinematics in signal and background
processes. For each my, a “MJ DT” (multijet-rejection
DT), used to discriminate between signal and MJ-model
events, is trained before b tagging is applied, using 23
kinematic variables. These include the number of jets,
jet pr, dijet pr, Er, angles between jets, between dijet
and Fr and between jets and Fp, number of isolated
tracks, and dijet mass, where the dijet system is con-
structed from the two leading taggable jets. The MJ-DT
output (multijet discriminant) is shown in Fig. [[(a) for
mpy = 115 GeV. A value of the multijet discriminant in

excess of 0.6 is required (multijet veto), which removes
over 95% of the multijet background and 65% of the non-
MJ SM backgrounds, while retaining 70% of the signal.
The number of expected signal and background events,
as well as the number of observed events, are given in
Table [[l after imposing the multijet veto.

To discriminate signal from SM backgrounds, addi-
tional “SM DTs” (SM rejection DTs) are trained sep-
arately for the single and double-tag samples, using the
same kinematic variables as for the MJ DT. The out-
puts of the SM DTs after the multijet veto (final dis-
criminants) are shown in Figs. [[I(b) and @lc) for my =
115 GeV, for the single and double tag samples.

Agreement between data and expectation from SM and
MJ backgrounds is observed in the single and double tag
samples, once the systematic uncertainties discussed be-
low are taken into account, both in the number of selected
events (Table[l) and in distributions of final discriminants
(Fig. ). A modified frequentist approach [36] is used to
set limits on the cross section for SM Higgs boson produc-
tion, where the test statistic is a joint log-likelihood ratio
(LLR) of the background-only and signal+background
hypotheses, obtained by summing LLR values over the
bins in the final discriminants shown in Figs. [[I(b) and
[@(c). The impact of systematic uncertainties on the sensi-
tivity of the analysis is reduced by maximizing a “profile”
likelihood function [37] in which these uncertainties are
given Gaussian constraints associated with their priors.

Experimental uncertainties arise from trigger simula-
tion (3%), jet energy calibration and resolution (3% for
signal and 4% — 5% for background), jet reconstruc-
tion and taggability (2% — 3%), lepton identification
(1%—2%), and b tagging (from 2% for signal in the single-
tag sample to 8% for background in the double-tag sam-
ple). Their impact is assessed on overall normalizations
and shapes of distributions in final discriminants. Cor-
relations among systematic uncertainties in signal and
background are taken into account in extracting the final
results, including a 6.1% uncertainty on the integrated
luminosity.

Theoretical uncertainties on cross sections for SM pro-
cesses are estimated as follows. For (W/Z)+jets pro-
duction, an uncertainty of 6% is assigned to the total
cross sections, and an uncertainty of 20% on the heavy-
flavor fractions (estimated from McCFM). For other SM
backgrounds, uncertainties are taken from [27] or from
MCFM, and range from 6% to 10%. The uncertainties
on cross sections for signal (6% for my = 115 GeV)
are taken from [28]. Uncertainties on the shapes of
the final discriminants arise from (i) the modeling of
(W/Z)+jets, assessed by varying the renormalization-
and-factorization scale and by comparing ALPGEN in-
terfaced with HERWIG [38] to ALPGEN interfaced with
PYTHIA, and (ii) the choice of PDFs, estimated using
the prescription of [23]. The normalization of the MJ
background is anticorrelated with the normalization of



TABLE I: The number of expected signal and background events, and the number observed after the multijet veto, prior to b
tagging and for single and double tags. The signal corresponds to myg = 115 GeV, “Top” includes pair and single top quark
production, and V'V is the sum of all diboson processes. The uncertainties quoted arise from the statistics of the simulation
and from the sources of systematic uncertainties mentioned in the text.

Sample ZH WH W+jets Z4jets  Top Vv Multijet  Total background  Observed
Pretag 13.73 £ 1.37  11.64 + 1.17 19069 9432 1216 1112 1196 32025 + 4121 31718
Single tag 4.16 + 0.42 3.60 £+ 0.37 802 439 404 60 125 1830 + 273 1712
Double tag 4.66 + 0.58 4.00 £+ 0.50 191 124 199 24 <8 538 £+ 93 514
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FIG. 1: Decision tree outputs for myg = 115 GeV: (a) for the MJ DT, and for the SM DTs following the multijet veto for
(b) single and (c) double tag. The data are shown as points with error bars. The background contributions are shown as
histograms, with codes indicated in the legend in (b). Dibosons are labeled “VV,” “V+1.f.” includes (W/Z)+(u,d, s, g) jets,
“V+h.f.” includes (W/Z)+(b,c) jets, and “Top” includes pair and single top quark production. The distributions for signal
(VH) are multiplied by factors of 500, 100, and 10 in (a)—(c), respectively.

the SM backgrounds, as the sum is constrained by data
prior to b tagging.

The results of the analysis are given as limits in Ta-
ble [Tl and as LLRs in Fig. 2 as a function of my. The
observed LLRs are within 1 standard deviation of expec-
tation (the median of the LLR for the background-only
hypothesis). For myg = 115 GeV, the observed and ex-
pected limits on the combined cross section of ZH and
W H production, multiplied by the branching fraction for
H — bb, are factors of 3.7 and 4.6 larger than the SM
value, respectively. These are the most constraining re-
sults for a SM Higgs boson decaying dominantly into bb
for my above the limit set at LEP.

Supplementary material is provided in [39)].
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TABLE II: As a function of mg, observed and expected upper limits on the (W/Z)H production cross section multiplied by

branching fraction for H — bb, relative to the SM expectation.
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Supplementary material

TABLE III: Theoretical cross sections for associated W H and ZH production and H — bb branching fraction, as a function of
my.

mpg (GeV) 100 105 110 115 120 125 130 135 140 145 150
o(WH) (pb) 0.286 0.243 0.208 0.178 0.153 0.132 0.115 0.099 0.087 0.076 0.066
o(ZH) (pb) 0.167 0.143 0.123 0.107 0.093 0.081 0.070 0.062 0.054 0.048 0.042
B(H — bb) 0.812 0.796 0.770 0.732 0.679 0.610 0.527 0.436 0.344 0.256 0.176

TABLE IV: The number of observed events and the number of ZH and W H signal events expected for myg = 115 GeV at
different stages of the selection.

Data ZH WH
Preselection 7690773 19.9 40.8
K1 > 40 GeV 790496 19.2 36.1
Fr Significance > 5 188761 18.2 32.7
Isolated e/p veto 153542 18.1 21.4
Ap(Br,pr) < w/2 120875 17.7 18.6

TABLE V: The number of expected signal and background events, and the number observed in the analysis sample before
the multijet veto, prior to b tagging and for single and double tags; “top” includes pair and single top quark production. The
quoted uncertainties are statistical only.

Sample pre-tag single tag | double tag
ZH (115 GeV) 17.72 £ 0.09| 5.44 £ 0.05| 5.69 + 0.05
WH (115 GeV) 18.55 £ 0.15| 5.81 £ 0.08| 5.83 £ 0.07

W+jets 55502 £ 135 (1311 + 24 136 £ 10
W+b/c jets 9102 £ 46 |1252 £ 15 411 £8
Z+jets 17785 £ 131 | 211 £ 17 9+3
Z+b/c jets 4621 + 36 701 £ 11 256 £ 6
top 2408 £ 6 815 £ 3 427 £ 2
di-boson 2309 £ 15 126 £ 3 42 £ 2

SM background 91727 £ 197 |4415 £ 35 |1282 £ 15
MJ background 29148 + 377 (2255 £+ 101 | 398 £ 20
Total background|120875 + 425 |6670 £ 107 {1679 £ 25
Observed 120875 6853 1581




TABLE VI: The number of expected signal and background events, and the number observed in the analysis sample after the
multijet veto, prior to b tagging and for single and double tags; “top” includes pair and single top quark production. The

quoted uncertainties are statistical only.

Sample

pre-tag single tag | double tag

ZH (115 GeV) 13.73 £ 0.08| 4.16 £ 0.05|4.66 + 0.04
WH (115 GeV) | 11.64 + 0.12| 3.60 £ 0.07|3.99 £ 0.06

W +jets 15997 + 65 367 £+ 12
W+b/c jets 3072 £ 26 435 + 8
Z+jets 7304 + 80 94 £+ 12
Z+b/c jets 2129 + 24 344 + 8
top 1216 + 4 404 £ 2
di-boson 1112 £+ 10 60 £+ 2

38 £6
153 £ 5
2+1
122 £ 4
199 £ 2
24 £1

SM background [30829 + 109 |1704 + 20
MJ background 1196 4+ 120 | 125 + 32

539 £ 9
-1 £8

Total background|32025 + 162 1830 + 38

Observed

31718 1712

538 £ 12
514

TABLE VII: Variables used as input to the Decision Trees.

Number of jets

Number of taggable jets
leading jet pr

second jet pr

third jet pr

Hr(scalar sum of jet pr)
AR(jethjetZ)

An(jety, jets)

Ap(jety, jets)

Pr

Fr significance
Aé(ETnjetl)

A¢(ET7jet2)

A¢ (BT, dijet system)

min A¢(ET7 jeti)

max A¢ (£, jets) + min A¢ (£, jets)
max A¢(ET7jeti) — min A¢(ET7jeti)
Hr(vectorial sum of jet pr)
Hr/ Hr

dijet pr

dijet mass

dijet transverse mass
Number of isolated tracks
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TABLE VIII: Systematic uncertainties in % of the overall signal and background yields. “Jet EC” and “Jet ER” stand for jet
energy calibration and resolution, respectively. “Jet R&T” stands for jet reconstruction and taggability. “Signal” includes ZH

and W H production for my = 115 GeV.

Systematic Uncertainty | Signal | Background

pre-tag
Jet EC — Jet ER 2.7 7.7
Jet R&T 3.0 3.7
Trigger 2.9 3.1
Lepton identification 1.0 1.1
Heavy-flavor fractions — 2.6
Cross sections 6.0 6.3
Luminosity 6.1 5.9
Multijet normalization - 0.9
Total 10.0 12.9
single tag
Jet EC — Jet ER 2.6 4.7
Jet R&T 3.0 2.5
b tagging 1.9 5.2
Trigger 2.9 3.0
Lepton identification 1.0 1.2
Heavy-flavor fractions - 8.1
Cross sections 6.0 7.1
Luminosity 6.1 5.7
Multijet normalization - 1.8
Total 10.1 14.8
double tag
Jet EC — Jet ER 2.8 3.6
Jet R&T 3.2 2.2
b tagging 7.3 8.0
Trigger 3.0 3.3
Lepton identification 1.1 1.6
Heavy-flavor fractions — 9.8
Cross sections 6.0 8.0
Luminosity 6.1 6.1
Multijet normalization - 0.4
Total 12.4 17.1
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FIG. 3: Distributions in the analysis sample before the multijet veto: (a) Dijet invariant mass, (b) Taggable jet multiplicity,
(c) Missing Er, (d) Missing Er significance without the requirement that it be larger than 5. The signal includes ZH and
W H production for mpy = 115 GeV.
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