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INTRODUCTION 

 

Compton based photon sources generate a lot of interest since the rapid advancement in laser 

and accelerator technologies allows envisaging their utilisation for ultra-compact radiation 

sources.  These should provide X-rays short pulses with a relatively high average flux. 

Moreover, the univocal dependence between the emitted photon energy and its scattering 

angle gives the possibility to obtain a quasi-monochromatic beam by a simple diaphragm 

system. For the most ambitious projects, such as the one presented here, the envisaged 

performances take into account a rate of 10
12

-10
13

 photons/s, an angular divergence of few 

mrad, an X ray energy cut-off of few tens of keV and a bandwidth E/E ~ 1-10%. Even if the 

integrated rate cannot compete with the synchrotron radiation sources, the cost and the 

compactness of these Compton based machines make them attractive for a wide spectrum of 

applications. For example the ThomX machine design footprint fits in a 70m
2
 surface (see 

fig.1). 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1: Footprint of the ThomX machine. 

 

Compton compact sources are extremely interesting as far as the chemistry component 

analysis field is concerned. One of the most promising applications is the cultural heritage 

preservation and associated domains. Tuneable and highly monochromatic hard X-rays can be 

obtained in Compton machines with the use of diaphragms (1-10% bandwidth) or 

monochromators (0.1% bandwidth). Diffraction techniques, laminography and painting 

components chemical analysis should take advantages of such radiation sources. A great 

advantage should be acquired by exploiting the complementarity between the analysis worked 

out by employing ion sources like elastic scattering (RBS, ERDA), the use of nuclear 

reactions for the detection of light elements, and the hard X-Ray techniques. Heavy elements 

analysis, absorption spectrometry, X-ray diffraction and diffusion, tomography and phase 

contrast imaging will allow an important widening of the application range in the 

masterpieces analysis domain. To detect the interesting elements associated to the cultural 

heritage preservation (Mn, Co, Fe, Cu, Zn, Zr, Ag, Cd, Sb, Sn, Ba, Hg, Pb), by XANES or 

10m 

7m 
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analysis at the absorption edge, different photon energies are necessary. They correspond to 

the K edge of the overmentioned metals and to the Pb and Au LIII threshold. This means that a 

photon energy ranging from 6.5 to 89 keV is necessary. The following table illustrates the 

required radiation performances for different analysis techniques: 
  
  

XRF 

 

XRD 

 

XANES 

 

Tomography 

Edge 

enhancement 

Phase 

contrast 

 

Magnification 

 

Energy range 

[keV] 

 

6.5-89  

 

10-89  

 

6.5-89  

 

20-100  

 

7-100  

 

10-30  

 

10-100  

 

E/E  

 
1-3% 

 
3 – 10 % 

 
5 – 10 % 

 
3% bw 

 
3 – 10 % 

 
3% bw 

 
3% bw 

 

Source size 

    

10-100 µm 

 

10-100 µm 

 

Very small 

 

Very small 

 
Size on the 

object 

 
10-20 µm 

 
10-20 µm 

 
10-20 µm 

 
10-50 cm 

 
50 cm 

 
50 cm 

 
1-50 mm 

 

Flux on the 

object [ph/s] 

 

109-1010  

 

109 ph/s 

 

107 ph/s 

 

1011 

 

109 

 

1011 

 

1011 

 

Acquisition time 

 

1s - 5 min 

 

1s - 5 min 

 

30 min 

    

 

Coherence 

    

No 

 

No 

 

Yes 

 

Yes 

Table 1: Requirements table for the analysis techniques used in heritage studies 

 

So, by combining ion and photon measurement techniques on the same object, it is possible to 

assume that a complete material analysis will be worked out.  These techniques provide 

precious information for the dating of the work of art, the employed techniques and the 

attribution [1]. Carbon detection can show the primitive sketch of the original drawing thus 

revealing the modifications during its realisation. Non destructive analysis of paintings 

permits also to reveal underlying drawings. An important synergy can be developed in 

integrated laboratories where physicists, chemists, art critics and historians collaborate in the 

same framework. Here the compactness of the Compton machine plays a fundamental role. 

The possibility to place such a source in an integrated laboratory gives to the expert direct 

access to the masterpieces in the Museum [2]. On the other side, an external facility, will 

involve extremely important insurance, security and transportation costs.  

 

As far as the medical science applications are concerned an important benefit is, first of all 

given in the imaging field, by the development of the phase contrast method. Other 

applications are possible, for example, in static and dynamic imaging [3,4], 3D 

compressionless mammography [3,5], broncography, catheterless coronary arteries 

angiography [6] and in the K-edge radiography and therapy.  

An important feature of Compton sources is the tunability at specific wavelength obtainable 

by varying the energy of the electron beam (quadratic dependence) or the wavelength of the 

impinging laser (linear dependence). This is attractive since a resonant reaction can be 

triggered by the interaction between the X rays with a determined energy, and an electronic 

shell of a contrast agent (like K-shell extraction with a subsequent energy release by Auger 

cascade).  Contrast agents (like Gadolinium or Platinum) based cancer imaging and therapy 

[3] could represent the real breakthrough of the Compton machines in the medical field. The 

importance of the monochromaticity in biological tissue K-edge interactions is described in 

[3], where the imaging and therapy applications are illustrated. 

 

Other interesting domains can be identified in the fields that usually operate synchrotron 

radiation sources but that do not need a very high average flux. A spin-off of the SLAC 

laboratory has created a commercial Compton source for X-ray diffraction protein 



  Page 10 sur 136 

crystallography [7] where performances close to the synchrotron light sources ones are 

attained. This is the first example of a working mini-synchrotron based on the Compton effect.  

 

Moreover, due to the quadratic dependence of the Compton energy cut-off on the electron 

beam energy, it is easy to imagine harder photon production. This allows one to envisage 

different applications in the nuclear waste management and treatment industry [8] and in the 

field of nuclear isotope detection applied to infrastructures security. In this framework the 

atomic number identification by means of hard-X or gamma rays allows for nuclear 

application of the Compton scattering [9]. The high penetration power of these photons is 

extremely attractive when applied to security and to the radiography of shielded material. 

Also in this case resonant detection can be applied; one may take advantage from the relative 

monochromaticity degree of the photons pulses.  

 

As one may expect, the required X-ray beam characteristics are different for different 

applications. Interesting rates range between 10
6
 to 10

13
 photons/s. The Compton energy cut-

off must vary from few keV for medical applications to the MeV range for nuclear 

applications. In this context one should point out that the Compton spectrum is continuous 

and quasi-constant (there is only a factor ~ 2 between its maximum and minimum) up to the 

energy cut-off (See fig. 2, Chapter 2). Therefore all the techniques requiring tunability can 

make use of monochromators at different wavelengths if X-ray optics is available in the 

explored range. Pulse length requirements can be very demanding in fast biochemistry studies 

(hundreds of fs range). Nevertheless other applications need to be exploited starting from the 

picosecond range. A general common requirement is the compactness: the main appeal of the 

Compton sources is to provide a high quality x ray beam from a source that can be easily 

hosted in a University laboratory, a Hospital, a Museum. The price is consequently strongly 

reduced with respect to the synchrotron sources.  

 

Taking into account all these considerations several French laboratories [10] started to 

evaluate the feasibility of a compact Compton source: the project ThomX. This was the 

natural outcome of the different important technological results on Fabry-Perot optical 

resonators and fibre lasers obtained in these laboratories, and by their strong experience in 

design and building electron accelerators and storage rings. This allowed, as a first evaluation, 

to consider a prototype machine with performances at the top of the existing ones. In fact, an 

already financed ANR program aims to demonstrate the coupling of a high average power 

fibre laser with a very high finesse optical cavity. This will permit storing an incredible 

photon pulses average energy, in the order of 100kW-1MW. This system will be installed in 

the ATF ring (KEK – Tsukuba – Japan) as a demonstration of gamma factory for polarised 

positron production.  The same system integrated in a low energy storage ring allows one to 

consider a very ambitious program, as far as the X Compton sources are concerned.  

 

The ThomX French consortium is formed by different leading laboratories in the Compton 

associated technology. At present, accelerators systems, lasers and optical resonators are 

being developed by these teams reaching exceptional performances. This scenario ensures 

that the ThomX project should be implemented reaching the top of the actual performances in 

this domain. 

 

Due to the wide spectrum of applications and requirements form different scientific 

communities, the ThomX project starts with a pre-defined performances range table 

permitting to summarize the needs in high average flux, photon energy (tens of keV), 

bandwidth, divergence etc etc. Moreover this prototype will allow acquiring an important 
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experience in operating such a machine and in understanding the subtleties of the beam 

dynamics under Compton collision regime. Only when the specific user community 

requirements will be definitively defined, it will be possible to finalise the operation mode and 

to fine tune this complex device required performances. Table 2 summarizes the design main 

parameters range of the ThomX project. 

 

 

 

Source explored range 
 

 

X energy 50-90 keV 

Flux  1011 – 1013 ph/s 

Bandwidth 10 % 

Divergence  < 2 mrad 

 

Accelerator and laser 
 

 

Ring and injector energies 50 MeV  

Charge  1 nC 

Emittance (normalised rms,) < 5  mm mrad 

*  10 cm =>IP ~ 70m 

Intracavity average power > 100 kW 

Compton frep 50-200 MHz 

  
Table 2  ThomX parameters ranges 

 

It is important to stress that Compton sources are complementary to the third and fourth 

generation radiation facilities since they cannot compete in integrated emitted rates and in 

brightness. The performances of the most ambitious backscattering sources can be placed near 

the first generation synchrotron sources but with more attractive characteristics (flux, 

directivity, monochromaticity, tunability) than other X-ray sources like, for example, X-tubes. 

Classical bremsstrahlung X-ray tubes can deliver typical spectral rays with a large emission 

spectrum and different intensities (rotating anode or microfocus tubes with adaptive optics). 

At present the rotating anode X-ray tubes associated to a system for X Rays optics, are the 

most efficient sources if a laboratory integration is taken into account. The Rigaku FR-E 

model with the Vari-max HF optics (Osmic distr.) and a 2.475 kW tube, provide 7.10
9
 ph/s 

maximum flux on a 200 µm diameter surface. Nevertheless these sources do not allow 

developing more ambitious techniques as far as diffraction, diffusion, absorption, imaging and 

spectroscopy are concerned.  For this reasons these techniques are commonly used only at the 

synchrotron radiation facilities.  

 

In fig.2 the general X-ray sources framework is illustrated by plotting the average brightness 

and average emitted flux of different facilities and devices. One notices that the proposed 

ThomX Compton sources, ranging in 10
10

 - 10
11

 brightness, can be compared with the old 

generation synchrotron sources, with the great advantages that the emitted photons energy 

cut-off allows one to provide for much harder X-ray beams. 
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Figure 2 :  The performances of different generation synchrotron radiation sources are displayed. The Compton 

source is also visible in the figure to highlight the high energy cut-off. The considered photon emission is 

provided by an electron beam of 50 MeV, respectively a factor ten, sixteen and fifty-five less than the first, 

second and third generation facilities. Increasing the energy of the Compton source will reduce the beam 

emittance at the injection. The result is an increase of the brightness as the square root of the Lorentz gamma 

factor. 

 

- The ThomX working scheme 

 

To better introduce the ThomX project a first basic illustration of its working principle is 

presented.  Actually, Compton sources devices are based on collisions between light pulses 

and electron beams. Nevertheless, diverse schemes are possible depending on the required 

performances. In fact, subject to the applications, average or peak brilliance, 

monochromaticity or peak energy cut off, beam source size or emission cone are preferred. In 

this framework different electron and laser systems can be chosen. Electron bunches should 

be provided by normal or super conductive linacs, recirculated in Energy Recovery Linacs 

(ERL) or accumulated in storage rings. On the other hand, light pulses can be delivered by 

laser systems after either active or passive amplification in optical cavities. 

The ThomX machine is conceived to provide the maximum average flux in a fixed bandwidth. 

Consequently, the basic scheme takes into account a very important collision repetition 

frequency and therefore the possibility to have Compton interaction in a storage ring:  

Electron bunches are injected and stored in the ring and discarded in a beam dump after 20 ms. 

To increase the pulse power of the light pulse the high average power laser is injected into a 

passive optical resonator (Fabry Perot cavity). Here the laser pulse is stacked on the pulse 

circulating in the cavity up to its limit given by the cavity finesse. The two systems are 

synchronised in a way that every turn the electron beam interacts with a laser pulse.  

So, to better summarise the ThomX operation, the different working steps of the two systems 

are separately listed: 
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- Accelerator. 

1) Electron bunches (~1nC) are produced in a RF gun at 50 Hz 

2) A post-acceleration linac brings the electron energy to 50 MeV 

3) The bunch is injected into the storage ring whose revolution frequency is 20.7 MHz 

3) For 20 ms the bunch undergoes Compton collision in the storage ring 

4) After 20 ms the bunch is discarded on a beam dump, and a new ―fresh‖ bunch is injected 

 

-Laser 

1) Laser pulses are produced at 41.4 MHz 

2) They are continuously injected into a four-mirror optical resonator 

3) If the system is locked, the injected pulses are stacked in phase with the pulse circulating in 

the cavity 

4) Energy amplification takes place up to the limit imposed by the mirrors losses 

5) In stable regime the amplified pulse circulates in the cavity at 41.4 MHz 

 

In a stable working condition, every turn the electron bunch impinges on the light pulse stored 

in the cavity with an angle of two degrees. The collision angle is imposed to allow the 

produced x ray beams to be extracted without damaging the high finesse cavity mirrors. Since 

the Fabry-Perot cavity operating frequency is a harmonic 2 of the storage ring, the operation 

with two stored bunches is suitable. 

 

A sketch of the different ThomX components is shown in fig.3. 

 

Laser beam Linac +RF gun

Electron beam pipe

Electron Storage ring

Collision point

Electron beam dump
Four mirrors Fabry 
Perot cavity

X rays

Laser beam Linac +RF gun

Electron beam pipe

Electron Storage ring

Collision point

Electron beam dump
Four mirrors Fabry 
Perot cavity

X rays

Laser beam Linac +RF gun

Electron beam pipe

Electron Storage ring

Collision point

Electron beam dump
Four mirrors Fabry 
Perot cavity

Laser beam Linac +RF gun

Electron beam pipe

Electron Storage ring

Collision point

Electron beam dump
Four mirrors Fabry 
Perot cavity

X rays

 
 
Figure 3 : ThomX different components. The electron beam is produced in the RF gun, accelerated in the linac 

and injected into the ring. Laser pulses are stored in the four-mirror optical resonator that is integrated in the 

collision region.  

 

- X rays sources, Compton and alternative schemes. The ThomX positioning 

 

As previously said Compton machines and other alternative compact x rays sources are 

becoming extremely attractive due to the technology advance allowing the increasing in the 



  Page 14 sur 136 

sources brilliance. To have a better estimation of the ThomX performances in respect to the 

other projects, an overview of the principal other Compton backscattering based sources is 

provided followed by a short description of the other possible compact devices based on 

bremsstralhung or on alternative radiation mechanisms.  

 

- Compton 

 

As far as the Compton sources are concerned, currently the most ambitious projects aim to 

produce 10
12

-10
13 

ph/sec. The spectrum energy cut ranges in the few tens of KeV with a 

bandwidth of the order of 1-10%. In Table 3 an overview of the Compton compact sources 

projects and their main characteristics is illustrated. 

 

 Type Energy 

[KeV] 

Flux ( @ 10% 

bandwidth) 

Source 

size 

(m) 

*PLEIADES (LLNL) [11,12] Linac 10-100 10
7 

(10 Hz) 18 

*Vanderbilt [13,14] Linac 15-50 10
8 

(few Hz) 30 

*SLAC [15] Linac 20-85   

*Waseda University [16,17] Linac 0.25-0.5 2.5 10
4 

(5 Hz)  

*AIST, Japan [18] Linac 10-40 10
6
 30 

*Tsinguha University [19] Linac 4.6 1.7 10
4
  

*LUCX (KEK) [20] Linac 33 5 10
4 

(12.5 Hz) 80 

+ UTNL, Japan [21,22] Linac 10-40 10
9
  

MIT project [23] Linac 3-30 3 10
12 

(100 MHz) 2 

MXI systems [24] Linac 8-100 10
9 

(10Hz)  

SPARC –PLASMONX [25] Linac 20-380 2 10
8
 -2 10

10
 0.5-13 

Quantum Beam (KEK) [26,27] Linac  10
13

 3 

*TERAS (AIST) [28] Storage ring 1-40 5 10
4
 2 

*Lyncean Tech [29,30,31] Storage ring 7-35 ~ 10
12 

  30 

Kharkov (SNC KIPT) [32] Storage ring 10-500 2.6 10
13 

(25 MHz) 35 

TTX (THU China) [33,34] Storage ring 20-80 2 10
12

 35 

ThomX France [35] Storage ring 50 10
13 

(25 MHz) 70 
Table 3: Compact Compton X ray sources. Symbols  * and + refers respectively to machines in operation and to 

machines in construction. 

 

At present the experiments in operation [11,13,15,16,18,19,20,29] have already demonstrated 

the feasibility of X-rays production by inverse Compton scattering, but the delivered flux is 

not sufficient to exploit it for different applications where a higher brightness is required. 

The ThomX scheme, based on the multiple electron bunches-laser pulses collisions, is the one 

adopted for the already working Lyncean Tech machine [29,30,31] and for all the future 

sources which aim to produce an high average flux [23,32,33,34,35]. 

Although the MIT project [23] is not based on a storage ring it is able to foresee a very 

important average flux and brightness thanks to the use of a very low normalised emittance (< 

1  mm mrad) superconductive linac at 100 MHz. Also the already funded Japanese project 

―Quantum Beam‖ foresees a multi-bunch electron linac impinging on a pulsed amplified laser 

stacking device [26,27], producing an high quality and flux X ray beam. 

It is important to stress that, the only machine in operation providing a flux comparable to the 

first generation synchrotron machines is the Lyncean Tech one. This project started in 2002 

under the direction of R.Ruth. Today the machine provides a tuneable X ray beam of 
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10
12

ph/sec in 2% bandwidth [36] and the first phase contrast imaging has been recently 

obtained [37] 

 

- Other sources 

 

The X-ray technologies are driven by the imaging market with a trend towards high spectral 

brightness sources. A wide variety of technologies permit to produce X-rays but the potential 

alternative to Compton devices for quasi-monochromatic high flux are mainly represented by 

bremstralhung based sources. Therefore a lot of effort is performed to circumvent the inherent 

drawbacks of bremstrahlung sources, namely 

 The limited flux due to thermal constraints 

 The finite size of the anode, 

 The angular and spectral of the X-ray beam 

This has conducted to development of microfocus rotating anode with specific conditioning of 

the extracted beam. Rigaku [38], as an example, proposed an X-ray generator with 1.6 10
11

 

photons/mm²/s (full spectrum) and possible dual wavelengths selection for phasing 

(chromium and copper K line selection at respectively 5.4 keV and 8 keV energies) also if 

the energy selection of the K line is not very efficient  

The inherent thermal limitations of the interaction of the electron beam with matter have lead 

to two innovative designs, both connected to targets operating at higher temperature: 

 A metal-Jet-Anode Microfocus X-ray source with a potential 100 factor increase in 

brightness [39]. This technique remains at a research stage. It uses tin metal for the 

liquid anode, with a K line of 25.3 keV, below our requirements and with the same 

losses for the energy selection as mentioned above 

 A tungsten plasma X-ray generator [40] that provides a high instantaneous quasi-

monochromatic flux at 59 keV (10
9
 photons/cm² at 1 m from the source). This system 

is operating at present in single shot and evolution to repetitive operation remains 

problematic because of the plasma spread inside the tube during the shot.      

  

MIRRORCLE [41] 

Mirrorcle is based on the interaction of a high energy electron beam (up to 20 MeV), 

previously stored in a ring with a wire. The spectrum is therefore widespread. 

The projected claimed brilliance is impressive (up to 10
14

 photons/s/mm²/mrad/0.1% BW for 

the 20 MeV system) but to date, the achieved level is lower (10
11 

photons/s/mm²/mrad²/0.1% 

BW -   according to [42]. If monochromatic X-rays are requested, a monochromator can be 

used with the associated losses. We can assume that, at higher power, the inherent thermal 

limitation of the interaction between the beam and the wire target will appears  

 

Alternative radiation mechanisms 

Alternate exotic technologies, with their limitations to achieve high monochromatic flux, have 

been analyzed in [43]:  

 Channeling radiation,  

 Coherent bremstrahlung,  

 Microundulator radiation,  

 Parametric-X-Radiation (PXR),  

 Smith Purcell Radiation,  

 Transition Radiation. 
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Among them, PXR can, achieve both monochromaticity and tunability, but the expected flux 

remains low, typically 6 10
5
 photons/s within a 10

-4
 sr with a 6 MeV-100µA electron beam 

[44] 

 

The following Conceptual Design Report is divided in seven chapters. The first chapter 

concerns the project scientific case. Among the different possible applications the cultural 

heritage and the medical applications are highlighted. In the second chapter an extensive 

introduction to the Compton backscattering physics is given. The first part covers the basic 

concepts taking into account the collision of an electron with a photon, whereas in the second 

part the parameterization of the collision between an electron bunch and a laser pulse is 

provided in the framework of the proposed source. The third chapter describes all the optical 

set-up sub-systems. It illustrate the laser and the optical cavity design and integration. Then, 

in the fourth chapter, the design of the electron injector and transfer line and the estimation of 

the emittance of the injected electron bunch are given. Successively the full description of the 

storage ring optics, beam dynamics, instabilities and collective effects is provided together 

with the general description of the hardware components like the magnets, the RF system, the 

injection septum and kicker, the diagnostics and the vacuum system. In the fifth chapter a 

short description of the radioprotection requirements, associated to the machine integration, 

are taken into account. Other intense X-ray source configurations are considered in the sixth 

chapter, where the electron drive beam is provided either by a Linac or an ERL. In the last 

chapter a first approximate costs evaluation of the various set-up items is given allowing an 

estimation of the required budget.   
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CHAPTER 1:  Scientific Case 

 

1.1] Cultural Heritage Applications 

 

1.1.1] Introduction 

 

Nowadays the cultural heritage plays a crucial role, as far as the quality of the surrounding 

environment and the attractiveness of France are concerned, and has significant economic 

effects in many fields. The public at large takes great interest in it, as testified by the high 

number of visitors flocking to the many French monuments and museums. Consequently, 

knowing one‘s cultural heritage and preserving it in order to hand it over to future generations, 

is an increasingly important and shared concern in every country, especially those belonging 

to the European Union. At present in France all levels of society - government, regions, 

municipalities and companies - are involved in this effort. 

 

Therefore the need was felt to carry out fundamental and applied research in order to best 

preserve this heritage and allow the public to access as many works of art as possible and 

learn about their history. This situation was described in the parliamentary report assessing 

the scientific and technological decisions on restoration techniques of works of art and the 

conservation of the national heritage [1]. On the one hand, in order to make progress in 

unveiling the history of works of art and in archeology it is necessary to identify the materials 

used; on the other hand, when conserving and restoring artifacts the effects of the aging of the 

materials cannot be neglected. To this end, the methods commonly used in materials science 

can prove extremely useful, especially those enabling researchers to perform a non-

destructive analysis directly on the works of art or on tiny samples. 

 

Research work on materials characterization is a big challenge from an analytical point of 

view, since there are many materials, they are often available in very small quantities, they 

have been processed or synthesized and then used by man, they have deteriorated in the 

natural environment or in the buildings in which they have been kept (museums, libraries, 

historical monuments, etc.). This is the case for paintings and graphical documents made up 

of various layers including mineral and organic ones (pigments, colorings, inks, binders, etc.): 

the chemical interaction between the different elements results in specific change or 

deterioration over a very long time. It is therefore necessary to develop and implement a 

number of innovative techniques to analyze works of arts. 

 

A wide variety of instruments is commonly used. Most of them are classical laboratory 

techniques, whose set enables to probe samples at different levels (atomic, molecular, 

structural), at different scales (from millimeters to nanometers), and with different 

sensitivities (major to trace elements). Although lab instruments become more and more 

powerful and remain the prime equipment for the study of Cultural Heritage objects, two 

recent evolutions can be underlined. On the one hand, the necessity of reaching sites 

(excavation sites, museums, monuments…) fostered the development of portable instruments 

enabling in-situ analyses. On the other, specific studies require higher level of performance 

and are only possible on large-scale facilities (ion beam ―microprobe‖ accelerator such as 

AGLAE in the Louvre, synchrotron radiation, neutron sources) which provide brighter and 

smaller spots. 
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For this reason the setting-up of a ―micro-probe‖particle accelerator on the Louvre premises 

in late 1988 was a major step in the development of this research work. It made possible to 

investigate the composition of the museum‘s works of art directly, with a 20-30 µm spatial 

resolution which was ideal to study very complex and heterogeneous materials [2]. Today 

AGLAE is a unique and powerful analytical tool for the characterization of the materials of 

the museums‘ works of art and available to foreign researchers in the framework of a EU-

financed program. 

 

The AGLAE2 project aims at developing a new tool for the direct analysis and imaging of 

works of arts and archaeological items thanks to the co-localization of the present ion 

accelerator and a very intense X-ray source in a laboratory specialized in ―non-invasive‖ 

analysis of works of art to be set up in the Louvre security area.  

These two sources will make it possible to develop additional analysis and imaging methods 

which would pave the way for the development of a new tridimensional analytical method of 

the museums‘ works of art to be combined with materials science methods. This could mark a 

radical change in what we know about works of art thanks to much more accurate scientific 

imaging. This device would be very useful for museums as it would be strategically 

positioned inside the Louvre. There would therefore be no cost constraints and no danger 

resulting from the need to move the museum‘s most precious works of art, namely Louvre‘s 

paintings, drawings and art objects. 

 

1.1.2] Expected scientific impact  

 

1.1.2.1] Analytical methods 

 

Nowadays, the main research activities carried out in the laboratories working in the Cultural 

Heritage field focus on the identification of materials from a chemical and structural point of 

view (mineral, organic, hybrid, condense matter), the study of processes used for the 

elaboration of the works of art (origin of the materials, recipes of chemical synthesis, 

metallurgy, mechanical treatments and thermal annealing) and the study of alteration and 

ageing behavior, including the issues concerning the preventive conservation and the 

restoration. The ancient materials may be of natural origin, such as the gemstones, or stem 

from an artificial preparation at high temperature (glasses, ceramics and metals), or by wet 

chemistry, for the synthesis of pigments or pharmaceuticals for instance. Other materials have 

plant or animal origins, such as residues found in vases, sculptures made of wax, and human 

remains. Sometimes, it is the understanding of a diffusion mechanism, the observation of a 

patina on metals or the nature of nanocrystallized inclusions which are the purpose of the 

researches. 

 

These activities require developing specific and appropriate physico-chemical analytical 

methods for the study of the cultural heritage masterpieces. The following table illustrates the 

techniques as far as painting is concerned [3]. It is possible to highlight the importance of 

applying a combination of different techniques to detect the underlying nature of the materials 

employed by the artists. Another important aspect of differentiation is that whereas in certain 

techniques a sample must be taken, the others allow for an in-situ analysis of the objects of art.  
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 Technique Probe Probe 

Size 
Sensibility 

Invasive? Portable? 

 Atomic Molecular Structural 

FTIR  +++ + + + No Yes 

Raman  +++ + +++ + depends Yes 

SEM-EDS +++  + +++ + Yes No 

EPMA +++   +++ ++ Yes No 

PIXE-XRF +++   ++ +++ depends No 

XRF +++   + + No Yes 

XRD   +++ + + No Yes 

SIMS +++ +++  +++ + ~No No 

SR-µ-FTIR  +++ + +++ + No No 

SR-µ-XRD   +++ +++ +++ No No 

SR-µ-XRF +++   +++ +++ No No 

µ-XANES  +++ ++ +++ +++ No No 

Table 1: summary of classical and emerging techniques used for chemical analysis of ancient paintings. 

The integration of a high flux monochromatic X-ray source, complementary to AGLAE, will 

provide a unique opportunity to have at one‘s disposal methods for non invasive elementary 

and structural analysis. A 20µm resolution, similar to that currently attained in AGLAE, is 

particularly well suited to the non-invasive study of ancient materials that often represent 

complex and heterogeneous samples.  

Such an instrument should solve many problems in the context of different scientific cases. 

The ion beams are unique for the detection of light elements and the measurement of 

concentration gradients by nuclear reactions and also by elastic scattering (RBS and ERDA). 

Hard X-rays offer the opportunity to analyze heavy elements with high accuracy, to explore 

their environment by absorption spectrometry and to better understand the material 

organization by X-ray diffraction or small angle X-ray scattering (SAXS). By combining 

these two measurement categories on the same object, it is possible to assume that a ―total 

analysis of the material‖ will be worked out. This will remove any ambiguity in the 

interpretation of their nature in all the possible cases, independently from the metal, 

crystalline or amorphous nature of the sample. 

1.1.2.2] X-ray imaging based on different physical properties 

 

The use of radiography for the study of museum masterpieces has developed very rapidly 

after the discovery of X-rays by Röntgen in 1895. Today, C2RMF has 5 conventional 

radiography devices on the Louvre site. In the case of paintings, radiography provides 

information on the artist‘s techniques, the primitive draft variations, the paint overlays, and 

the conservation of the work. It reveals, for example, cracks in the paint layer. But the 

interpretation of the work of arts is much more than a mere conservation status analysis; it 

falls into the depths of the personality of the artist and sometimes shows the path of an artist 

toward its work creation. Radiography is very important to characterize objects, in particular 

in view of their restoration and to better understand the internal structure, i.e. the 

inhomogeneities (earth, plaster, bronze, inclusions, and bubbles), the formatting procedures 

(hammering, casting, lost wax or reversed ...), the assemblies, the alterations and the 

restorations. 

  

An X-ray monochromatic intense source offers the opportunity to develop some techniques 

for three-dimensional imaging analysis of works of art aiming to a ―perfection level in direct 

imaging techniques‖: combining other imaging techniques in the visible, UV and near IR 
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ranges, it will allow providing a new scientific imaging report on each studied artefact, from 

the surface to the heart of the matter, with a spatial resolution of recording up to the 

micrometer scale. These scientific records will complement the documentation about its 

provenance and its historical and cultural environment. 

 

The possibility of using a point source, monochromatic and coherent X ray beam makes it 

possible to consider different approaches: 

 

(1) Absorption Tomography  

This technique, commonly used in medicine, shows a fast development in the recent years. 

However, to provide the access to high quality of reconstruction and to quantitative data, an 

excellent signal to noise ratio is essential. It allows rapid data acquisition at very high spatial 

resolutions, resulting in precise mapping of the internal structures of the artefact. The use of 

an intense monochromatic beam is also preferable to conventional X-ray tubes because it 

avoids beam hardening effects that are frequently strong.  

This technique is hardly used when dealing with objects almost flat, such as paintings: in this 

case the X-ray laminography technique should be used. 

 

(2) Distribution of specific chemical elements analysis: 

The edge-enhancement imaging technique is based on the same principle as the angiography 

of blood vessels in medicine. It is considered that each chemical element, with enough 

quantity in the work of art, may serve as a contrast agent when imaging with different X-ray 

energies. In medicine, ions are usually injected the vascular system. On the other side, as far 

as the paintings are concerned, lead, tin and mercury are characteristic of the different 

employed pigments. Therefore these images will map the spatial distribution of the chemical 

element. In practice, two images on each side of the K (or L) atomic absorption edge are 

measured. This technique and the resulting quantitative measurements can provide new 

information on the artists painting methodology: the substructure of a painting provides 

insight into the genesis of the object. Underlying layers may include the underdrawing, 

underpainting and modifications to the original sketch. In a growing number of cases 

conservators have discovered abandoned compositions on paintings, illustrating the artists‘ 

practice to re-use a canvas or panel and paint new compositions on top of existing ones. A 

painting from Vincent Van Gogh has been recently revealed by synchrotron-based XRF 

mapping [4]. 

 

(3) the phase contrast:  

An inverse Compton scattering source should allow developing techniques of phase contrast 

imaging. These present the important advantage of the contrast enhancement in the case of 

low density materials. This is possible since the acquired image records the phase variations 

of the electromagnetic wave that occur when a variation of the refractive index occurs. The 

interest of this technique has been demonstrated on fossils in paleontology and on amber 

samples [5]. 

 

(4) magnification:  

When the X-ray source sizes are very small and the emitted radiation sufficiently divergent 

(conical beam), it is possible to obtain a geometric magnification factor of the image by 

moving the detector away from the object. Thus, the projection of the object image is 

magnified, allowing a better accuracy in detecting details.  
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Other approaches could also be useful (Diffraction enhanced imaging, holo-tomography, X-

ray grating interferometry, etc.).  

 

We see therefore that the installation of a new X-rays source, simultaneously coupled with 

visible imagery, will provide useful data for the study of the paintings and the archaeological 

objects. Obtaining images of the surface and the core of the work of art, with spatial 

resolutions of the order of micrometers, is expected to provide to the researchers the access to 

digital reconstructions, with a much easier access than the original works. This will avoid to 

endanger the conservation of museum pieces particularly fragile: human rests and bones, 

wood or ivory masterpieces of the prehistoric era from the Musée de l'Homme, the National 

Museum of Prehistory and the National Archaeological Museum, the objects of ancient or 

medieval art from the Louvre Museum and the National Museum of the Middle Ages, etc. 

 

1.2] BioMedical Applications 

 

Biomedical applications of synchrotron radiation have been developed at Hasylab (Germany), 

Photon Factory (Japan), ELETTRA (Italia) and at the ESRF (France). Despite the fact that 

there are only a few dedicated beamlines in the world (two new ones are under construction at 

the Australian and Canadian synchrotrons), medical research is carried out in almost all 

synchrotron facilities through preclinical and clinical research protocol. 

    

1.2.1] Radiotherapy programs 

 

Gliomas are among the most frequent primary brain tumors in adults, with an incidence of 

approximately (5–11)/10
5
 in industrial countries [6]. This pathology constitutes a major health 

problem. The treatment of high-grade gliomas is palliative rather than curative, despite a 

combination of surgery, chemotherapy and radiotherapy. Gliomas are extremely 

radioresistant, while surrounding normal tissues remain radiosensitive, especially in infants. 

The fundamental goal of radiation therapy is to deliver a high therapeutic dose of ionizing 

radiation to the tumor without exceeding normal tissue tolerance. This limitation is 

particularly severe in the case of brain tumors because of the high risk of adverse normal 

tissue morbidity. The needs, in particular for radioresistant tumours, are particularly high and 

may require very large facilities. For example, hadrontherapy [7] uses the enhanced energy 

deposition in the Bragg peak to achieve good conformity of the dose to the target, while 

sparing the healthy tissues. The main drawback of such large systems is the cost (in the range 

of 100 M€) and the accessibility. 

 

At the ESRF, two radiotherapy techniques were developed, namely  

- the Microbeam Radiation Therapy (MRT) and  

- the Stereotactic Synchrotron Radiation Therapy (SSRT)  

and clinical trials are foreseen to start in few years.  

 

The Stereotactic Synchrotron Radiation Therapy (SSRT) consists in irradiating a tumour 

loaded with a contrast agent with quasi-monochromatic X-rays tuned at the energy above the 

K line of the contrast agent. The requested bandwidth is not a tight constraint and is naturally 

achieved with Inverse Compton Scattering without the need of a monochromator. The 

increase in the absorbing properties of the tumour relative to the surrounding tissue results in 

an internal dose enhancement based on the photoelectric effect as shown in fig.1. The 

photoelectric interactions generate photoelectrons, X-ray fluorescence and Auger electrons 

with the consequent cascade, which in turn increase the local radiation dose. In the energy 
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range of medical imaging (15–120 keV), the photoelectric effect plays a dominant role. As it 

displays a Z
3
-dependency, where Z is the atomic number, heavy elements absorb X-rays more 

strongly than the biological tissue light elements. This technique can be slightly optimized by 

loading the tumour with cis-platinum (cis-diamminedichloroplatinum or CDDP).The X-ray 

beam will induce a dose enhancement due to the high Z value of Pt in parallel with direct 

DNA damage as the chemotherapeutic effect of CisPt  [8,9] 

 

 
 
Figure 1: Dose enhancement versus X-ray energy for various contrast agents  

 

 In SSRT, the best survival curves were obtained by Biston et al. [8]. The brain tumor bearing 

rats were first inoculated with cisplatinum and then irradiated with X-rays of 78.8 keV. 

Median Survival Time (MeST) of untreated rats was 26 days. When cisplatin or SR alone was 

applied, the MeST was found to be 37 and 48 days, respectively, while when both treatments 

were combined, a very large increase in life span was obtained (MeST 206.5 days) 

compared to the controls. One year after treatment, 6 out of the 18 rats treated cisplatinum and 

radiation were still alive and cured. This is the largest life span increase obtained to date with 

this particular glioma model. 

 

The Microbeam Radiation Therapy (MRT) [10] is an alternate approach for treating tumours 

and neurological disorders. It uses arrays of parallel, thin microplanar beams with two 

noticeable effects (fig. 2): 

- single exposure MRT largely spare normal tissues including normal eyes, brain, spinal 

cord, and skin in spite of  using an in-beam dose up to 20 times larger than those 

tolerated in broad beam radiotherapies, 

- single exposure unidirectional MRT ablates intracerebral gliosarcomas in rats at an in-

beam dose tolerated by contiguous normal tissues. 

 

Experiments performed at the ESRF and BNL on the brains of adult rats, suckling rats, duck 

embryos and piglets have confirmed the sparing effect on normal tissues when using 

microbeams. In parallel, it was shown that MRT protocols can ablate highly aggressive 
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tumors like 9L brain gliomas, EMT-6 carcinoma and SCCVII carcinoma in animal models. 

Smilowitz et al. (2006) obtained 44% of longterm survivors (>300 days) in brain tumor 

bearing rats by combining MRT (entrance dose 625Gy, 50 microbeams, 25m wide and 200 

m spaced) and gene mediated immunoprophylaxis. Furthermore, rats irradiated with MRT 

alone exhibited 20% long-term survivors [11]. 

This technique requests high flux density and high brightness beams that can only be provided 

by 3
rd

 generation synchrotron to deliver very high doses (several hundreds of Gy) in an array 

of spatially fractionated quasi-parallel microbeams (25-75µm wide and spaced 100-400µm 

on-center). The 3
rd

 generation sources are characterized by an adequate dose rate and energy 

spectrum which allows a minimal divergence of microscopic beams and consequently, the 

preservation of the steep gradients dose between parallel microbeams. ICS sources (as they 

are presently described) are below 3
rd

 generation source flux by a factor of 100 

approximatively. Present ICS source do not exhibit characteristics that are adequate for 

clinical trials, due to the fact the lack of flux will slow down the irradiation and increase the 

risk of blurring effects of the microbeams. However, ICS source could be used for performing 

MRT preclinical experiments on cells and animals as it is performed at the National 

Synchrotron Light Source (Brookhaven, National Laboratory, USA). 

 

 
 

Figure 2: H&E staining of the horizontal section of piglet cerebellum, 15 months after irradiation (skin 

entrance dose: 300 Gy), 25 µm width. The microbeam paths are clearly visible although the piglets had a 

normal survival and no neurological signs or deficits. 

 

1.2.2] Imaging  

 

For imaging, it is necessary to avoid current radiograms that use 5-75 keV bremsstrahlung 

imaging, since the lowest energy part of the spectrum provides skin dose and no contrast 

while the highest part induces tissue dose and low contrast. Furthermore the traditional 

absorption imaging is very poor in differentiating soft tissues. Better in vivo systems need X-

ray beams with the following characteristics (i) delivery of a very low integral dose and skin 

dose as small as possible (ii) high spatial resolution and in the same time high temporal 

resolution due to in vivo constraints (i) assess to quantitative information mimicking 

physiopathology or any functions of an organ. Among the techniques developed in 

synchrotron facilities, 2 of them have noticeably contributed to the biomedical field. 
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The K-edge digital subtraction imaging (KEDSI) method utilizes the sharp rise in the 

photoelectric component of the attenuation coefficient of a given element at the binding 

energy of the K-electron (e.g. 33.17 keV for I, 34.56 keV for Xe, 50.25 keV for Gd). 

Depending on the specific needs and constraints, experiments can be carried out either using 

two beams of energies bracketing the K-edge or by a single beam set at energy above the K 

edge. In the first case, the technique is indicated as ―energy subtraction‖ and the map of the 

contrast agent concentration is obtained by logarithmically subtracting the two energy images; 

In the second case, indicated as ―temporal subtraction mode,‖ the map is obtained by 

logarithmically subtracting the images taken at an energy above the K-edge, before and after 

the injection of the contrast agent. This latter modality is used when dealing with fixed 

samples and when the signal to noise ratio should be the best possible (brain imaging) [12]. 

Experiments have been performed in order to understand the uptake of Gd contrast agents in 

hepatitis-affected livers and in brain tumor-bearing animal models. In the frame of the 

radiotherapy programs, investigations have been carried out to optimize the delivery of drugs 

such as iodine, platinum, gold and/or gadolinium nanoparticles after intravenous of 

intracerebral delivery [13], in order to follow up their biodistribution and to study the tumor 

filling. From concentration maps of the contrast agent, brain perfusion parameters such as the 

cerebral blood volume and permeability can be derived using perfusion models [14](fig. 3).  

 

 

 

 

 

Figure 3 : Microvascularization parametric maps, reliability maps (FMI maps) and H&E staining anatomic 

sections obtained in 5 rats brain bearing gliomas after iomeprol injection. The color scale for each parameter the 

red corresponds to high values and the blue to low values. In the FMI maps, a red pixel has a value of 1, 

attesting an excellent reliability of the model adjustment. 

Left: physiological maps (blood flow FT, blood volume fraction VT, mean transit time MTT, permeability 

surface product PS, and time delay D). Middle: reliability criteria FMI. Right: H&E staining (the labels on the 

right are the names of the rats). 

 

To date, the KEDSI technique is the only one permitting the in vivo access of any drug 

concentration (if labeled with a high Z element such as Gd, I , Xe, Lu…) with such a spatial 

and temporal resolution.. This technique is of great interest for all laboratories (chemistry, 

pharmacy) who intend to characterize drugs and to study their bio-distribution. 

Alternatively, the phase contrast imaging technique based on the recording of the phase 

variations occurring when X-rays pass through matter, has been demonstrated as an extremely 

powerful method since it permits contrast resolution of soft tissues (even if the elemental 

composition is almost uniform and the density variations are small) with far lower absorbed 
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dose levels than with conventional system as shown. This is in particular the case of breast, 

lung and articular cartilage tissues.  Among the technique used on synchrotron beamlines, 

phase shifts are revealed by (i) using a crystal analyzer in order to depict the diffraction 

component (Analyser Based Imaging ie ABI)[15], (i) using the grating interferometry 

principle [16] (fig. 4) , as well as propagation phenomenon. 

 

 
 

Figure 4 : Phase and attenuation-based tomography results. (a) Phase tomography slice through the rat‘s 

cerebellum showing a clear contrast between the white and gray brain matter. (b) Slice through a region of the 

brain containing a tumor (arrows indicate the tumor‘s ‗pushing front‘, the border between the tumor-invaded 

and healthy brain tissue). (c) and (d) Corresponding slices through the absorption-based reconstruction of the 

specimen. All images are displayed on a linear gray scale corresponding to ±2σ, where σ is the standard 

deviation of the pixel gray values in the image. 

 

In the ABI technique, the X-rays transmitted through a sample are analyzed by a perfect 

crystal. The small angular acceptance of the analyzer permits the observation of the very 

small refraction angles (typically less than one microradian), to suppress scattered radiation 

and thereby increases the signal to noise ratio. The edge enhancement, which is characteristic 

of this method, occurs at the interfaces of regions with different refractive indices. The effects 

of refraction are converted to intensity variations by slightly detuning the analyzer away from 

the maximum of the reflectivity curve. The correlation of the radiographic findings with the 

morphologic changes in specimens analyzed in histo-pathological sections has been 

unequivocally confirmed. These advances in image quality make ABI a very promising 

candidate for clinical mammography at table top sources. In the case of osteoarthritis 

diagnosis, a poorly understood disease that can affect the cartilage and other tissues in the 
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joints of aging people, conventional radiography (including CT and MRI) is sensitive only in 

cases of advanced disease in which there has been a loss of cartilage. Measurements have 

been performed on human articular specimens. Cartilage defects, even at early stages of 

development, have been studied at 18 and 30 keV and compared with the absorption 

technique and show a clear, early visualization of the damage [17]. In addition, experiments 

were performed in rabbits and sheep samples with model implants to evaluate ABI as a tool in 

bone-implant research. AB images allow the identification of the quality of ingrowth of bone 

into the hydroxyapatite layer of the implant through the visualization of a highly refractive 

edge at the implant/bone border. Implants with bone fully grown onto the surface did not 

display a refractive signal. 

 

1.2.3] Conclusion for medical applications 

 

The SSRT technique seems to be fully compatible with ICS, since it can provide a flux and a 

brightness high enough together with a tunable quasi-monochromatic X-rays. The same 

prototype could serve both therapy and imaging since SSRT is derived from KEDSI method. 

These applications appeared to be the easiest ones to be developed in a first step. There 

techniques are also techniques where the synchrotron community has already a lot of 

knowledge and experience. 

 

Regarding the MRT technique, although the flux is not sufficient enough for the realisation of 

clinical trials, an ICS source could be used anyway for preclinical studies. 

 

Finally, the Inverse Compton Scattering process permits to provide high phase contrast and 

DEI imaging of soft tissues (adequate with its few percent bandwidth) on moving organs 

(because of its high available flux). The clinical interest of these techniques has to be however 

confirmed by in vivo measurement and several protocols are currently going on in other 

synchrotrons or with other synchrotron compact sources. 

 

1.3] X-ray crystallography 

 

The knowledge of the atomic structure of macromolecules such as proteins leads to a 

better understanding of the chemical reactions which take place in living organisms, how 

proteins are produced and how genetic information is forwarded.  

 

1.3.1] Protein structure determination 

 

Structure determination of proteins allowing a resolution at the level of distinguishing 

individual atoms is accomplished by two techniques: X-ray diffraction and Nuclear Magnetic 

Resonance (NMR) [18].  The NMR technique measures distances between atoms within a 

molecule in solution. Its principal advantage is to work on molecules in solution allowing a 

dynamic study to be performed. The complexity of the spectra for large molecules makes the 

analysis very difficult and protein size is the main limitation of the NMR technique. X-ray 

crystallography makes use of the diffraction pattern of X-rays that are shot through an object. 

The pattern is determined by the electron density within the crystal and this technique has no 

protein size limitation. It can solve structure of large and complex molecules but however 

requires proteins to be in an ordered crystal. Protein crystallization is inherently difficult due 

to the fragile nature of protein crystals and it is difficult to obtain a crystal with a suitable size 

(few hundred microns) for diffraction experiments [19]. For some proteins crystallisation, 

experiments will only ever produce extremely tiny crystals of the order of a few microns. 
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Since the average intensity of a diffraction peak for a crystal volume V and unit cell volume 

Vc in a beam of intensity I is approximately proportional to I(V/Vc), a thousand-fold increase 

in beam intensity is required to obtain the same strength diffraction from a 10 micron crystal 

compared to a 100 micron crystal. So, especially in case of complex structure determination, 

focused brightness X-ray beams are necessary to obtain sufficient resolutions [20].  The 

current intense synchrotron sources can provide the three-dimensional structure of small as 

well as large proteins with a precision of the order of the angstrom [21]. 

In a diffraction experiment, only intensities and diffraction angles of the diffracted beam are 

measured. To recover information about the phase of the diffracted beam which is essential 

for the solution of crystal structures, protein crystallography requires also a tuneable 

frequency X-ray source for the multi-wavelength anomalous dispersion (MAD) phasing 

technique [22]. High intensity polychromatic X-ray beams of the third generation synchrotron 

radiation sources are currently the most suited for protein structure determination.  

 

1.3.2] System dynamic studies  

 

A precise knowledge of a protein functioning requires the knowledge of its tree-dimensional 

structure but also its structural changes and its dynamic when the molecule is in activity. X-

ray experiments make it possible to have access the timescale of molecular processes with a 

resolution in the picosecond range. Radiations from synchrotron sources have made it 

possible to conduct pump and probe experiments on chemical and biochemical systems down 

to a time-resolution of 50-200 ps.  Pump and probe experiments consist to photolize a protein 

crystal sample with a femtosecond laser flash after which a probe time-delayed X-ray pulse 

provides diffraction data from excited molecules.  The pump and probe sequence has to be 

repeated many time to build up sufficient signal to noise ratio for each diffraction pattern, to 

obtain patterns at different crystal orientations and at different pump-probe delays to access 

the time dimension of the process.  The brightness and the pulse length of synchrotron source 

beams make possible the study of these time-dependant phenomena and allow to progress in 

the understanding of how proteins function [23, 24]. 

 

1.3.3] Compact Compton based source for protein study 

  

A compact Compton based X-ray source would offer the possibility to perform protein studies 

mentioned above directly in a laboratory. With the envisaged performances (10
12

-10
13

 

photons/s with an angular divergence of a few mrad and a bandwidth ΔE/E ~ 1-10%), a 

compact machine could carry out researches to progress in the understanding of protein 

structural properties and could also provided an X-ray beam having the proper pulse length 

required for system dynamic studies in the picosecond range. 
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CHAPTER 2. Thomson and Compton scattering  

 

2.1] Photon scattering  

 

The diffusion of an electromagnetic plane wave by an electron at rest, with mass me and 

charge q, is a process known as ‗Thomson scattering‘. From a classical point of view, the 

process can be visualised as a plane wave of frequency  impinging on a charge. The 

scattered wave is not plane but, in the approximation where the recoil effect can be neglected 

(therefore taking into account me >> 

), the electromagnetic wave frequency is conserved. 

On the other hand, in quantum electrodynamics, the scattering process is analyzed as the 

succession of the absorption and the emission of the photon by the electron.  

The differential scattering cross section is [1]:  
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where r0 ~ 2.818 10 
15

 [m] is the classical electron radius and  is the photon scattering angle 

with respect to its initial momentum (see fig.1). By integrating over the angular variable, the 

classical Thomson cross section Th is obtained: 
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The absolute value of the Thomson cross section can be interpreted as follows: one photon 

travelling one meter within a target whose density is one electron per one cubic meter has a 

probability Th of being scattered. Depending on the physics application, the scattering 

probability can be seen as large when compared to typical QED processes, or extremely low 

as it is the case, for example, in applications which aim at producing very high flux light 

sources. 

The generalisation of equation (2.1), when the recoil of the charged particle cannot be 

neglected, was given by Klein and Nishina [2]. In this case the kinematics of the process is 

best described as a collision between the photon and the electron (see fig.1) since energy and 

momentum are conserved. Therefore the scattered photon undergoes a frequency shift. In the 

reference frame where the electron is initially at rest, the differential Compton cross section is 

(assuming unpolarised electrons and photons): 
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where i (i=initial state) and f (f=final state) indicate respectively the photon energy before 

and after the scattering process. It can be immediately pointed out that, in the limit f / i → 1, 

i.e. in the case where the scattered photon frequency remains unchanged, (2.3) takes again the 

form of (2.1). 

 

                                                 
1
 In this chapter we will work in ―God-given‖ units, where  and c =1 
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2.2] High energy behaviour. Unpolarised and polarised Compton backscattering cross 

section 

 

When considering the collision between a high energy free electron of momentum pe and a 

low energy photon, where pe>>, a substantial fraction of the electron energy is transferred 

to the photon. As a result, in the observer frame, the photon is backscattered with a significant 

energy boost. This process is known as Compton backscattering [3].  

 

 
 

Figure 1: Two dimensional representation of the scattering kinematics, in the reference frame where the electron 

is initially at rest. 

 

A simple expression of the total Compton scattering cross section in the centre-of-mass frame 

can be obtained by using the relativistic invariant Mandelstam variables [4]: 
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Where Ecm is the electron energy in the center-of-mass frame (Ecm= me
2
 +2 pf f (1-cos)). 

Nevertheless, from an experimental point of view, the most important results are the 

differential and the total cross section in the laboratory frame. Neglecting for the moment the 

polarisation dependence, the total and differential scattering cross section are [5]: 
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Where  is the relativistic beta factor and 1 and 2 indicate respectively the incidence angle 

and the scattering angle in respect to the electron direction, as illustrated in fig.3.  If x1<<1 

(i<<me) the second term of the formula (2.5 a) can be replaced with an excellent 



  Page 33 sur 136 

approximation by Th (1-x1) ~Th. Then the total scattering cross section is very close to the 

Thomson one.  Therefore, in this approximation, it is possible to evaluate the emitted rate as 

the product of the Thomson cross section with the Luminosity (see § 2.4).  

The spectral density in the ultrarelativistic case is simply obtained starting from (2.5 b) and 

taking into account the relationship  
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The photon and the electron polarisations can be neglected when the electron energy is 

relatively low (up to a few GeV), but this is not true anymore for ultrarelativistic electron 

beams. In fact the most general form of the differential cross section that takes into account 

the initial polarisation states
2
 is [6]: 
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Since in the scattering process the electric field vectors are taking as reference the scattering 

plane (defined by the ki and kf vectors) the Stokes vector components S1 and S2 are functions 

of the azimuthal angle . It is easy to check that the Klein-Nishina formula is obtained when P 

and S = 0 in (2.7). From (2.7, 1c) the differential spectrum d/df can be expressed as a 

function of the scattered photon frequency and the polarisation vectors; P = (Px,Py,Pz) for the 

electron and the four dimensional Stokes vector [7] S=(S0,S1,S2,S3) for the photon. In this case 

it is possible to highlight the differential cross section dependence on the electron beam 

energy, its longitudinal polarisation and the photon circular polarisation (given by the 

component S3) since, after integration over the azimuthal angle between 0 and 2 the 

contribution of plane polarizations (S1 or S2 components) is cancelled out.  

                                                 
2
  

Polarisation effects should be important in some applications of phase contrast medical imaging. 
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A circular polarization of the light wave has a strong impact on the backscattered photon 

energy spectrum when increasing the electron energy, as shown in fig.2 (a,b,c,d). In these 

plots the normalised differential cross section is illustrated for three different cases (PzS3 = 

1,0,-1) and for four different electron energies, starting from 50 MeV and going up to 60 GeV. 

Since the cross section at the energy cut-off depends on the polarization, the normalisation has 

been done for f = 0.  

 

 
 

Figure 2 : Differential cross section d/df for different electron energies, respectively 0.05, 4, 12, 60 GeV. The 

assumed initial photon energy is 2.4 eV. Calculations worked out with MATHEMATICA®. 

 

The differences in the spectrum of the back-scattered photons are negligible in the 50 MeV 

case. At 4 GeV, circular polarization introduces a ~10% variation in the differential cross 

section at the energy cut off. At very high energy (see for example the 60 GeV case) the 

asymmetry for the +1 and the -1 case becomes very large. This strong asymmetry can be used 

for the polarization measurement of ultrarelativistic particles. Fig.2 also shows that the 

emitted spectrum has a sharp cut-off as far as the backscattered photon energy is concerned. 

This energy cut off is proportional to the energy of the impinging photon and varies 

quadratically with the electron energy. The frequency boost due to the Compton 

backscattering and the relationship between the scattered photon emission angles and its 

energy will be discussed in the next paragraph. 

 

2.3] The frequency shift and the emission angular distribution 

 

As previously stated, when the recoil cannot be neglected, the scattered photon undergoes a 

frequency shift. The scattered photon frequency shift = f -i is given by [5]: 
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where one notices that for me >> i the frequency is conserved after the collision as was 

previously mentioned.  

The specific case of a Compton collision between a free relativistic electron (p>>me) and a 

photon shows very interesting characteristics in the laboratory frame. They originate in the 

joint effect of the relativistic boost and the Doppler effect. Actually the observer will notice a 

significant energy boost of the scattered photon and a drastic shrinking of the angular cone of 

emission. These can also be calculated by using the Mandelstam variables, taking into account 

the most general collision geometry case of a photon with incidence angle  (see fig.3) [5]. 

In the laboratory frame the ―boosted‖ frequency shift is: 
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 Figure 3 : Scheme of the most general case of a photon-electron collision. The electron incidence angle is 1, the 

photon scattering angle is  (with respect its initial momentum). 

 

From (2.9) it is possible to highlight the dependence of the main properties of the scattered 

photon on the collision parameters: the photon incidence energy and angle, the electron 

energy and the photon scattering angle. The Compton back-scattering characteristics are 

particularly attractive in the relativistic case where they can be summarised as follows: 

a) There is a univocal dependence between the scattered photon energy and its angle. 

This is very effective for selecting the frequencies, and consequently to obtain a 

monochromatic beam, by setting up a simple diaphragm.  

b) The emission cone is shrunk by the relativistic boost. To a good approximation one 

can assume that the flux is emitted in a solid angle with total aperture 4/see fig. 4 

and 6). 

c) The maximum energy boost of the scattered photon occurs in the so-called ―head-on‖ 

collision (1=).  In this case the energy spectrum cut off c, corresponding to the 
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backscattered photon (2=), varies as c=4i
2
. For different collision angles the 

maximum energy is reduced. If 1=/2 the scattered photon maximum energy is half 

the one in the head-on collision case (see fig.5), while the mean direction of the 

backscattered photons remains close to the electron beam direction.  

d) The high value of the scattered photon maximum energy (the energy cut-off) with its 

quadratic dependence on the electron energy allows the production of high energy X 

rays and gammas by using moderate energy electron beam, in the MeV-GeV range. 

 

 

 

 
 

Figure 4 : Scattered photon angle-energy dependence (diff vs diff) for different collision angles inc. This is 

varied from the head-on collision (inc = ) to the normal incidence (inc = /2). The colour curves represents 

different electron energies; respectively 100 (brown), 70 (light green), 60 (violet), 50 (orange), 40 (red), 30 (light 

blue) and 20 MeV (green). The initial photon energy is 1 eV. Calculations worked out with MATHEMATICA®. 


In fig.4 the three dimensional plot summarises the dependence of the scattered photon energy 

on the incidence and scattered angles for different impinging electron energies. One notices 

that orthogonal collision halves the scattered frequency and that the emitted photon cone 

shrinks as the energy increases. The different colour curves correspond to different electron 

energies. To better appreciate the different parametric dependences, fig.5 (a,b) shows the 

energy angular dependence for an impinging electron of 50 MeV and three different photon 

wavelengths corresponding to three typical lasers (CO2, fibre and YAG with a frequency 

doubler cavity). 

The factor two in the emitted photon energy is visible by comparing fig.5a and 5b where the 

head-on and the orthogonal incidences are respectively illustrated. For the same typical 

wavelength fig.5c and 5d illustrate the spectrum energy cut-off for different values of the  

relativistic factor of the incident electron. The two figures always take into account the two 

extreme cases for the collision angles 1and 1. 

 

diff [rad] 

inc [rad] 
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Figure 5 : a] and b] panels: scattering energy dependence for head-on and orthogonal collision. c] and d] panels: 

energy cut-off dependence on the electron initial energy. Calculations worked out with MATHEMATICA®. 

 

To better appreciate the angular shrink given by the relativistic boost, fig.6 illustrates the 

normalised results of fig.5a, in the case of head-on incidence and a fibre laser, for three 

different values of . It shows how, at relativistic energies, the emission cone is extremely 

narrow, thus allowing a photon beam brilliance increase.  

The limit of the angular shrinking is given, in a real experiment, by the fact that the Compton 

flux is not generated by a single particle but rather by an electron beam with a natural 

divergence at the interaction point. The resulting angular aperture of the emitted photons will 

then be given by the convolution between the Compton 1/ cone and the electron beam 

divergence. This is extremely important since, taking into account the angle-energy 

dependence for the scattered photons, a too strongly divergent electron beam will affect not 

only the brilliance, but also the possibility to select a monochromatic beam by using 

diaphragms. 
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Figure 6 : Angular distribution of the backscattered photons for three different electron energies. Calculations 

worked out with MATHEMATICA®. 

 

2.4] Parameterization of RadioThomX source. 

 

After the introduction on the Compton scattering physical properties, it is possible to better 

characterize its application to the X-ray production by the collision of relatively low energy 

electron bunches with laser pulses. For this purpose, some standard parameters distinguishing 

the performances of the ThomX machine design are taken into account and the parametric 

dependence of the produced X-ray flux is studied. 

All the calculations presented in this chapter have been worked out assuming the following 

nominal parameters for the laser and the electron beam (if not specifically mentioned): 

 

Laser pulse length      =  1 ps r.m.s. 

Laser wavelength     =  1030 nm  

Laser beam focus size     =  43 m r.m.s. 

Laser pulse energy      =  30 mJ  

Electron bunch length     =  20 ps r.m.s. 

Electron energy      =  50 MeV  

Electron energy spread     =  0.6 % r.m.s. 

Electron beam waist sizes     =  70 µm r.m.s.  

Electron bunch charge     =  1 nC  

Non normalized electron beam emittance   =  5 10
-8

  m rad  

 

These assumptions are made to set some typical values for our general parametric analysis. 

They are representative of a single Compton collision hence they do not take into account the 

beam dynamics. An in-house Monte Carlo code has been used to include the different 

collision configurations. The main results have been validated by the comparison with the 

general analytical formula for the Compton collision luminosity of two Gaussian bunches 

crossing [8], where Gaussian distributions are assumed and the hourglass effect is neglected 

(assuming constant beams sizes during the collision, so without taking into account the cross 
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effect of the laser Rayleigh length, the IP beta function and their correlation with the bunches 

lengths): 
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where Ne, N, f, , x,y,z,e , ,x,y,z, indicate respectively the number of electron and photons per 

bunch, the repetition frequency, the half of the angle of collision and the three dimensional 

bunches r.m.s. sizes for the electron (index e) and photon (index ) bunches. Once the 

Luminosity (L) is given the produced photon rate (R) is defined as: 

 

2.11) R=Compton L. 

 

 

 In the Monte Carlo simulations the repetition frequency was assumed unitary since it 

correspond to a single interaction between one electron bunch and one laser pulse. In the 

dynamical regime the scattered flux, after many passages, will be reduced as a consequence of 

the electron beam quality deterioration, given by the recoil during the collisions. This aspect 

will be treated in § 4.5.9. 

 With respect to the previous paragraphs where an electron-photon collision was considered, 

the flux emitted in a real laser pulse - electron bunch collision has some important 

consequences. It is important to remember that in a single electron-photon scattering event the 

emission properties are mainly dominated by the electron kinematics. So, well defined 

relationship between the scattered photons angles and their energies is established. Now, 

dealing with real bunches the results will be a convolution between the emission probability 

curves and the electron beam divergence in the interaction point. This will imply that: 

1) The number of scattered photons per unit angle depends on the emittance of the electron 

beam and on the storage ring beta function in the Interaction Point (IP) 

2) The brightness and the energy angular dependence, so the possibility to obtain a 

monochromatic beam with a simple diaphragm system (that hereafter will be called as 

―angular monochromaticity‖), are submitted to the same convolution dependence.  

3) Strong laser and electron beam focusing in the interaction point does not correspond to a 

quadratic increase of the flux due to the Hourglass effect given by the laser beam Rayleigh 

length, the storage ring beta function, the electron bunch and the laser pulse r.m.s. lengths in 

the interaction region. 

This will be illustrated in the following paragraphs.  

 

2.4.1] Flux dependence on the beams waists sizes.  

 

One of the main parameter that determines the efficiency of the X-ray production is the beams 

interaction point (IP) sizes i.e., the interacting beams waist sizes in the interaction region. 

Formula 2.10 shows that a decrease in IP sizes leads to an increase in scattered flux. The 

dependence is inversely proportional to the square of the interacting beams sizes. 

Nevertheless one can notice that, while the laser beam waist has an influence only on the 

scattered flux, for constant emittance the electron beam sizes affect at the same time the flux, 

the directionality and the monochromaticity of the scattered radiation.  

Fig.7 illustrates the dependence of the flux of the scattered radiation (total and per unit angle) 

on the electron and laser beams waist sizes. 
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Figure 7 : X-Ray flux versus the r.m.s. beams waists sizes. Both the flux per unit angle per collision (left vertical 

axis) and the total emitted flux per collision (right vertical axis) are displayed. The red curve panels the variation 

of the laser beam waist size while the electron one remains constant (70µm). The black curve corresponds to a 

variation of the electron beam waist size while the laser remains constant and equal to 43µm.  The head-on 

collision case is assumed 

 

The weak, almost linear dependence of the flux with the laser beam waist size is explained by 

the Hourglass effect as a function of the Rayleigh length. The variation of the laser beam 

focus size from 70 to 10 m increases the scattered flux just by two times. From this it 

follows that the nominal designed value of 43 m should be considered within optimal limits. 

Variation of the electron beam waist sizes does not bring the expected behaviour of the 

scattering efficiency. It is also far from the expected quadratic one (a size reduction of a factor 

two corresponds to a doubling of the emitted flux) and the curve second derivative decreasing 

in the region of smaller electron beam sizes is noticeable. Taking into account a fixed beta 

function at the interaction point of 0.1 m, the electron beam size range form 30 to 100 m 

corresponds to a geometrical emittance variation from 8.8 10
-7

 to 9.8 10
-6

  mm mrad. 

 

2.4.2] Flux dependence from the collision angle. 

 

As illustrated in formula 2.10 another important parameter is the angle of collision assumed as 

the angle between the laser and the electron beams propagation axis. A luminosity reduction 

is expected when the lengths of interacting pulses are much longer than their transverse sizes. 

Moreover, the presence of a non-zero collision angle imposes rigid limits on possible time 

jitter between laser pulse and electron bunch. Namely, when the time jitter is of the order of 

the laser pulse and/or the electron bunch duration, they cross without spatial intersection.  

The flux collision angle dependence versus different parameters is hereafter presented. The 

dependence of the number of scattered photons on the collision angle is illustrated in fig.8.  
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Figure 8 : X-Ray flux per unit angle per collision dependence on the angle of interaction between the laser and 

the electron beams.  

 

In crossed collision, as illustrated in formula 2.10, the luminosity is determined not only by 

the collision angle but it is also correlated with the beam length. Since in the Compton sources 

the longitudinal beam dynamics is dominated by the recoil during scattering process, a 

consequent bunch lengthening is expected. Therefore in fig.9a a comparison of the head-on 

and the 2 degrees collision configurations is shown. The scattered X-Ray flux per unit angle 

dependence versus the electron bunch length is illustrated. The 3D surface plot (fig.9b) 

summarizes this dependence for different collision angles.  

For the nominal parameters of the laser and of the electron pulses this dependence is rather 

weak. For example, the beams interacting in head-on collision configuration scatter just 1.5 

times higher X-ray flux than the beams interacting with a collision angle of 2 degrees. Taking 

into account a nominal bunch length of 20 ps, its compression to 10 ps increases the scattered 

flux by less than a factor two, while stretching the bunch up to 50 ps leads to two-fold 

reduction in flux. Basically the scattering efficiency is rather sensitive to the electron bunch 

lengthening only for larger angles of collision. In fact, for the same beam parameters, a flux 

reduction factor of about six times is expected for eight degrees crossing angle. 
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Figure 9 a,b : (a) X-Ray flux per unit angle per collision dependence on r.m.s. electron bunch length. This is 

calculated for 2 degrees angle of collision (blue line) and for the head-on (red line) configurations. (b): X-Ray 

flux of the ThomX source versus angle of collision and electron bunch length. 

 

When crossed collisions are taken into account, the possible time mismatching plays a crucial 

role in scattering efficiency. Fig.10a displays the X-Ray flux per unit angle dependence on the 

cumulative time delay between the electron bunch and the laser pulse, for different collision 

angles. A zoom on the head-on (red curve) and 2 degrees (blue curve) cases is illustrated in 

fig.10b.  
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Figure 10 a,b : The surface plot presents the X-Ray flux per collision calculated for various values of time jitter 

between pulses and collision angle. Fig 10 b shows the X-Ray flux dependence on the electron bunch time jitter 

with respect to laser pulse calculated for 2 degree collision angle (blue curve) and the head-on collision (red 

curve).  

 

The scattered flux per unit angle drops drastically with the increase in collision angle when 

the electron bunch and the laser pulse interact with non-zero time delay.  

 

2.4.3] Brightness and monochromaticity.  

 

As previously mentioned, when dealing with a collision between laser pulses and electron 

bunches that occupy a well defined phase space, the scattered photon beam directivity and 

spectrum are dominated by the electron bunch characteristics in the IP.  

This convolution effect is highlighted in fig.11 where the flux per unit angle and the 

brightness of the scattered photon beam as functions of the IP electron beam waist size are 

illustrated. Here the electron beam emittance is assumed to be constant and equal to its 

nominal value. Without considering the spectral angular distribution the flux increases for 

smaller beam sizes, but when the brightness (and so also the emission bandwidth) is taken 
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into account it is possible to notice that a maximum is reached near ~ 50 m. The following 

decreasing of the brightness is the results of the prevalence of the effect of the scattered 

photons directionality deterioration due to the high divergence of the electron beam in the 

collision point. 

 
 
Figure 11 :  Dependence of on-axis X-Ray flux (blue curve) and brightness (red curve) on the r.m.s. electron 

beam waist size. The assumed collision angle is 2 degrees and the collision repetition frequency is 20MHz. 

 

The same effect can be visualized considering the on axis spectrum for an emission cone of 

one mrad
2
, calculated for various electron waists (see fig.12). 

 

 
 

Figure 12 : On-axis spectra calculated for various electron waists sizes and head-on collision. Electron energy is 

equal to 50 MeV.  
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2.4.4] Flux dependence from the electron beam energy.  

 

Because of the quasi-absence of synchrotron cooling in the Compton ring due to the low 

energy, reduction of the non-normalized emittance is possible by adiabatic damping in the 

Linac. Moreover the scattered photons show the characteristic 1/ cone angular dependence. 

So increasing the machine energy is profitable also for the photon flux characteristics. 

On the other side the cross section of Thomson scattering depends very weakly on the energy 

of scattering electrons. The flux and the brightness dependence on the energy and the beams 

waist sizes are illustrated in fig 13 a,b. 

 

 
 

Figure 13 : X-Ray flux (a) and brightness (b) of RTX source versus electron focus size for various electron 

energies. The assumed collision angle is 2 degrees and the repetition frequency is 20 MHz. 

 

The brightness of the source is optimized when the electron beam waist size is near 60 m, 

very close to the designed value of 70 m. The difference is only about 15 %. 

The X-ray spectra in a cone of 1 mrad
2
, calculated for series of electron energies from 10 up 

to 90 MeV are shown in fig.14.  
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Figure 14 : Left: On-axis RTX spectra calculated into 1 mrad

2
 for various electron energies.  

 

The spectrum shape of the scattered radiation does not depend on the electron energy. The 

flux per unit angle increases linearly with the electron energy.  
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CHAPTER 3:  Optical Systems 

 

3.1] Laser and Fabry Perot resonator 

 

3.1.2] Introduction 

 

The optical part of this project is in itself a very ambitious and far-reaching project. Indeed, in 

order to achieve the X-ray photon fluencies required for the applications described in the 

introduction, the weak Thomson cross section makes it necessary to use very high photon 

fluxes. With current day technologies, it is in fact possible to produce picoseconds pulses with 

tens of Joules of pulse energy. However, the thermal load in the amplification media limits 

severely the average output power to few tens of Watts. As a consequence, in such a system, 

repetition rates are limited to few Hz and clearly incompatible with the repetition rates of 

electron storage rings. In order to significantly improve the repetition rate of the laser, while 

keeping important pulse energies, we propose to develop an optical system based on a high 

finesse Fabry-Perot (FP) cavity injected by a high average power laser system. The pulses 

coming from the laser are stacked in the Fabry-Perot cavity achieving a passive gain in the 

cavity ranging from 1000 to 10000. Such an approach is very attractive since it requires a 

laser system delivering a limited (although important) average power of the order 100 W. The 

signal is then boosted to the MW level within the passive cavity. The technical price to pay is 

the high level of sophistication of all stages of the system. The optical system therefore 

consists in a high stability laser oscillator, a high average power amplifier, an optional 

frequency converter, a high finesse FP cavity and finally the feedback loop locking both 

cavities. Fig.1 presents a general layout of the global optical system. 

 

 
Figure 1: Block diagram of the general optical setup. 

 

 

We now describe all elements of this optical system: the high power optical seed laser, 

a frequency conversion unit, the Fabry-Perot cavity, the locking procedure and the mechanical 

implementation within the electron storage ring. 

 

3.1.2] Laser   

 

In this project, the initial laser system must meet severe requirements. The demands of the 

final applications in terms of high X ray fluxes set indeed a minimum output power around 

100 W. In order to significantly enhance the field power, the beam should then be injected 
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into a very high finesse cavity. This later constraint imposes a vary high degree of quality to a 

number of laser beam parameters; 

- beam spatial profile, single mode as close as possible to TEM00 

- degree of polarization, close to 100% 

- Pointing stability 

- Pulse to pulse stability. More precisely, the noise spectrum and in particular the 

phase noise of the laser should be extremely low, to allow for efficient mode-

locking in the Fabry-Perot cavity. 

 

In addition, the laser system together with the cavity must to be installed in the electron beam 

pipe, and thus require as much as possible compactness, stability and heat control.  

 

The following table recapitulates the main target parameters for the pulsed seed laser system, 

to be injected in the Fabry-Perot resonator: 

 

Wavelength Pulse duration Repetition rate Average power 

1 m few ps 41.4 MHz 100 W 
Table 1: Target parameters for the pulsed laser system. 

 

At first sight, reaching such parameters with conventional laser technology is not a major 

challenge in itself, starting from a low power oscillator, followed by successive bulk 

amplification stages. However, it is extremely unlikely that the output beam would then 

display the qualities demanded by the application. In fact, extracting few tens of Watts of 

short pulses in bulk material already requires a high capacity cryogenic cooling to limit spatial 

beam distortion by efficient heat removal. Although developing a system of few hundreds of 

Watts based on this latter technology may look feasible, it would provide a very complex 

setup and the beam quality and stability may not be guaranteed. New laser techniques are 

therefore stringently required. 

 

Two main paths are currently being investigated at CELIA and at LAL to reach the required 

performances. 

 

 The first possible approach is based on a high power laser oscillator, followed by a 

low gain amplifying stage. Recent results have indeed demonstrated laser powers of several 

tens of W, with pulses in the few picoseconds range, very close to the target specifications [1]. 

The average power of such oscillators is so high that a limited amplification in bulk would be 

sufficient to reach the 100 W objectives, while keeping the high spatial quality of the beam, 

and keeping depolarization to a low level. A possible major advantage of this scheme is the 

almost direct coupling between the oscillator and the passive optical resonator, to which the 

oscillator is locked.  

 

The CELIA group has launched a design study along these lines, funded by the Région 

Aquitaine: the ELSYFO project. Table 2 summarizes the target specifications for the high 

average power oscillator:  

 

Wavelength Pulse duration Repetition rate Average power 

1.06 m 15 ps 80 MHz 50 W 
Table 2: Target parameters for a high power oscillator. 
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In a first optical implementation of a high power oscillator, the CELIA group has 

demonstrated an output power of 21 W, with a pulse duration of 18 ps at 82 MHz, in a 

Continuous Mode Locking configuration, as illustrated in fig.2. 

 
 

Figure 2 : Output power obtained in a first high power oscillator prototype at CELIA. 

 

The ELSYFO program is ongoing, now aiming to develop a 50 W oscillator, based on a 

Nd:Vanadate crystal technology, with total characterization and minimization of the noise 

spectrum, especially at the injection frequency into the Fabry-Perot resonator. In order to 

minimize the intrinsic noise of the oscillator, the Vanadate crystal will be pumped at 888 nm 

in a longitudinal configuration, thus minimizing the pumping power required. 

 

 A second very promising setup for the optical system consists of a commercial low 

power low noise oscillator locked on the cavity, and the brand new technology of fibre power 

amplifiers.  

This architecture (low power oscillator / high power amplifier) has been chosen to minimise 

the phase and amplitude noise originating from the laser and achieve a maximal coupling into 

the cavity. The fibre technology has been selected for its exceptional properties of delivering 

excellent beam quality, its ability to handle powers in excess of 100 W without active cooling, 

its stability and compactness. Indeed, laser technology is nowadays experiencing a significant 

breakthrough in the design and realization of active optical waveguides. This technology has 

been initially heavily developed during the telecom market boom, some years ago. At this 

time, several concepts were introduced that aimed at improving fibre amplifiers performances, 

For instance, double clad fibres have been developed to ease the optical pumping of the active 

inner core material by high power diodes. Then, fibre engineering has lead to continuously 

increasing the inner core diameter while keeping the single mode propagation.  

 

Using fibres as laser amplifiers has many advantages and in particular in the present context. 

First of all, as mentioned earlier, the amplified signal is guided during propagation in the gain 

medium. Assuming a real single mode fibre, the output beam should have an excellent spatial 

quality (M² ~ 1) which is mandatory in the case where the beam is further coupled in the 

Fabry-Perot cavity. Any deviation from the cavity eigenmode will be reflected and therefore 

not coupled. Then the active double clad fibres have a geometry that is optimal for heat 

removal compared to conventional bulk material. Heat is spread over long distances in fibres 

while it is confined in a small volume in bulk material. Most important, for a given volume of 

heated material, the exchange surface is way larger in a fibre than in a parallepipedic or rod 

crystal allowing simple air cooling up to the 100 W levels [2].  
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Large Mode Area (LMA) fibres have experienced an important evolution in the recent years. 

Commercially available double clad LMA fibres have nowadays cores as big as 40 µm. The 

guiding is made possible by clad index engineering such as photonic bandgaps or micro-

structuration. However, these fibres suffer two main problems. First of all they are not 

intrinsically single mode but can be operated in the single mode regime by proper coiling 

inducing losses in higher transverse modes. Second, the guiding of the pump is ensured by an 

external outer cladding made out of polymer. When operated at very high average power, a 

small absorption of the pump power is sufficient to burn the polymer. To circumvent these 

problems, an innovative fibre referred to as rod-type photonic crystal fibre has been designed. 

These Photonic Crystal Fibres (PCF), or holey fibres, are special optical fibres, consisting of a 

Silica core surrounded by a number of air holes. An example of such a structure is presented 

in fig.3. 

 

 
 
Figure 3 : rod-type photonic crystal fibre. 

 

A first structure of holes assures the guiding of the amplified beam inside the fibre core. The 

second structure guides the pump beam into the fibre; finally, the fibre is surrounded by a 

pure silica cladding instead of a polymer coating. Such a fibre combines TEM
00 

beam quality 

over a large mode area (diameter varying from 40 to 70 μm) as well as excellent thermal 

acceptance, because of the absence of a polymer cladding. For the same reason however, the 

fibre is rigid and similar to a narrow rod (diameter ~1.5 mm, length ~ from 0.5 to 1.2m). 

 

The CELIA group will develop an amplifier system based on the fibre technology. The 

amplifying setup will consist in a single or double stage (depending on the output power) 

amplifier involving double clad micro-structured Yb-doped rod-type fibres. In the present 

project, the rod-type fibres will have the exceptional core diameter of 80 µm while 

propagating single mode beams without losses. The very high gain of these fibres allows 

amplification in a single pass.  This unique fibre has been developed during a previous 

project. The present project will therefore benefit from this state of the art fibre design which 

technology is only shared between two academic laboratories and two companies in 

Bordeaux.  

This fibre has been implemented in several architectures that have all lead to the production of 

record breaking performances [3,4,5,6]. This is why we are quite confident with the 

outstanding performances expected at the end of the project only achievable today with such a 

fibre.    
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In the framework of the ANR project ―MightyLaser‖, a development roadmap has been 

launched, divided in two parts. A first setup will be constructed to deliver 100 W average 

power at CELIA by the end of year 2009. This setup will be installed at LAL and injected in 

the FP cavity to test the locking at high power as well as to investigate heating problems and 

its consequences on stability and noise in 2010. The rather simple and compact architecture 

(see fig.4) will implement a technique called Chirp Pulse Amplification (CPA) scheme [7]. In 

order to limit the non linearities in the fibre; the signal is initially stretched in time, thus 

reducing the intensity, amplified in the fibre and finally recompressed to its minimal time 

duration. In this program we will use a new technology for stretching and compression based 

on Volume Bragg Gratings (VBG). The advantage of this new technology is that it requires 

no adjustment and is definitely stable since it consists in a monolithic crystal in which a 

diffraction pattern is recorded. Then, the setup will be upgraded by CELIA to provide powers 

in excess of 200 W during 2010. Particular attention will be paid to thermal problems, 

stability and compactness for an easy installation and operation on the electron beam.  

 

 
Figure 4 : Architecture of the fibre chirped pulse amplifier 
 

There is however a difference between the target repetition rates of the MightyLaser 

(178,5 MHz), and ThomX (41.7 MHz) projects imposed by the repetition rate of the 

accelerators. The architectures of the laser amplifier need therefore to be adapted. In fact, for 

an identical average power, a decrease of the repetition by a factor of 4 implies an increase of 

the pulse energy by the same factor. The peak power thus achieved in the actual setup will 

lead to strong distortion of the pulse temporal quality due to severe non-linearities. This 

problem will be simply solved by designing new VBG inducing a stretching factor increased 

by a factor of 4. However, careful attention will be paid to ensure that non-linearities are 

totally absent and therefore no additional phase noise is generated. In a general way, the 

duration of the output pulses can be adjusted from 1ps to 20 ps or more.  

 

In a preliminary experiment, we have been able to amplify pulses up to 80 W of average 

power and duration of 3 ps. The project will use more powerful pump diodes to reach output 

powers in excess of 150 W with excellent beam quality and stability. 

 

Each configuration will give rise to accurate characterizations of the beam parameters. We 

will measure and reconstruct the complex electric field (phase and amplitude) in both the 
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spatial and temporal domain. The polarization will be investigated and in particular its 

sensitivity to thermal load and fluctuations. As a stringent test, a fraction of the amplified 

beam will be injected in a FP cavity to evaluate the maximum coupling efficiency thus giving 

a overall quality factor of the laser system. 

 

All the results of the current R&D projects ―ELSYFO‖ and ―MIGHTYLASER‖ will serve 

directly as inputs to the ThomX project. The dual approach will be maintained up to the final 

tests of injection and locking into the ultra-high finesse Fabry Perot cavity, as described 

below. This ensures a minimal risk for the optical part of ThomX. In spite of technical 

challenges that should not be underestimated, this risk management leads us to be quite 

confident on our ability to reach the outstanding performances expected at the end of the 

project. 

 

3.1.3] Frequency doubling 

 

In § 2.3, it has been shown that using shorter wavelengths an increase in the Compton energy 

cut off is obtained without changing the electron beam energy.  

 

The production of frequency doubled pulses is an interesting option that can be studied and 

even implemented if successful. As far as the laser and amplifier are concerned, frequency 

doubling can be achieved by simply adding a non-linear stage at the output of the main 

amplifier. By using a BBO crystal of the proper length, we can expect efficiencies in excess 

of 50 %. Optimization of the efficiency will be investigated with particular non-linear media 

like periodically poled crystals or new crystals. Also, phase noise will be systematically 

recorded as we expect the noise to be doubled during the process. The risk associated with 

this option is minimal since it does not impact any modifications of the laser and amplifier 

setup.  

 

3.1.4] Laser cavity locking 

 

A schematic view of the optical scheme is shown in Figure 5 . The pulsed laser beam is 

locked to an external Fabry-Perot cavity using a feedback based on the Pound-Drever-Hall 

technique adapted to the pulsed regime [8]. The locking of the 1 ps pulses frequency comb to 

the cavity is guaranteed by a fast digital feedback using three error signals corresponding to 

three different parts of the frequency spectrum. It consists in eight 14-bits ADC channels, 

working at 100 MHz, directly connected to a FPGA with 60 ns latency time (electronic board 

from Lyrtech Company). Digital filters are programmed and correction signals are sent to the 

actuators via some of the eight 14-bits DAC channels, working at 100 MHz, directly 

connected to the FPGA. The choice of a digital feedback system is dictated by the complexity 

of the correction strategy. The various actuators that will be used to correct the laser 

frequency are shown in fig.5. 

The locking of a 1ps pulsed laser beam was the subject of the EUROTEV/FP6 R&D at LAL 

(2005-2008). Using the numerical feedback described above, the LAL group has already 

succeeded to lock a 30000 finesse cavity to a 75MHz Ti:sa oscillator of 500mW average. 

Thanks to this European contract, the LAL group now possesses the requested infrastructure 

and expertise to provide the laser/cavity feedback system for the ThomX project.  
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Figure 5 : Schematic view of the cavity feedback setup. Actuators list: 1=piezo–electric transducer, 2=translation 

stage, 3=pump diode current, 4=photodiode inside the laser head to synchronize the laser pulses to the 

accelerator electron bunches, 5=frequency modulation by changing the distance between the gratings of a 

stretcher. The laser beam is frequency modulated by an electro-optic modulator (EOM) using a modulation 

signal created in the FPGA (6). 

 

The adaptation of the locking system to the new Yb doped 200 W average power laser is one 

of the tasks of the ANR project MIGHTYLASER. This project has started early 2009 and 

consists in a collaboration between the French Laboratories CELIA, LMA, LAL and the 

Japanese KEK Laboratory. R&D tasks of this ANR project cover in particular the following 

subjects, all of them essential for the ThomX project: 
 Locking of a high average power pulsed laser beam to a high finesse Fabry-Perot 

cavity. 

 Design and construction of a four-mirror cavity to be operated in an accelerator 

environment. 

 Development of a mechanical system to match in space and time the pulse laser 

beam and the electron bunches 

 Study of the thermal effects induced by the high average power laser beam inside 

the cavity mirrors.  

 Installation of the whole system in the ATF electron ring at KEK (Japan) and 

measurement of the gamma ray flux produced by laser-electron Compton 

scattering.  

 

The laser amplification and feedback systems developed for the MIGHTYLASER project will 

be adapted to the ThomX project with only small modifications. From the laser system point 

of view, the main difference between the two projects is the laser repetition rate: 178.5MHz 

for MIGHTYLASER and ~40MHz for ThomX. Another difference between the two projects 

will be the Fabry-Perot cavity geometry. The ATF electron ring circumference is a few 

hundreds meters long while the ThomX ring circumference will be of the order of 15m. As 

will be shown in the next section, this difference leads to different cavity geometry 

optimizations. 
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3.1.5] Cavity design 

  

Three kinds of cavity geometry have been envisaged for ThomX: a two-mirror cavity (fig.6a), 

a 2D bow-tie (fig.6b) or the MIGHTYLASER 3D tetrahedron (see fig.7) four-mirror cavities. 

The two-mirror geometry is simpler but it is known to be mechanically unstable when small 

laser waists are foreseen (i.e. ‗concentric‘ geometry). The four-mirror resonators are 

mechanically stable and widely used in femtosecond laser oscillator technology but the round 

trip power loss is higher than in the two-mirror case. In fig 6b, L is the distance between the 

two spherical mirrors, h the transverse distance between flat and spherical mirrors and d2 is 

the longitudinal distance between flat and spherical mirrors. 

 
Figure 6 : (a) two-mirror cavity, the mirrors are spherical. (b) 2D bow-tie four-mirror cavity, the two upper 

mirrors are flat and the two lower ones are spherical. 

 

 
Figure 7 :  Schematic drawing of the MIGHTYLASER non-planar (tetrahedron) four-mirror cavity made of two 

flat mirrors (C and D) and two spherical mirrors (A and B). 

  

We have studied numerically the mechanical stability of the various optical resonator 

geometries. We used the Fermat principle to compute the optical axis for a given set of mirror 

misalignments and we defined the mechanical tolerance as the maximum displacement max 

of the optical axis on the mirror surfaces induced by all the possible angular tilts  and/or 

position shifts r of the cavity mirrors (i.e. five degree of freedom per mirror). We fix the 

laser wavelength to =1030 nm, the cavity round trip length to 8 m, that is the second 

harmonic of a 16m circumference electron ring. We also fix the geometries of the cavities in 
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order to produce a laser waist of ~80 µm (i.e. a laser intensity spot size or r.m.s. of ~40 µm) 

and the radius of curvature R=2 m for the spherical mirrors. We obtain: max /  ~38000 for 

the two-mirror cavity and max /  ~10 for 2D or 3D four-mirror cavities. The two-mirror 

cavity is thus ruled out whereas the four-mirror cavity exhibits a mechanical tolerance that 

can be handled thanks to a careful design of the mirror mounting system. 

 

We also studied numerically the stability of the polarization of the cavity eigenmodes with 

regards to mirror motions and misalignments. Unlike the cavity foreseen for the 

MIGHTYLASER ANR project, the smallness of the ThomX electron ring allows us to 

consider the case h/L<<1 (see fig.6b for the definition of h and L). In this limit, we have 

shown numerically that the polarization of the eigen modes of a 2D cavity are as stable as 

those of a 3D cavity. Fixing L=2 m and h=60 mm, we obtained negligible polarization 

instabilities.  

 

In addition to higher mechanical stabilities, the four-mirror cavities also provide better 

flexibilities for the adjustments of the cavity round trip frequency (which must be matched to 

the second harmonic of the electron ring frequency) and of the laser beam waist (which must 

be kept close to 80 µm). Indeed, it turns out that a length variation between the two flat 

mirrors changes the cavity round trip length without changing noticeably the laser beam 

waist. The laser beam waist can thus be set by tuning the distance between the two spherical 

mirrors independently of the cavity round-trip length. 

 

In summary, 2D or 3D four-mirror cavities with R=2m, a round trip length of ~8 m, h=60 mm 

and L=2 m exhibit a sufficient degree of mechanical stability for the ThomX project. We shall 

show now that the 2D cavity geometry is the optimum choice for the ThomX project.  

 

3.1.6] Mechanical Solution 

 

The constraints for the optical cavity mechanical design are:  

 a high level of stability, i.e suppression of the vibrations 

 a good accessibility to the cavity mirrors  

 a weak impact on the electron beam dynamics 

 mirror positioning system to align the optical axis on the electron trajectory 

 

We consider a four-mirror cavity with a 16 m round trip length. As described in § 3.3.4, the 

laser beam and electron beam collision point is located between two dipoles so that the two 

geometries illustrated in fig.6b and fig.7 can be envisaged. Fig.8 shows an implementation of 

these two geometries in the electron ring. 
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Figure 8 : Implementation of a four-mirror cavity in the electron ring. The mirrors of the Fabry-Perot cavity are 

mounted in the two cubic vessels located on the optical table. 

 

However, in order to minimize the beam pipe aperture, a planar cavity as the one of fig.6b 

must be chosen. Moreover, as shown in fig.9, to further reduce the beam pipe aperture we 

introduce the 2D crossed geometry which presents the same optical properties as the 2D bow-

tie geometry.  

 

 
Figure 9 : Implementation of the bow-tie (top) and crossed (bottom) 2D four-mirror cavities in the electron ring. 

A face view of the beam pipe aperture is shown on the right part of the figure. 

 

The cavity mirrors are mounted on a high quality optical table isolated from the electron ring 

thanks to two bellows. This optical table can further be moved thanks to micrometric 

actuators similar to the home made system used at ATF to align the cavity optical axis of the 
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cavity to the electron beam. The two bellows also offer the possibility to move the optical 

table independently from the electron ring (see fig.10). 

 

 
 

Figure 10 :  Implementation of a four-mirror cavity in the electron ring. 

 

Moreover, to isolate the optical system from acoustic vibration, we use a double vacuum 

chamber as shown in fig.11 and fig.12. The cavity mirrors are mounted inside a cylindrical 

Ultra High Vacuum (UHV) chamber. The actuation system used to align very precisely the 

mirrors is located outside the cylinder inside a primary vacuum vessel. This primary vacuum 

reduces the effect of acoustic perturbations on the actuation system and therefore on the 

cavity mirrors themselves. The motion is transmitted from the primary to the UHV thanks to a 

small bellow. 

 

 
 
Figure 11 :   Schematic view of the motorised system of two mirrors of the cavity. 
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Figure 12 : Schematic view of the motorised system of two mirrors of the cavity (cut view). The mirrors are 

mounted inside an UHV cylindrical vessel and the actuator systems used to align the mirrors are located inside a 

primary vacuum cubic vessel. 

 

The cavity mirrors are oriented very precisely using two tilting actuators per mirror (see 

fig.13). One of the two flat mirrors and one of the two spherical mirrors must be translated 

longitudinally independently. By carefully designing each mechanical element, a gimbal 

mirror mounting system can be constructed.  It can be also shown that transverse alignment 

actuators are not required since the transverse shifts can be handled by the tilting actuators. 

 

 
 

Figure 13 :  Schematic view of the mirror actuators. 
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3.1.7] Cavity mirror coating 

 

Multilayer dielectric coatings will be used for the high reflectance cavity mirrors. From a 

numerical study, it comes out that when laser pulses of time width above 1ps are circulating in 

a high gain Fabry-Perot resonator located in vacuum, the dispersion effects induced by the 

dielectric multilayer are negligible. This is indeed the time pulse width that is needed for the 

applications of ThomX. 

 

The high reflectance cavity mirror will be coated at the LMA (Laboratoire des Matériaux 

Avancés, CNRS) of Lyon. One interesting physical aspect which has been weakly covered so 

far is the thermal effect in the multilayer coating of the cavity mirror. We have already started 

a numerical study of thermal effects in the mirror substrates induced by power absorption in 

the coatings. More in-depth analysis and complete simulation, including thermal lensing and 

mirror deformation, will be carried out within the ANR MIGHTYLASER project. Thermal 

measurements of the mirrors temperature chart will be performed for validation of numerical 

codes. Alternatively, if the necessity arises, other mirror substrates, e.g. Sapphire (for its high 

thermal conductivity) will be considered.  

 

References 

 

1] ―111 W, 110 MHz repetition-rate, passively mode-locked TEM_00 Nd:YVO_4 master 

oscillator power amplifier pumped at 888 nm‘‘,  McDonagh, L., Wallenstein, R., and  

Nebel A., Opt. Lett. 32 (2007) 1259-1261 

2] ―94 W 980 nm high brightness Yb-doped fibre laser‖Fabian Roeser, Cesar Jauregui, Jens 

Limpert, and Andreas TünnermannOptics Express, Vol. 16, Issue 22, pp. 17310-17318  

3] ―Transform-limited 100 µJ, 340 MW pulses from a nonlinear-fibre chirped-pulse amplifier 

using a mismatched grating stretcher–compressor‖ Y. Zaouter1, J. Boullet, E. Mottay and E. 

Cormier Optics letters 33, 1527 (2008) 

4] ―High power Ytterbium-doped rod type three level photonic crystal fibre laser‖, J. Boullet, 

Y. Zaouter, R. Desmarchelier, M. Cazaux, F. Salin and E. Cormier Optics express  16,  17891  

(2008) 

5] ―Generation of 63 fs 4.1 MW peak power pulses from a parabolic fibre amplifier operated 

beyond the gain bandwidth limit‖, D. N. Papadopoulos, Y. Zaouter, M. Hanna, F. Druon, E. 

Mottay, E.Cormier, and P. Georges Optics letters 32, 2520 (2007) 

6] ―Stretcher-free high energy nonlinear amplification of  femtosecond pulses in rod-type 

fibres‖, Y. Zaouter, D. N. Papadopoulos, M. Hanna, J. Boullet, L. Huang, C. Aguergaray, F. 

Druon, E.Mottay,P. Georges, E. Cormier Optics letters 33, 107 (2008) 

7] D. Strickland and G. Mourou, Compression of amplified chirped optical pulses ,Opt. 

Commun. , 219 (1985) 56 

8] J. Jones et al., Stabilization of the frequency, phase, and repetition rate of an ultra-short 

pulse train to a Fabry-Perot reference cavity, Opt. Comm. 175 (2000)409. 

 



  Page 60 sur 136 

CHAPTER 4 : Accelerator 

 

4.1] Injector 

 

To fulfill the specifications of the ThomX accelerator, the linac must be carefully designed 

because most of the performances of the electron beam at the interaction point rely on the 

beam quality at the source, and mainly on the photo-injector. We choose a photo-injector as 

electron gun, rather than the more classical thermoionic electron gun, for two main reasons. 

First, the photo-injector routinely demonstrated its capacity to produce a very low emittance 

electron beam. Second, the use of a thermionic gun would lead to a more complex and longer 

accelerator because it needs a prebunching cavity and a buncher. So our insight is that the 

photo-injector stands for the best technical choice. For this project reliability and cost are 

criteria as important as the performances of the electron beam. Hence, we suggest no 

advanced design of the RadioFrequency (RF) gun or for the accelerating section. We used a 

RF gun very similar to those built by LAL [1] for the CLIC Test Facility 3 (CTF3) at CERN 

[2]. For the accelerating section we used the LIL [3] type traveling wave structure. The 

specifications for the linac are listed in table 1. 

 

Energy 50 MeV 

Charge  1 nC 

Number of bunches 1-4 

Emittance (rms, normalised) < 5  mm.mrad 

Energy spread, rms < 1 % 

Bunch length, rms < 5 ps 

Repetition frequency 50-100 Hz 

Table 1: specifications of the linac. 

 

One must be aware that these parameters are determined for one operating point but the linac 

should be quite versatile. For instance it could be operated at higher energies as 70 MeV 

which will allow the users to reach X rays energies close to the double with respect to the 50 

MeV case, and without noticeable increase of the cost. Nevertheless, to increase the repetition 

rate and the number of bunches, the cost will be higher. At present, increasing the charge up 

to more than 1 nC will not be interesting because the emittance and the energy spread will be 

degraded due to the space charge forces. 

 

4.2]. RF simulations 

 

In 2004 LAL acquired its expertise in the construction of 3 GHz 2.5 cells RF guns for several 

applications. In order to save time and reduce the costs while guarantying a reliable design it 

is convenient to choose one of the two models [1] which have demonstrated their good 

performances in the past. However a small improvement is proposed to reduce the RF power 

consumption as illustrated in fig.1. 
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Figure 1: SUPERFISH 2D (cylindrical symmetry) model of the RF gun, vertical axis stands for the radius in cm 

and horizontal axis is the longitudinal symmetrical axis in cm. 

The main difference of this model with respect to existing RF guns is given by the first iris 

between the half-cell and the middle cell, which is closer to the axis than the second iris. As a 

consequence, the shunt impedance is higher. A quick comparison with a model with 

equidistant irises with respect to the axis (2 cm) showed that emittance is also slightly better. 

Of course in the real model sharp angles must be avoided and the shape of the irises will be 

conical in order to reduce the surface electrical field. However these changes, although having 

an important influence on the RF performances, will not dramatically affect the results of the 

beam dynamics. Hence we will use the electrical field of this simplified model to study the 

dynamics in the linac. RF parameters are summarized in table 2. 

 

Frequency (MHz) 2968 

Q0 15244 

Rs (M/m) 54 

P (MW) 4 

 (µs) 0.81 
Table 2: RF parameters of the gun model shown in figure 1. Q0, quality factor; Rs, shunt impedance, P is the 

peak RF power and  is the rise time of the electrical field in the gun. 

The usual working frequency is 2998.55 MHz, the 30 MHz of difference in the simplified 

model having no influence on the results. The RF power in the table 2 is given for an 

accelerating peak electrical field of 80 MV/m. 

Normally, after the 2D simulations, one usually uses a 3D simulation code, as Ansoft HFSS, 

to determine the dimensions of the cells and of the coupling apertures for the RF power. But 

from the beam dynamics simulations point of view, the 3D RF simulations should not 

influence the results. The opening of the coupling apertures has a negligible impact on the 

longitudinal accelerating field when the cells of the gun are also adjusted to keep a good 

equilibrium of the field in the different cavities of the gun. Besides the guns built at LAL have 

two coupling apertures symmetrically opposed with respect to the longitudinal axis. A fully 

cylindrical coupling allows one to improve the emittance only when one strives to reach the 

extreme limit around 1 mm.mrad. This should be an option for a future upgrade. 

 

4.3]. Beam dynamics simulations 

 

For the beam dynamics simulations we used a version of PARMELA from Los Alamos 

National Laboratory modified by B. Mouton. Actually the linac is very simple since it is 

composed of the RF gun with its solenoids for the compensation of the space charge forces, a 

space of drift and an accelerating section.  
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a) The RF gun 

The performances of the RF gun heavily rely on the choice of the laser parameters. For 

example the shape of the laser transverse profile can have a strong impact on the emittance of 

the electron beam [4]. In the simulations we assumed that the laser which produces the 

electrons from the photo-cathode has the following characteristics: 

-square distribution as a function of the radial coordinate with a maximum radius of 1 

mm. 

-Gaussian distribution as a function of the longitudinal coordinate with a  = 5 ps. 

Actually it would be better to also have a square profile but it is much more complicated (and 

therefore costly) to obtain this than in the transverse plane [5]. 

The peak accelerating gradient was fixed at 80 MV/m and the phase was optimized to get the 

minimum emittance at the output of the gun. Of course the value of the electrical field has a 

huge influence on the performances of the electron beam. A higher value than 80 MV/m 

would be better but hazards of breakdowns will be enhanced. So the chosen value is 

conservative since the guns built for CTF3 reached this value with a good reliability. 

In the simulations the uncertainty depends strongly on the statistics; higher is the number of 

macro-particles better is the precision of the results. However, space charge forces are 

calculated point to point and it is very time consuming. Hence we used 3000 macro-particles 

to contain the 1 nC of charge. The longitudinal characteristics of the electron beam are not 

that much affected (few %). At the opposite, the beam sizes and emittances are artificially 

degraded by at least 20 % due to the relatively poor statistics. Results of the simulations are 

shown in fig.2. 

 

 

 
 

Figure 2 : PARMELA simulations, the length of the RF gun is 20 cm, the downstream distance is a drift space. 

All plots are r.m.s. values as a function of the distance z along the accelerator. a), beam sizes (it is the same 

curve either in x or in y), the dashed line stands for a schematic of the magnetic field; b), normalized emittance; 

c), bunch length; d), energy spread. 
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In the transverse plane, the electron beam is focused down to 0.5 mm, 90 cm away from the 

photo-cathode of the RF gun while the minimum emittance is reached only after 140 cm. The 

role of the solenoid, which the field is localized on the gun (see dashed line in fig. 1a) is 

mandatory to compensate the emittance growth induced by the space charge forces. Otherwise 

the emittance would be 14 mm.mrad instead of 4 mm.mrad at z = 140 cm. The optimum 

value of the magnetic field is 0.27 T. 

In the longitudinal motion, the bunch length is quite stable while there is a linear increase of 

the energy spread as a function of the distance. Hence, to keep up the specifications, it implies 

to position the entrance of the accelerating section below z = 140 cm. 

The choice of the position of the accelerating section must be a compromise between the 

compactness of the accelerator that one requires and the emittance and energy spread 

performances. Several simulations performed as a function of the position of the accelerating 

section showed that the optimum point is at 70 cm from the photo-cathode. 

b) RF gun and accelerating section 

As previously said we chose the LIL accelerating section which is a constant gradient type, 

the overall length is 4.6 m. The required peak electrical field, to bring the electron beam 

energy up to 50 MeV, is 12.6 MV/m. It was demonstrated during the commissioning of the 

LIL accelerator that this value is well inside the range of operability of the section. The RF 

power that one must provide for this gradient is 14 MW. 

The results of the PARMELA simulations are illustrated in fig.3. 

 

 

 
 

Figure 3 : results (r.m.s. values) of the PARMELA simulations for Q = 1 nC, 3000 macro-particles. Laser has a 

truncated Gaussian distribution:  = 5 ps, Tmax = 20 ps, r = 6 mm, Rmax = 1mm. In a), transverse beam size; b), 

normalized emittance; c), energy spread; d), bunch length. 

The plots in fig.3 well illustrate the role of the accelerating section which damps the space 

charge force and leads to a stabilization of the beam characteristics as a function of the 

distance. However there is a small degradation of the emittance toward the end of the section. 

It comes from the RF transverse fields which influence the electron beam more strongly in the 

end of the section than in the beginning because, in that position, the transverse size is bigger 

(see fig. 3a). We tried to insert a solenoid in the end of the section to focus the beam and 
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reduce the emittance but the opposite effect occurred. Anyway this degradation is very small 

with respect to our requirements. The characteristics of the electron beam at the end of the 

linac are summarized in table 3. 

 

Energy (MeV) 50.4 

Normalized emittance ( 

mm.mrad) 

4.2 

Transverse size (mm) 1.2 

Bunch length (ps) 4.5 

Energy spread (%) 0.68 
Table 3: electron beam parameters (rms) at the end of the linac. 

One must be aware that values given in table 3 are true for the over mentioned specific initial 

conditions. For example, if the laser transverse profile is Gaussian instead of flat top the 

emittance could be two times higher. At the opposite, the emittance would be smaller for 

smaller laser spot size on the photo-cathode. Changing the laser radius from 1 mm to 0.7 mm 

would lead to a reduction of 10 % of the emittance but at the expense of the energy spread and 

bunch length which would be enhanced by also 10 %. The only way to get a net gain would 

be to operate the gun at higher gradient. In SASE Free Electron Laser facilities [6], the photo-

injector is routinely operated around 100 MV/m which, together with a smaller laser spot size, 

allows one to reach emittance as low as 1,5 mm.mrad. 

c) Operation at 70 MeV 

An electron beam at 50 MeV requires 18 MW from the klystron. Taking into account the 

power for the RF gun and having enough margin of available power, the best suited klystron 

delivers around 37 MW (Thales, TH2100). It means that RF power would be available to 

bring the electron beam at a higher energy for a negligible additional cost. There are two 

advantages to increase the beam energy. 

First, the geometrical emittance would be reduced thanks to the longitudinal acceleration. 

Indeed the relationship between the normalized emittance,N, and the geometrical emittance 

is: N =  where  represents the Lorenz relativistic factor. To increase the beam energy from 

50 MeV up to 70 MeV leads to a 40 % higher  and therefore a 40 % lower emittance. This 

would finally result in an increase of the total X-ray flux or a reduction of the X-ray beam 

divergence (chapter 2). 

The second advantage is to get access to higher X-ray energies without changes of the laser 

and of the Fabry-Perot cavity used for the Compton collision. Due to the quadratic 

relationship between the X-ray emission and the electron beam energy, the 40 % increase of  

at 70 MeV with respect to 50 MeV leads to a doubling of the energy of the X-ray photons. To 

reach 70 MeV, the accelerating gradient in the section is 18.26 MV/m and the required RF 

power is 29 MW. Results of PARMELA simulations are given in table 4. 

 

Energy (MeV) 70.4 

Normalized emittance ( mm.mrad) 4.5 

Transverse size (mm) 0.9 

Bunch length (ps) 4.5 

Energy spread (%) 0.57 
Table 4: electron beam parameters (rms) at the end of the linac for Q = 1 nC, 3000 macro-particles. Laser:  = 5 

ps, Tmax = 20 ps, r = 6 mm, Rmax = 1mm. 
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Comparing the values in table 3 and 4 shows that performances of the electron beam at 70 

MeV are not so different from those at 50 MeV. The beam size is lower due to the reduction 

of the geometrical emittance as explained above. One can notice also the slight reduction of 

energy spread at 70 MeV. 

4.3.1] Summary 

 

A first simple design of the linac is proposed. It is based on proven technologies and the 

results of the simulations showed that it easily fulfills the specifications. With a small R&D 

effort on the photo-injector it could be possible to reach a very low emittance leading to an 

enhancement of the X-ray source beyond the initial scope. 

 

4.4] Transfer line 

 

Once the linac has been designed, the electron beam is transported through a so called transfer 

line to the storage ring. At the end of the transfer line, the performances (mainly the 

emittance) of the electron beam must be equal to those at the end of the linac. In other words, 

the line must be achromatic in order to preserve the emittance. In addition to this main task, 

the transfer line must fulfill a second function which consists in an adjustment of the bunch 

length for the injection. At the output of the linac, the bunch length is 4.5 ps. Added to a 

charge of 1 nC, tremendous instabilities raising from wake fields would appear after the 

injection in the ring, and they would jeopardize the Compton interaction with the laser beam 

(see § 3.4). To avoid emittance growth the bunch must be lengthen up to 20 ps at least. The 

transfer line is used as a magnetic chicane in which an adequate correlation between the 

longitudinal position of the electrons and its energy leads to a lengthening of the bunch thanks 

to the energy dependant trajectories of the electrons in the dipoles. This effect is well known 

although usually it is used for the opposite goal, e.g. the bunch compression in magnetic 

chicane as in SASE Free Electron Laser [7]. 

As far as the design of the transfer line is concerned, it has been chosen not to lengthen further 

the accelerator. So the storage ring is positioned below the end of the linac and the electron 

beam is transferred to a straight section of the ring via a loop at 180°. The design is illustrated 

in fig.4. 

 

 
 

Figure 4 : schematic of the transfer line between the linac and the storage ring; D stands for a dipole, QV means 

a quadrupole focusing in the vertical plane, QH means a quadrupole focusing in the horizontal plane. 
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Since we strive to introduce a standardization of the components (to reduce the costs) the 

magnetic elements are the same as used in the storage ring. The distance between each 

element is 20 cm except in between the two dipoles in the middle of the line where it is 10 cm. 

To find the values of the quadrupole gradients, we have used a well known code, 

TRANSPORT [8] which is well adapted in this case. This program does essentially a 

multiplication of the transfer matrix of each element. Moreover there is the possibility to set 

conditions, achromatic transport for instance, and the code performs iterative loops to find the 

gradients of the quadrupoles which fulfill the conditions. 

In the input file for TRANSPORT, the elements of the beam matrix are derived from the 

characteristics of the electron beam at the end of the linac (see chapter 3). The values found 

by TRANSPORT for the quadrupoles are collected in table 4. 

 

QVL -2.277 

QH1 1.476 

QV1 -1.585 

QV2 -1.295 

QH2 1.302 
Table  4 : values of the quadrupoles gradient in T/m found by TRANSPORT. 

 

First one can notice that no value of quadrupole gradient exceeds 5 T/m which is the 

maximum sustainable according to the magnetic design of the quadrupoles (see § 4.6.1). The 

results of the beam dynamics with this magnetic configuration is illustrated in fig. 5.  

So, with the settings of the quadrupoles found with TRANSPORT, we succeeded to preserve 

the emittance value at the output of the transfer line. Moreover the bunch length reaches 25 ps 

at the output, fulfilling the requirement for this transfer line. This simulation allows seeing 

that the horizontal beam size becomes very large in the middle of the line, almost 6 mm. 

Therefore it will be necessary to use an elliptical vacuum chamber whose the aperture 

(diameter) would be roughly 100x40 mm
2
 in the interval defined by [QV1,QV2]. Besides, the 

quadrupole focusing scheme could be also improved to reduce the horizontal dimensions of 

the beam along the transfer line. 

After the half turn, the electron beam will be injected into the ring thanks to a dipole at -8°, a 

septum magnet which cancels most of the deviation and finally a kicker integrated in the ring 

to compensate the residual angle (≤ 1°). The design of the dipole and the septum should not 

present special difficulties except that the dipole must be compact because it will be very 

close to the storage ring. On the opposite, the kicker magnet can present some difficulties 

because of the response time that one requires. Indeed, for obvious reasons, the time while the 

kicker is active must be smaller than the revolution time of electrons in the ring, namely 48.5 

ns. This is the basic requirement but an important upgrade should be to operate in a two 

bunches mode in order to enhance the X-ray flux. Therefore the time response of the kicker 

magnet must be faster than 24 ns, and it represents quite a challenge. 
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Figure 5 : results (r.m.s.) of beam dynamics simulations with TRANSPORT as a function of the distance along 

the beamline; a), schematic of the transfer line; b), bunch length; c), horizontal beam size; d), normalized 

horizontal emittance; e), vertical beam size; f), normalized vertical emittance. 

 

Finally, the results found with TRANSPORT must be taken with caution because it deals with 

ideal beams with a Gaussian distribution. In one hand this assumption is true in the transverse 

plane, in the other hand the longitudinal distributions in time and energy strongly differ from 

a Gaussian as shown in fig.6 according to the PARMELA simulations of the linac. It is due to 

the on crest acceleration which introduces a non linearity of the electron energy as a function 

of its longitudinal position with respect to the RF phase. 
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Figure 6 : energy spectrum of the electrons at the output of the linac. 

 

With the optics found with TRANSPORT, the dispersion is normally corrected but only for 

the electrons which are inside the Gaussian distribution. The electrons outside this limit are 

not corrected and can lead to a blow-up of the horizontal emittance when the latter is 

statistically calculated in r.m.s. value as in PARMELA. To overcome this drawback there are 

two possibilities: either transport the beam like it is and accept that roughly 10 % of the 

charge will not participate to the Compton interaction either accelerate the beam off crest in 

the linac to get a Gaussian distribution. In the first option, it could be judicious to install a 

collimator, between D3 and QV2 for example, to clean properly the beam instead of 

propagating useless particles. In the last option, one can expect degraded performances since 

the beam with the best quality is obtained with the on crest acceleration. 

 

4.5] Ring optics and beam dynamics 

 

4.5.1] Main requirements 

 

The high X-ray (<50 keV) flux has to be of the order of 10
13

 ph/s and relatively constant over 

time. The flux depends on the characteristics of the electron bunch and of the laser pulse (see 

§ 3.4.12). In the standard operation, the ring is filled with only one bunch. With 1 nC electron 

bunch charge, 50 MeV and about 20 to 30 mJ in the laser pulse (@ 1.06 µm), the constraints 

at the Interaction Point (IP) are: 

1. Transverse r.m.s. size of the electron beam less or equal to 70 m (see § 4.5.9) in 

transverse planes leading to low beta function of 0.1 m with an r.m.s. geometric 

emittance of 50  nm.rad injected from the linac. 

2. Zero dispersion function at the interaction point to avoid beam size widening while the 

bunch energy spread is increasing as well as potential synchro-betatron coupling 

resonances. 
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3. Bunch length of about 20-30 ps : short enough to achieve an efficient X-rays 

production with a laser crossing angle of 2°, and long enough in order to reduce the 

collective effects (beam pipe impedance, Coherent Synchrotron Radiation, particles 

inner scattering ...) 

 

Beside these specific IP constraints, general layout constraints are: 

4. Ring circumference as short as possible with enough straight sections space to 

accommodate the IP, the RF cavity, the injection and possible other equipments such 

as kickers for longitudinal and transverse feedback systems (see § 4.5.7). 

 

5. Some flexibility for the optics and the working point 

The first difficulty with the low energy ring is that there is no short term damping. At 50 

MeV, it takes about few second to damp one e-folding by synchrotron radiation. 

Consequently, the injected bunch has to be on axis (no accumulation) and is very sensitive to 

every kind of mismatch in terms of positions and sizes. Mismatch will lead to oscillation and 

emittance growth inducing X-ray flux reduction. The second difficulty that is met at low 

energy is the high sensitivity to the wakefields. A careful design of the vacuum chamber has 

to be worked out and the impact of wakefields including Coherent Synchrotron radiation 

(CSR) and Longitudinal Space Charge (LSC) has to be investigated as well as a careful HOM 

care (see § 4.5.7). In addition, the Compton interaction has an effect on the electron bunch 

turn after turn and tends to deteriorate its characteristics by cumulative recoil effects. 

Accordingly, the bunch has to be stored in a sufficiently short time before a too large 

deterioration. The bunch is then ejected and replaced by a new, fresh one from the linac. 

 

4.5.2] Linear optics 

 

Several optical structures are possible for this type of compact ring. The most popular for low 

energy Compton machines is a Chasman Green or a Double Bend Achromat (DBA) where the 

ring has only four dipoles. For this type of structure two main sections are required to 

accommodate the injection and RF cavity, and for the IP. It requires relatively strong 

sextupoles to correct the chromaticities, resulting in additional harmonic sextupoles in the non 

dispersive sections to reach a comfortable dynamic aperture. 

To favour flexibility, the first choice turned into a ring with four fold symmetry Double Bend 

Achromat (DBA): eight dipoles and four long straight sections. To improve the compactness, 

the next step was to reduce two opposite long straight sections by removing quadrupoles and 

reducing the free space between the two adjacent dipoles (see fig.7). With this optical 

structure, there are two possibilities for the optical cavity integration:  

a) In the long straight section (see fig.8a) 

b) In short straight sections between adjacent dipoles (see fig.8b).  

Case a) allows the standard 3D cavity designed for implementation on ATF to be used. 

However, including specific strong focusing, there are difficulties to integrate the other 

equipments (RF cavity and injection) in the remaining opposite long straight section. In case 

b), this constraint is lifted and the two long straight are fully dedicated for injection and RF 

cavity. A planar optical cavity (2D) located in between the adjacent dipoles naturally fits the 

dipole bore gap.  In addition, the optical cavity mirrors can be accessed more easily being 

located out of the ring and Compton extraction cone is close to IP (thanks to the dipole 
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curvature). In the following, the configuration b) will be assumed as a baseline while the 

configuration a) will be considered only as an option. 

 

 

Figure 7 : Ring sketch:  Red dipoles, blue: quadrupoles, black sextupoles, green: correctors 

 

a)  

  

          b) 

Figure 8 : a) Standard IP configuration, b) IP inserted in adjacent dipoles 

 

4.5.3] Optics optimisation 

 

The optics has been optimized with the code BETA [9]. With two long (1.2 m) and two short 

(0.2 m) straight sections the optics presents a two fold symmetry. The focusing of the four 

arcs is provided by quadruplets having the advantage to allocate free space in between for 
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sextupoles, correctors etc… . Four sets of doublets complete the focusing in the long straight. 

The ring is composed of 8 dipoles, 24 quadrupoles and 12 sextupoles. The circumference of 

the ring is 14.57 m providing a revolution frequency of 20.7 MHz. With a 500 MHz RF 

frequency, the harmonic is 24. 

 

Circumference  (m) 14.47  

Nominal energy (MeV) 50 

Filling mode 1 bunch 

Betatron tunes x, z 3.4 / 1.4 

max x,z (m) 11 / 11  

Dispersion max (m) 0.9 

x,z and dispersion @ IP (m) 0.1 / 0.1 / 0 

Momentum Compaction Factor 0.0148 

RF frequency (MHz) 500 

RF harmonic 24 

RF voltage  (kV) 300 

Period (ns) / Revolution frequency (MHz) 48.5 / 20.7  

Natural chromaticities  -3.2 / -8.2 

Dipole number, family & field (T) 8  / 1  / 0.5 

Quadrupole number, families & gradient (T/m) 24 / 6 / <3  

Sextupole number, families & gradient (T/m
2
)  12 / 2 / <30  

Table 5 : Main parameters of the lattice 

 

The general parameters of the ring are shown in Table 5. The optical functions along the ring 

are illustrated in fig.9b. The dispersion is cancelled for both long and short straight sections 

(RF, injection and IP). The beta functions down to 0.1 m at IP provide a waist of 70 m with 

an injected emittance ε of 50 nm.rad (γε =  5 mm.mrad) in both vertical and horizontal 

planes. Taking into account the constraints associated with optical functions, chromaticity and 

dynamic aperture, the operating point was chosen with tunes: x=3.4 and z=1.4 (see fig 9a). 

This corresponds to a difference resonance (x-z=n) which is generally convenient for round 

beam (i.e.: same emittance in Horizontal and Vertical planes). There is still enough flexibility 

to vary the tunes over +- 0.2 without spoiling the main characteristics (see fig.9b). 
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Figure 9 a,b : a: Tune diagram. Resonances of order 2 (black), 3 (red), 4 (dark blue) and 5 (light blue) are 

represented. The cross corresponds to the working point. b: Optical functions along the ring. The horizontal 

betatron functions are represented in red, vertical blue and green the dispersion is shown. 

Natural horizontal and vertical chromaticities are respectively -3.2 and -8.3.  Chromatic 

corrections are achieved by means of 12 sextupoles (2 families) in the dispersive sections 

arranged symmetrically in the achromat, one in the center of the quadruplet and two others 

adjacent to the dipole. Without specific optimization, the dynamic aperture is large enough 

about 50 times the r.m.s. size of the transverse injected beam (fig.10a). In addition, it remains 

the same order of magnitude for off momentum particles compared to the nominal energy of 

βx 

 

βx 

 

Dx 

 S (m) 

(m) 

Horizontal tune 

Vertical tune 
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±3% (fig.10a). These simulations only include the sextupole in thin lens model as non-linear 

components. Fringe fields and geometrical higher order multipoles are not included. A special 

attention will have to be paid concerning the fringe field with respect to the short magnets as 

well as their close neighbour. 

 

Figure 10 a,b : a : Dynamic aperture at injection for different values of dE/E, dE/E=0: black, dE/E=- 3%: blue, 

dE/E=3%: red, b: Tunes variation ( red : x and blue : z ) versus dE/E. 

 

4.5.4] Second order momentum compaction 

 

The strong focusing and the short bend radius of the lattice induced significant second order 

momentum compaction α2. This non-linear term produces an asymmetric longitudinal phase 

space distortion that may severely limit the energy acceptance. It is derived from the slope of 

the dispersion function D'1 and the second order dispersion component D2 : 
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Figure 11 :  Energy acceptance versus sextupoles: Without sextupoles, with chromaticities corrected to zero and 

sextupole strength increased by 25 %. 

 

Cases E_accept Chrom 

Sext off +1  /  -1.8% -3.2  /  -8.3 

Sext on +2  /  -3.6%     0  / 0 

Sext * 1.25 +2.5 / -4.3%  2.4  / 2.8 
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Without sextupoles, the α2 term is very strong and reaches 0.72 (as compared to α1=0.015). 

The RF energy acceptance is then reduced to +1% and -1.8% (fig.11). Setting the 

chromaticities to zero, α2 is then reduced to 0.38 and the RF energy acceptance is doubled to 

+2% and -3.6%. The vacuum pipe energy acceptance is about +3.9% and –3.5% at second 

order. The real energy acceptance is then about 2% which is reasonable to keep the particles 

during the 20 ms cycle with an rms energy spread varying from 0.3 to 0.6% (see. §  4.5.9). α2 

can be further reduced to 0.3 by increasing the sextupole strength by 25%. The RF energy 

acceptance is then +2.5% and -4.3% and the chromaticities are 2.4 and 2.8 in both planes. The 

real energy acceptance is then also increased to about 2.3%. In this later case, the dynamical 

aperture is slightly reduced by 15%. 

 

In summary the real energy acceptance including the vacuum pipe limit (±30 mm in 

horizontal) and the RF limit versus the sextupoles strength are: 

 

Cases : Sext off Sext on Sext*1.25  

E acceptance ~1 ~2 ~2.3 % 

 

4.5.5] Integration of the optical cavity 

 

In this ring configuration, the 2D optical cavity described in previous chapters fits naturally in 

the short section (see fig.12). The laser frequency is the harmonic 2 of the revolution 

frequency of the bunch in the ring, i.e. 41.4 MHz. This leaves a possibility of storing two 

bunches in the ring to increase the Compton flux. On the other hand, the mirrors of the optical 

cavity are located outside the path of electrons, thus acting on the mirrors changes without 

affecting the ring integrity. In addition, extraction of the Compton cone can be made closer to 

point source than in the case of option a (cavity on a large section) (see fig.12). 

 

 

Figure 12 : Schematic location of the 2D laser cavity. 
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4.5.6] Orbits 

 

Closed orbits induced by misalignment are plotted in fig.13. The main contributions are 

quadrupole transverse displacements as well as dipole tilt around the s axis. With respectively 

200 µm and 0.5 mrad r.m.s., the peak closed orbits reaches about 4 mm r.m.s. in both planes. 

A set of 8 correctors and 12 Beam Position Monitors (BPM) located along the machine enable 

to reduce closed orbit amplitudes down to 0.2 mm r.m.s. in both planes. The corrector 

strengths are moderate with maximum r.m.s. deviation of 0.3 mrad. 

 

Figure 13 : Closed orbits (left) and corrected closed orbits (right) 

 

4.5.7] Collective effects 

 

At low energy, the electron bunches are sensitive to various kind of self electromagnetic 

perturbations that act turn after turn in the ring. They are of different types: 

1. Geometrical, from the surrounding vacuum vessel as Resistive Wall (RW), RF cavity 

and various discontinuities : bellows, BPM, flanges, etc ... 

2. Space charge forces 

3. Coherent Synchrotron Radiation (CSR) 

The interaction is described by wake fields in the time domain or impedances in the 

frequencies domain. In the longitudinal space, this interaction affects the bunch energy and 

time profiles leading to distortions, emittance growth or even instabilities and beam loss 

above a given threshold. With a large spectral covering, they are known as broadband 

instabilities. The two relevant parameters for the instabilities threshold are the bunch charge 

and length. The interaction is proportional to the charge (or current) and with different order, 

inversely to the length of the bunch.  

The two following plots in fig.14 represent the different order of magnitude of the 

longitudinal wakefields over one turn at 50 MeV along the 1 nC Gaussian bunch with a r.m.s. 

length respectively of 4 and 20 ps (1.2 and 6 mm). The different longitudinal wakes are: 

 Shielded CSR [10] with a full beam pipe height of 40 mm, dipole field of 0.5 T and a 

curvature of 0.352 m. 

 Longitudinal Space Charge (LSC). 
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 Resistive Wall (RW) [11] with a full beam pipe height of 40 mm and an electric 

conductivity of 1.4 10
6
. 

 The vacuum vessel broadband component including 8 BPM, 12 Flanges and 12 

bellows based on the synchrotron SOLEIL type [12] (see appendix 2). 

 The 500 MHz ELETTRA [13] type cavity broadband component (see appendix 2). 

 

Figure 14 : Wake field distortions along a 1 nC Gaussian bunch at 50 MeV for a bunch length of 4 ps (left) and 

20 ps (right). 

In the hierarchy of strength, the dominant wake is clearly the CSR effect. The shielding has 

no effect at 4 ps and only partial at 20 ps r.m.s. bunch length. The CSR shielding 

configuration is not favourable with a short radius (0.352 m) and a quite large vertical 

aperture in the dipoles (40 mm). At 4 ps r.m.s. length, the relative wakes distortion is very 

strong and reaches few 10
-3

. They are reduced to 10
-4

 at 20 ps.  The RW, LSC and vessel 

impedances are small thanks to a large beam pipe. Moreover only very few components as 

bpm, flanges etc ..., (and no tapers) are known to bring large wakes. In counter part, the RF 

cavity impedance may have a role. Based on this set of longitudinal wakes field, a simulation 

has been carried out in order to evaluate some threshold instabilities in the short range 

domain. The 2D longitudinal simulations are done as follow: 

1. Track over turns a collection of macro particles with a starting distribution (i.e. : 

Gaussian) including sine wave RF pass and linear ring pass. Apply at each turn the 

previous set of wakefields (energy kick) over the bunch density histogram. 

2. Start with a quite long bunch length and progressively (adiabatically) apply an 

artificial damping to shorten it. Observe the bunch behaviour.  

The results are plotted in fig.15. The ring settings present a momentum compaction of 0.015 

and a RF voltage of 300 kV at 500 MHz. With 1 nC charge at 50 MeV, the bunch behaviour 

exhibits three different cases depending on the r.m.s. bunch length: 

1. For r.m.s. lengths longer than 40 ps, the collective effect does not affect noticeably the 

longitudinal behaviour. The r.m.s. sizes are still equivalent to the zero current line. 

2. For r.m.s. lengths between 20 to 40 ps, the length tends to lengthen under the 

collective effect but the emittance is kept stable without noticeable enlargement. The 1 

nC bunch is stable and profiles slightly differ from the initial low charge density. 
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3. For r.m.s. lengths shorter than 20 ps, the behaviour becomes clearly unstable. It 

exhibits oscillations in the Length-Energy spread chart in parallel with large emittance 

increase. 

 

Figure 15 : Left: Bunch relative energy spread versus bunch length. Right: Relative longitudinal emittance 

versus bunch length. 

Summarizing, to prevent from short range longitudinal instabilities with 1 nC at 50 MeV, it is 

advised to have a bunch length longer than 20 ps rms. Long range or multibunch instabilities 

are not addressed here. 

 

4.5.8] Injection matching 

 

The difficulty with direct on axes injection operation is the high sensibility to every kind of 

mismatch of the injected bunches. It is true for the six mean positions of the 6D phase space 

and for the 21 associated r.m.s. dimensions. While in the transverse plane, a standard 

dedicated transfer line optic can fit the beta functions at the injection point of the ring          

(see § 4.4) a special attention has to be done for the longitudinal case. 

Regardless to any kind of collective effect, the relation between the relative energy spread ζE 

and the bunch length ζs in a ring is given by: 

4.1) 
s

RFring

E
σ

Er

Vk
=σ

56

,      
c

f π
=k

ring

ring

2
 ,       nceCirconfereα=r 

56
 

with Vrf the voltage, fring the RF frequency, E the energy, c the light speed and α the ring 

momentum compaction factor from the one turn matrix. 

Neglecting space charge forces in the linac, the relative energy spread is directly given by the 

RF voltage curvature at null phase (max acceleration): 
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With a 3 GHz linac frequency, the relative energy spread increases rapidly and quadratically 

with the bunch length. With 4 ps r.m.s. and 3 GHz, the energy spread is already about 0.5 % 

at the exit of the linac. There are two ways to match both sizes (fig.16):  
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1. Reduce the ring momentum compaction toward very low alpha values with the 

inconvenient of transverse position instability induced by inherent RF phase-energy 

jitter 

2. Reduce the linac pulse length towards ultra short bunches with strong limitation in 

charge due to high electron density and possible emittance degradation 

 

 

 

 

 

 

 

 

 

 

 

Figure 16 : Relative energy spread versus bunch length out of the linac and in the ring for both nominal and a 

low alpha configuration. 

To overcome this difficulty, and to lengthen the bunches to reduce the instability risks, some 

longitudinal beam manipulations are necessary between the exit of the linac and the ring 

injection point. By means of a chicane and linac phasing (off crest acceleration) we are able to 

lengthen the bunches. The induced energy chirp has to be removed downstream by mean of a 

low voltage RF cavity added after the chicane (RF redresser) and phased on maximum slope 

(no acceleration). 

 

 

 

Figure 17 : Sketch of beam manipulation for longitudinal injection matching 

 

 

 

low alpha 
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Figure 18: Chart of beam manipulation in the relative energy spread versus beam length space 

 

The set of relations to solve (up to second order) between the linac phase and bunch length, 

chicane compression factor r56, RF redresser phase and voltage, and ring parameters are given 

by: 
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A possible solution that lengthen the electron pulse from 5 to about 20 ps with the nominal 

momentum compaction of the ring (0.015 or r56=-0.22m) is listed in the table 6. 

 

Linac 50 MeV          3 GHz                 phase = -6° 

Chicane Compression factor r56 = -0.3 m 

RF redressor 2 MV            3 GHz                 phase = 90° 

Ring  300 kV        500 MHz                r56=-0.22m 

Table 6 : Linac and transfer line parameters for ring beam matching 

Chicane 

Ring matching 

Linac phasing 

RF redressor 



  Page 80 sur 136 

With 6° phase off crest shift, the energy loss is small in the linac. At the entrance of the ring, 

the longitudinal r.m.s. sizes of 20 ps and the 0.3% relative energy spread match the ring 

configuration at zero current. The longitudinal phase space along the transfer line as well as 

the length profiles are plotted in fig.19 a,b. 

 

 

 

 

 

 

 

 

 

 

 

Figure 19a,b : a:  Longitudinal phase space (length vs E-spread) along the transfer line. b: Bunch current profile. 

In order to validate this matching process together with the presence of longitudinal collective 

effects, a 6D tracking simulations has been carried out on the first 0.5 ms (about 10.000 turns) 

after ring injection. The simulations follow the same scheme than the 2D case except that the 

lattice is now subdivided in ~200 steps per turns. At each step, depending on the concerned 

wakefields, an energy kick distribution is applied to the bunch. The ring settings are a 

momentum compaction of 0.015 and a RF voltage of 300 kV at 500 MHz. The transverse 

dynamic includes sextupoles tuned for zero chromaticities. The main results are plotted in the 

following figures.  

In fig.20 the densities histogram, as well as the longitudinal phase spaces respectively at 

injection and 10.000 turns later, are presented. It mainly exhibits a fast mixing from initial 

curved shape toward quasi elliptical symmetry provided by the non-linear collective effects. 

Beside the density profile tends to be symmetric and Gaussian-like. 

In fig.21 the r.m.s. emittances, as well as bunch length and relative energy spread all along the 

10.000 turns, are plotted. The two transverse emittances remain unaffected while the 

longitudinal one is slightly increased by about 20 % in the very first turns. It is induced by a 

remaining profile mismatch due the apparent collective voltage already pointed out. In 

addition, the bunch length and energy spread exhibit a residual dipolar oscillation. These 

simulations confirm that it is possible to inject a 1 nC 20 ps bunch length at 50 MeV without 

prohibitive emittance deteriorations from transfer line beam manipulation with respect to 

short range longitudinal instabilities. 
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Figure 20 : Longitudinal bunch density (up) and phase space (down) at injection (left) and after 10.000 turns or 

0.5 r.m.s. (right). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 21 : R.m.s. normalized emittances (left) and rms bunch length and relative energy spread versus turns 

(right) 
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Appendix 1 

 

Detailed element list of the ring lattice 

Element Length(mm) Element Length(mm) 

Straight section 600 Straight section 100 

HorizontalBPM - Quadripole 150 

VerticalBPM - Straight section 70 

Quadripole 150 Sextupole 60 

Straight section 200 Straight section 70 

Quadripole 150 Quadripole 150 

Horizontal Steerer - Straight section 200 

Verticall Steerer - Horizontal Steerer - 

Straight section 200 Verticall Steerer - 

Dipole 276 Quadripole 150 

HorizontalBPM - Straight section 50 

VerticalBPM - Sextupole 60 

Straight section 120 Straight section 120 

Sextupole 60 HorizontalBPM - 

Straight section 50 VerticalBPM - 

Quadripole 150 Dipole 276 

Straight section 100 Straight section 100 

Table 7 : description of the elements of a quarter of the ring.  

 

Appendix 2 

 

Modelisation of the 500 MHz ELETTRA type RF cavity with Gdfidl [14]. The corresponding 

longitudinal impedance and broadband wakes fitted model are also plotted. 

 

Figure 22 : Left: Sketch of the cavity cell. Right: longitudinal impedance and broadband wakes models.  
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 Broadband model RL model 

 R Q F R L 

500 MHz RF 92 Ohm 0,38 0,87 GHz 50 Ohm 0,0565 nH 

Table 8 : Broadband (Resistance, Quality and frequency) and RL (Resistance and inductance) data model of 

cavity longitudinal impedance 

 

The two following plots present the longitudinal impedances (and fitted broadband models) 

for SOLEIL BPM and flanges as example. 

 

 

 

Figure 23 : Left : Sketch of the cavity cell. Right: longitudinal impedance and broadband wakes models. 
 

 

4.5.9] Impact of Compton back scattering on the longitudinal and the transverse dynamics of 

the electron beam 

 

In absence of Compton scattering, Synchrotron Radiation (SR) excites and damps 

longitudinal and transverse oscillations leading to equilibrium. The excitation originates in the 

random character of the photon emission that takes place in the dipoles, while the damping is 

provided by the restoration of the lost energy entailed by the radiation. When the electron 

beam interacts with a laser beam and produces X-rays by Compton Back Scattering (CBS), 

this electron beam-laser interaction also generates an excitation and a damping in analogy 

with the synchrotron radiation effects.  

Let us also recall that, from a general point of view, the damping times of the various 

oscillation modes are given (within a factor two) by the time it would take for an electron to 

loose all its energy. 

 

Longitudinal energy oscillations. We assume that E0, the electron energy, is 50 MeV (see 

table 9 which resumes the parameters). Let E be the energy loss due to the synchrotron 

radiation and El the energy loss due to the Compton interaction, and ETErs  00  and 

ll ETE  00  being their respective damping times. If one of the two effects is negligible in 

respect to the other then the beam damping time will correspond to the one of the 
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predominant (either SR or CBS). At the beginning of a ring refill, the energy loss due to the 

CBS is given by: 
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where Fc is the initial X-ray production rate, To is the period of the collisions between the 

electron bunch and the laser pulse, Ec is the mean value of the scattered photons‘ energy, and 

Ne is the number of electrons in the bunch. In our case, it turns out that the energy losses per 

turn are comparable for CBS and SR. Thus rs et l  are comparable. The global damping time 

 whose value is 0.6s results from the combined effects and is given by the relation 

   lrs  /1/1/1  . Concerning the SR excitation process or the CBS one, their strength is 

proportional to the mean square of the energy losses accompanying each event (photon 

emission or back-scattering). This quantity is considerably larger in the CBS case. The 

excitation of energy fluctuations is totally dominated in ThomX by the CBS process. Then, 

the energy spread within the electron bunch increases rapidly, the bunch lengthens and the 

flux decreases as illustrated by fig.24. 

The equilibrium value of the energy spread resulting from both effects is about 1.4 % once it 

is stabilized by damping. 

 

a)  

 
  b) 

         
Figure 24 : Dynamics of the longitudinal/energy oscillations in presence of CBS and SR. The calculation does 

not take into account IBS and Touschek effects. a) Bunch length and energy spread, b) X-ray production rate 

versus time. 
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Obviously the energy losses due to CBS will be compensated by the RF cavity as well as 

those due to SR, and the synchronous phase of the cavity is obtained by taking both effects 

into account. 

 

Electrons characteristics 

Ne Number of electrons / bunch 6.25 10
9
 

xe, ze Rms transverse size 70 m 

te Rms longitudinal size 6 mm / 20 ps 

el Angle between electron bunch trajectory 

and laser one 

0.035 rad / 2° 

Laser characteristics 
Nl Number of photons/pulse 1.6 10

17
 

xl, zl Rms transverse size 40 m 

tl Rms longitudinal size 1.5 mm / 1 ps 

l Wavelength 1.06 m 

Compton Back Scattering (CBS) radiation characteristics 

th Thomson cross section 6.66 10
-29

 m² 

Fc Initial flux 1.2 10
13

 photons /s 

El Energy loss per electron and per turn 2.3 eV 

Ex Maximum/Mean energy of CBS radiation 50/25 keV 

T0 Period 48 ns 

xcbs Transverse damping time 2.1s 

scbs Longitudinal damping time 1.1s 

ecbs Energy spread 1.8% 

xcbs Normalized emittance 6.9 10
-8

 

Synchrotron Radiation (SR) characteristics 

E0 Energy loss per electron and per turn 1.6 eV 

rs Critical energy of SR radiation 0.8 eV 

xrs Transverse damping time 3.1 s 

srs Longitudinal damping time 1.5s 

ers Energy spread 7 10
-5

 

xrs Normalized emittance 1.5 10
-9

 

Equilibrium values of both SR and CBS 

x Transverse damping time 1.2s 

s Longitudinal damping time 0.6 s 

e Energy spread 1.4 % 

x Normalized emittance 6.5 10
-8

 
Table 9 : SR and CBS characteristics in the ThomX ring. 

 

Transverse oscillations. The transverse motion of the electrons is also affected by the CBS. 

As in the SR case, the normalized transverse emittance due to CBS is damped to its steady 

state value [15] 
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where c is the Compton wavelength of the electron (~2.43 10
-12

 m) and * is the beta 

function value at the interaction point (we assume a round beam). Since * is assumed to be 

low in order to maximize the X-ray production rate, the normalized emittance would be 7 10
-8

 

 m rad (which is lower than the emittance of the beam produced by the linac: 4 10
-6
 rad m). 

Similarly to the case of the longitudinal motion, the contributions of the SR and of the CBS to 

the transverse oscillations damping are about the same. The important point to note here is 

that the excitation of transverse (i.e. betatron) oscillations by the CBS is comparatively quite 

weak because the recoil effects due to each process take place at the interaction point where 

the dispersion function is close to zero. 

 

It follows, from the above description of the impact of the Compton back scattering process 

on the ring dynamics, that the injection of a fresh bunch must be made every 20-50 ms in 

order to maintain a high level of the X-ray generation. 

 

4.5.10] Touschek effect 

 

The Touschek effect [16] originates in collisions between two particles that belong to the 

same bunch in a storage ring. Such a collision produces an energy transfer between the radial 

motion (betatron oscillations) and the longitudinal one (synchrotron oscillations). If the 

particles‘ final energies differ too much from the ring nominal energy, these particles are lost. 

Thus this effect puts a limit to the beam lifetime; it depends in a sensitive way on the particle 

density within the stored bunch and on the ring energy acceptance. 

The ThomX storage ring presents some peculiarities regarding this effect: (i) the stored 

bunches have a high particle density; (ii) the energy acceptance of the ring is large since the 

momentum compaction factor is small (close to 1.5 %) and the RF peak voltage is 300 kV; 

(iii) the beams are stored for very short periods of time (about 20 ms), therefore the Touschek 

effect becomes harmful only if it restricts the beam lifetime to less than a second. In fact, in 

the case at hand, the relevant figure is not the loss rate but the (higher) rate at which internal 

collisions lead to such a large increase of the synchrotron oscillation amplitudes that, 

afterwards, the particles hardly participate in the X-ray production (because, most of the time, 

these particles miss the photon bunch in the interaction region).  

Let dN/dt be the number of electrons that receive, each second, an energy kick such that they 

undergo synchrotron oscillations with a 8 mm amplitude or more (i.e. larger than the total 

interaction region length).  This 8 mm amplitude corresponds to an energy deviation E/E 

close to .4%.  An analytic calculation shows that the time constant defined by 
1

= (1/N) 

dN/dt which characterizes this process is on the order of a minute right after injection, and 

then becomes longer because the bunch density decreases. Thus the Touschek effect is not 

expected to introduce a significant limitation to the X-ray yield. 

 

4.5.11] Intra-beam scattering 

 

Multiple Touschek effect, also called intra-beam scattering (IBS) [17] contributes to the 

excitation of betatron and synchrotron oscillations. It consists in Coulomb scattering events 

that occur at a high rate but with comparatively large impact parameters, i.e. impact 

parameters which are on the order of the mean distance between a stored electron and its 

closest neighbours. Each one of these collisions produces a small energy-momentum transfer. 

In most cases the mean statistical effect of these transfers are only significant in the {E, s} 

synchrotron space. An analytic calculation of this effect can be performed but the energy 

excitation that it produces must be combined with the ones originating in the synchrotron 
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radiation and the X-ray production. Furthermore these excitations lengthen the stored e

 

bunch; as a consequence the mean bunch number density decreases and so does the IBS rate 

during a storage cycle. Fig.25 shows the relative importance of these three sources of 

excitation of the synchrotron oscillations, while fig.26 shows the increase of <E> , the r.m.s. 

of the energy spread, during a 20 ms storage cycle. 

 

 
Figure 25 :  The blue line shows the fractional contribution (in %) of the synchrotron radiation (RS) to the 

excitation of synchrotron oscillations in the Thom-X ring. The red line shows the sum of the RS and the X-

production contributions to this excitation, while the Intra-beam scattering (IBS) contribution is the complement 

to 100 % above the red line. 

 

 
Figure 26 :  Growth of the energy spreadE/E0 in %) during a 20 ms machine cycle. 

 

4.5.12] Vacuum effect 

 

Coulomb scattering of the electrons on residual gas molecules induces an increase of the 

emittance of the circulating beam. This is proportional to the average value of the ring beta 

functions and to the partial pressure. Moreover it varies as the square of the atomic number of 

the considered molecule, and it is inversely proportional to the energy of electrons. With a 
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low energy of 50 MeV, it is therefore essential to keep a low pressure to minimize the 

increase of the emittance. Fig.27 shows the growth of the transverse emittance in a period of 

20 ms (50Hz injection) for the Nitrogen and Hydrogen cases respectively. Considering the 

Nitrogen at a pressure 8 10
-7

 Pa, the emittance increases by 4 10
-6

 mrad, which means that the 

original value, being 5 10
-6

 mrad, is doubled. To minimize this emittance growth due to 

coulomb diffusion on the residual gas, a pressure lower than 3 10
-7

 Pa must be maintained. 
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Figure 27 : Normalized emittance increase versus pressure considering a) Nitrogen, b) Hydrogen 

 

4.5.13] Ions instabilities 

 

The beam-ion instability [18,19,20] is due to the ionization of the molecules of the residual 

gas. Ions can then be trapped by the electron beam potential. This instability can strongly 

damage the quality of the electron beam inducing for example: coherent instability, tune shifts 
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and broadening, reduction of the beam lifetime (pressure increase). In a first step, we estimate 

here the coherent and incoherent tune. 

The critical mass above which the ions are trapped is: 
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This critical mass in units of proton mass is in the order of the unity for the ThomX ring. This 

expression considered the most general case of the CO molecule, for which the ionization 

cross section is larger than others residual possible molecules. With such a critical mass, all 

ions can be trapped in our case.  

The consequences on the stored beam depend on the neutralization factor ion, which 

represents the number of ions with respect to the number of stored particules. The 

accumulation point of the neutralizing ions is given by a number of ions equal to the number 

of stored particules then ion=1.  

The electron beam is submitted to the electric field of the ion distribution. As a consequence 

the local quadrupole strength is modified inducing a coherent tune shift. It can be estimated 

with the following formulae [21]: 
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With re the classical radius of the electron, R the ring circumference, and x the mean 

transverse size; moy the mean betatron function along the ring,  the Lorentz factor and de the 

mean number of electrons per volume units. By considering moy=3m, x=x=0.6 mm and a 

fully neutralization (the worst caseion=1), the tune shift is 0.6, estimated from (4.7). 

There is also an incoherent effect (tune spread) due to the change of betatron frequency of 

single particle, which is estimated twice the coherent tune shift, 1.2 with fully neutralization 

[22]. With clearing electrodes, or leaving a period for ion clearing between different injections, 

the neutralization factor can be reduced to 1% [18, 19]. Then, the tune shift is 0.006 with a 

tune spread of 0.012.  

The ion effect on tune shifts can be consequent on the beam and must be refining in the future. 

Nevertheless, as already said, the number of ions can be reduced (reducing the neutralization 

factor to a few percent) leaving time between the extraction and the reinjection of the beam or 

by introducing clearing electrodes [20,22,23]. Moreover the ions instabilities can be cured by 

means of feedback already developed [19]. 

 

4.6] Equipments 

 

4.6.1] Magnets 

A design of the different magnets has been done using the RADIA code [24]. They can be 

improved in terms of size in view of saving cost, weight and radial space. The detailed pole 

shape as well as multipole components has to be further investigated with respect to the non 

linear beam dynamics. Their main characteristics are listed in the table 10: 
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 Field Current 

per coil 

Gap / 

Radius 

Iron 

length  

Weigth Cooled 

Dipole 0.5 T 8000 A turns 40 mm 300 mm 260 kG yes 

Quadrupole 3 T/m 360 A turns 50 mm 150 mm 60 kG no 

Sextupole 30 T/m
2 

120 A turns 50 mm 60 mm 10 kG no 

Table 10 : Magnets main characteristics at 50 MeV 

With 0.5 T magnetic field, the dipole deviation is of 45° at 50 MeV. The straight dipole is 

positioned at mid deviation in order to minimise the curved trajectory sagitta. The pole faces 

are rotated to 22.5° providing an effective 0° face to the electron entrance and exit trajectory. 

With gradients of dB/dx= 3 T/m and 0.5 d
2
B/dx

2
=30 T/m in quadrupoles and sextupoles, the 

current densities in the coil are about 0.8 A/mm
2 

in both cases. With a maximum current 

density of 1.5 A/mm
2
 to prevent from cooling, their maximum gradients allow the machine to 

be operated up to 80 MeV.  

 

 

 

 

 

 

 

 

 

 

 

Figure 28 : Dipole yoke and longitudinal field profile 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 29 : Quadrupole yoke and longitudinal field profile 
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Figure 30 : Sextupole yoke and longitudinal field profile 

 

The following graph presents the configuration of the 2 m Fabry-Perot optical cavity inserted 

in the short section between the two dipoles as well as the adjacent sextupoles and 

quadrupoles. The next figure plots the vertical magnetic field along the optical cavity. A 

residual field of 0.017 T is present at the interaction point. At 50 MeV, the large 10 m radius 

should not affect the X-ray flux. In counter part, this fringe field affects the real dispersion 

function, in particular at the IP, not included in the previous linear optics design.  It will have 

to be investigated. 

 

Figure 31 : 2 m Optical cavity and adjacent magnets 
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Figure 32 : Vertical magnetic field along the optical cavity and at IP 

 

4.6.1.1] Power Supplies 

 

In order to specify the ring power supplies characteristics, the coil dimensions and magnet 

numbers are listed in the following tables: 

 Pole size Turn length  Coil size Coil Surf 

Dipole 300 x 80 mm 760 mm 75 x 25 mm 1875 mm
2 

Quadrupole  150 x 30 mm 360 mm 30 x 15 mm 150 mm
2 

Sextupole  60 x 16 mm 152 mm 20 x 4 mm 80 mm
2 

Table 11 : Magnet coil characteristics 

 

 Total  number Families Nb per families Coils in series 

Dipole 8 1 8 16 

Quadrupole  24 6 4 16 

Sextupole  12 2 8 & 4 48 & 24 

Table 12 : Magnet families and coils in series 

 

Neglecting the cabling connexions, the resistivity of each power load are simply given, with 

sigma the copper resistivity (ζ=1.810
-8

 Ohm.m), by the relation: 
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For dipoles, with 75 turns per coils and a hollow conductor section of 18 mm
2
 (5x5 mm  & 

hollow radius 1.5 mm Luvata), the total resistivity is 0.9 Ohm. The nominal maximum current 

is then 106 A at 50 MeV. 

For quadrupoles, with 48 turns per coils and a conductor section of 8.737 mm
2
 (5x1.8 mm 

Von Roll metplat), the total resistivity is 0.7 Ohm. The nominal maximum current is then 3 A 

at 50 MeV. 

For sextupoles, with 20 turns per coils and a conductor section of 3.785 mm
2
 (4x1 mm Von 

Roll metplat), the total resistivity are respectively 0.7 and 0.35 Ohm. The nominal maximum 

current is then 3 A at 50 MeV. 

 

 DC Supply Nb Load Voltage / Current Stability 

Dipole 1 0.9 Ohm 90 V /  100 A 10
-5 

Quadrupole  6 0.7 Ohm 4.2 V / 6 A 10
-5 

Sextupole  2 0.7 - 0.35 Ohm 4.2 – 2.1 V / 6 A 10
-5 

Table 13 : List and characteristic of the ring power supplies 

 

4.6.2] Pulsed magnetic systems for the ring injection 

 

The beam generated by the LINAC has to be injected in a 1.2m long straight section of the 

storage ring. The quadrupole magnet located just before this straight section imposes an angle 

of 8 degrees between the transfer line and the ring straight section. 

 

 
As the needed deviation is important, it has to be realized using two pulsed magnets: a thin 

septum magnet, insuring the most part of the deviation, and a very fast kicker which puts the 

injected beam on axis. 

 

- The septum magnet and its pulsed power supply 

 

The main constraints are to realize a large deviation (6.5-7 degrees), leading the injected beam 

very close to the ring straight section axis, without significant disturbance on the stored beam. 

So the magnet mechanics needs to preserve the stored beam vacuum chamber geometry, and 

its magnetic stray field has to be very small into the stored beam volume. 

An eddy current septum magnet, installed in vacuum, will be convenient for the application. 

The effective magnet thickness can be 3 mm, allowing a small distance between stored and 

injected beam position at the output of the septum magnet yoke. An internal chamber, joined 

to the magnet yoke, extends the ring vacuum chamber and preserves the impedance continuity. 

The deviated beam penetrates by a small hole in this internal chamber. 

8° Storage ring straight section 

120 cm 

10 cm Transfer  line 

Quadrupole magnet 
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Such a septum magnet is very asymmetric: it is driven by a copper loop around the steel yoke.  

In order to contain the magnetic flux, the whole yoke is full enveloped in a copper box, which 

drives the eddy current. On the side regarding the stored beam path, the copper box has a 

reduced thickness, constituting the thin septum. Such a structure is very efficient to avoid 

important magnetic stray field outside the magnet gap, because of the electric shielding 

provided by the eddy current circulating in the copper septum. With a full sine excitation, the 

residual stray field is reduced in duration and amplitude. An additional magnetic shielding 

will be realized with a 0.5 mm thick screen of Mumetal surrounding the internal chamber 

(stored beam path). With such a solution, combining eddy current shielding, full sine pulses 

excitation and high permeability magnetic material, the stray field can be reduced to a very 

low level (a few 10 ppm of the main pulsed field). [25] 

 

Taking a septum opening of H x V = 18 x 15mm (for the injected beam) and an active length 

of 300mm, it results on these parameters for its pulsed power supply: 

 

 Deviation Field integral Field Peak current Charging voltage 

Septum 7 ° (= 122.2 mrad) 20.4 mT.m 68 mT 810 A 96.2 V 

 

- The fast kicker magnet and its pulsed power supply 

 

The kicker magnetic system is mainly dimensioned by: 

- the physical opening necessary for the stored beam : H x V = 60 x 40 mm, 

- the short revolution period of the storage ring : Trev = 50 ns, 

- the very short length of the injected bunch   : t = 25 ps  (in 1 RMS). 

 

Two solutions of kicker were evaluated: a magnetic kicker out vacuum and an 

electromagnetic stripline in vacuum, taking an active length of 500mm for both. 

The kicker magnet is built around a ceramic vacuum chamber which increases the magnet gap. 

The kicker magnet is supplied by a pulsing circuit delivering half sine pulses [26].  

The in-vacuum stripline could permit to adjust the electrode aperture to the needed gap and 

benefit of both the electric and the magnetic fields provided by its travelling wave behaviour 

[27],[28].  

Because of the short revolution period of the ring, 50 ns, the field pulses duration has to be 

less than 50ns and with very fast rising and falling times. Hopefully, with such a very short 

bunch length (25 ps r.m.s.), there is no need to have significant flat top on the pulses.  

Both solutions were evaluated with the aim to keep the supply high voltage below ~25 kV, in 

order to be able to use solid state switches and standard cables and components, with a good 

safety margin. It results that either solution can be chosen, but the strip line option permits 

less deviation:  <1° with a 25 kV pulse voltage. It is also a more delicate technique and the 

transverse field homogeneity is medium. In the case of a magnetic kicker, it is possible to get 

≥1.5° with 25 kV pulse voltage (449 A peak) choosing a half sine excitation of 50ns duration, 

which is convenient for very short bunch length. 

So we retain this solution of a magnetic kicker, of window-frame transverse geometry, 

including a 6mm thick ceramic vacuum chamber. The ceramic chamber has to be coated 

inside by a thin deposit of Titanium, in order to insure the electric continuity from flange to 

flange. This deposit thickness has been calculated so as to not deteriorate the fast pulse shape 

and to avoid thermal rising due to the mirror current [29].  
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The resulting parameters are: 

 

 Deviation Field 

integral 

Field Peak current Charging 

voltage 

Coating 

thickness 

Kicker  1.5 ° (26.2 mrad) 4.4 mT.m 8.7 mT 449 A 24 kV 20-40 nm 

 

4.6.3] Storage ring RF system 

 

The selection of 500 MHz as RF frequency leads to a quite good compromise in terms of 

cavity fundamental and high order mode (HOM) impedances, space requirements as well as 

the availability of RF power sources and other components. The required accelerating voltage 

of 500 kV can be provided using only one 500 MHz single cell cavity, powered with about 

35 kW. As shown in the following, the choice of the cavity design is mainly dictated by the 

need for a strong damping of the HOM impedances. 

 

4.6.3.1] HOM impedance thresholds for coupled bunch mode instability (CBMI) 
 

When exciting a mode in resonance, the growth rate of the CBMI is approximately given by : 

 

(1/)l = Ib  fm Rl / (2 Qs E/e) for the longitudinal case; 

(1/)t = Ib t fo Rt / (2 E/e) for the transverse case; 

fm : HOM resonant frequency; 

Rl and Rt : longitudinal (Ω) and transverse (Ω/m) HOM impedances; 

Qs = fs / fo : synchrotron tune, fs and fo being the synchrotron and revolution frequencies;  

t : beta-function at the cavity location; 

 : momentum compaction factor; 

Ib : average beam current; 

E/e : beam energy (eV). 

 

Assuming typical cavity HOM impedances (Rl . fm =  0.1 to 1 MΩ .GHz ; Rt = 1 to 10 MΩ/m) 

and the machine parameters listed in table 14, one finds that the instability growth times are 

around 10 µs in both longitudinal and transverse cases.  
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Circumference : C 14.5 m Max current : Ib 20.83 mA 

Electron energy : E  50 MeV Synchrotron freq. : fs 498.7 kHz 

Momentum compaction : α  0.015 RMS bunch length : ζs 14 ps 

RF freq. : fRF 500 MHz β-function : βx,z   1 m, 4 m 

Revolution freq. : fo 20.7 MHz Relative energy spread : ζE / E 7.0 10
-5

 

Harmonic number : h 24 Peak accelerating voltage :VRF 500 kV 
Table 14 : Main ThomX storage ring parameters. 

 

In a low energy ring like ThomX, the natural damping is so weak (damping time ~ 1 s) that a 

stationary stable condition can never be reached during the beam storage time, which is as 

short as 20 ms. On the other hand, it is sufficient to maintain the instability growth time larger 

than the beam storage time such that to keep at tolerable level the effect on the beam. In order 

to meet this condition, very strong attenuation of the HOM impedances is required, typically 

by a factor around 10
4
. 

 

4.6.3.2] Cures to HOM driven CBMI 
 

There are essentially two different ways of coping with such HOM impedances, either a 

strong de-Qing of the HOM resonances or a tuning of their frequencies away from the CBM 

spectral lines such that to prevent resonant excitation by the beam.  

In practice, the HOM de-Qing is achieved by extracting and transferring the cavity HOM 

power towards external dissipative loads. In this way, it is difficult to reach attenuation factors 

higher than 10
2
 -10

3
 over a large frequency range and that requires the use of rather heavy and 

cumbersome equipment around the cavity (coaxial lines with coupling antennas or ferrite 

loaded waveguides). Two illustrations of this technique are shown in fig.33 and 34, the 

DAMPY cavity, designed at BESSY [30] and which will be used in ALBA [31] and the PEP 

II cavity, developed at LBNL [32]. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 Figure 33 : 500 MHz DAMPY cavity      Figure 34 : 476 MHz PEP II cavity  
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The other method, which consists in controlling the HOM frequencies, is better suited to a 

small circumference machine like ThomX, where the CBM spectral lines spacing (~ 21 MHz) 

is very large as compared to the HOM bandwidth (BW of a few 10 kHz for Qo of a few 10
4
). 

As far as the HOM density is not too high and that they can easily be tuned far enough from 

the CBM spectral lines (δf  >> fm / Qo), it should be possible to reduce their effective 

impedances (―seen‖ by the beam) down to tolerable levels : Reff    Rs / (2 Qo δf / fm) 
2
 << Rs. 

 

 

We have started to investigate the achievable performance by applying this technique to an 

ELETTRA type cavity [33], slightly modified with a cut-off pipe diameter reduced from 

100 mm down to 60 mm, which fits our vacuum chamber. Fig.35 shows the shape of this 

500 MHz single cell cavity, which was used as a basis for our first investigations. As for the 

ELETTRA cavity, we assume that the HOM frequencies can be precisely controlled by proper 

setting of the cavity water cooling temperature while the fundamental frequency is recovered 

by means of a mechanism which longitudinally deforms the cavity. Besides, a movable 

plunger tuner, also called HOM Frequency Shifter (HFS), located on the cavity equator, 

provides an additional degree of freedom [34]. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

In tables 15 a,b, are listed the fundamental and HOM parameters of such a cavity, calculated 

with the 3D computer code GdfidL [35]. One finds 26 significant HOM (14 monopoles and 

12 dipoles) with resonant frequencies lower than the cavity cut-off frequency. Figures 36 a,b 

represent the corresponding HOM spectra, fm .Rl (f) and Rt (f), reported over a single base band 

of 20.8 MHz. The horizontal dashed line on the graph represents the impedance threshold 

corresponding to an instability growth time equal to 20 ms, the beam storage time. Although it 

remains somewhat critical, these preliminary results tend to confirm that it should be possible 

to find acceptable operating conditions, as far as the HOM frequencies can be shifted by a 

few MHz in combining temperature and HFS tuning. 

 

 

 

Figure 35 : shape of the 500 MHz ELETTRA-type cavity with a cut-off pipe diameter of 60 mm.  
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a) Longitudinal 

        modes 

fm 

[MHz] 

Qo Rs / Qo  

[Ω] 

Rs  

[kΩ] 
fm (T) 

[MHz] 

fm (HFS) 

[MHz] 

L0 (fundamental) 496,154 43618 84,2 3672,6 0.00 0.00 

L1 958,759 47195 39,4 1859,5 0.45 -1.00 

L2 1021,03 56190 1,49 83,723 0.78 3.69 

L3 1401,65 49766 7,35 365,78 1.73 0.21 

L4 1526,17 69033 8,9 614,39 1.33 0.86 

L5 1544,86 62475 14,75 921,51 2.36 7.21 

L6 1867,73 52320 1,39 72,72 1.43 -0.92 

L7 1960,65 78048 2,43 189,66 2.54 1.43 

L8 2054,53 62759 0,54 33,89 2.60 2.26 

L9 2092,26 83828 12 1005,9 4.77 6.67 

L10 2341,29 54311 1,42 77,121 > 4 ? 

L11 2421,29 90457 0,48 43,419 > 4 ? 

L12 2506,78 89378 1,91 170,71 > 4 ? 

L13 2550,00 60158 0,65 39,103 > 4 ? 

L14 2656,70 97745 9,05 884,59 > 4 ? 

 
Table 15 a,b : Main characteristics of the monopole (a) and dipole (b) modes, computed with GdfidL, for the 

elliptical cell with a cut-off pipe diameter of 60 mm; fm (T) and fm (HFS)  are the effective temperature and 

HFS tuning ranges at constant fundamental frequency. 
 

*  Rs/Qo = |V(roffset)| 
2
 / ( 2 (k . roffset) 

2
 . (2  fm) . U)   [Ω], 

    where U is the electromagnetic energy stored in the cavity and k = (2  fm) / c [m
-1

]. 

** Rs = (Rs/Qo) . Qo . k [Ω/m]. 

 

 

 

 
 

 

 

 

 

b) Transverse       

       modes 

fm  

[MHz] 

Qo Rs / Qo * 

     [Ω]  

Rs **  

[MΩ/m]  

fm (T) 

[MHz] 

fm (HFS) 

[MHz] 

T1 737,01 50267 33,5 25,99 0.4 0.75 

T2 746,06 52566 9,2 7,557 1.55 2.85 

T3 1152,02 47196 26,4 30,06 0.49 -3.12 

T4 1255,65 55386 5,1 7,428 0.68 7.25 

T5 1302,49 71674 3,6 7,039 0.97 ? 

T6 1699,81 69325 10,3 25,42 1.88 ? 

T7 1736,50 91039 1,65 5,463 > 2 ? 

T8 1773,37 59409 3,2 7,061 > 2 ? 

T9 1836,17 77697 5,5 16,43 > 2 ? 

T10 2061,42 88484 5,9 22,54 > 2 ? 

T11 2224,75 99092 1,1 5,079 > 2 ? 

T12 2259,33 56641 1,3 3,484 > 2 ? 
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Figure 36 a,b : longitudinal (a) and transverse (b) HOM spectra, reported over a single base 

band of 20.8 MHZ for the elliptical cell with cut-off pipe diameter of 60 mm. 
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Increasing the diameter of the cavity extremity pipes reduces the cut-off frequency and 

consequently the number of trapped HOM. This is illustrated in Figures 37a,b, which shows 

the HOM spectra for a similar elliptical cavity shape but with a cut-off pipe diameter of 

100 mm. The number of significant HOM (tables 16a,b) has dropped down to 18 

(9 monopoles and 9 dipoles), which should significantly facilitate the task. However, the 

impact of tapers was not considered in this preliminary study and it is mandatory to 

demonstrate that the impedances of the HOM propagating into the tapers are not critical. If 

they prove to be sufficiently damped, the choice of the actual ELETTRA cavity without 

modifications will be straightforward.  

 

These conditions could be further improved, in a second stage, by providing additional 

damping, with the implementation of single bunch feedbacks and/or a 3
rd

 harmonic Landau 

cavity. 

 

 

a) Longitudinal 

        modes 

fm 

[MHz] 

Qo Rs / Qo 

[Ω] 

Rs  

[kΩ] 
fm (T) 

[MHz] 

fm (HFS) 

[MHz] 

L0 (fundamental) 499.132 44164 76.5 3378,54 0.00 0.00 

L1 958.618 48158 33.6 1618,11 0.37 -1.00 

L2 1027.81 57861 0.36 20,8300 0.80 3.69 

L3 1408.7 52562 2.20 115,636 1.74 0.21 

L4 1515.28 69088 7.83 540,959 1.12 0.86 

L5 1551.29 66375 8.50 564,188 2.40 7.21 

L6 1869.12 55785 0.97 54,1114 1.42 -0.92 

L7 1949.5 81752 0.08 6,54016 1.83 1.43 

L8 2039.85 62729 0.86 53,9469 4.00 ? 

L9 2068.96 87300 5.30 462,690 4.45 6.67 

 

 

 

 
Table 16 a,b : Main characteristics of the monopole (a) and dipole (b) modes, computed with GdfidL, for the 

elliptical cell with a cut-off pipe diameter of 100 mm;fm (T) and fm (HFS) are the effective temperature and 

HFS tuning ranges at constant fundamental frequency. 

 

 

 

 

 

b) Transverse 

modes 

fm 

[MHz] 

Qo Rs / Qo 

[Ω] 

Rs 

[MΩ/m] 

fm (T) 

[MHz] 

fm (HFS) 

[MHz] 

T1 728,458 52052 11.1 8,815 0.40 0.75 

T2 734,55 49803 30.0 22,99 1.52 2.85 

T3 1131,18 46047 22.6 24,65 0.64 -3.12 

T4 1214,496 53972 9.60 13,18 2.00 7.25 

T5 1636,985 64565 5.40 11,95 ? ? 

T6 1702,197 85862 2.20 6,734 ? ? 

T7 1723,526 88149 1.97 6,268 ? ? 

T8 1749,277 93715 1.77 6,077 ? ? 

T9 1769.55 60646 1.00 2,247 ? ? 
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Figure 37 a,b : longitudinal (a) and transverse (b) HOM spectra, reported over a single base band of 20.8 MHZ 

for the elliptical cell with cut-off pipe diameter of 100 mm. 
 

RF power source 
 

A power of about 35 kW is required in order to generate the desired voltage of 500 kV in a 

single 500 MHz ELETTRA type cavity. For this frequency, there exists a wide choice of 

power sources, based on the vacuum tube (klystrons, IOTs, diacrodes) or solid state 

technologies. The low operating voltage and high modularity of the solid state version brings 

in significant advantages as compared to the vacuum tubes. The experience acquired at 

SOLEIL after few years of operation has largely demonstrated all the benefits of this 

technology. Fig.38 shows the 35 kW – 352 MHz solid state amplifier, used for the SOLEIL 

booster synchrotron and which consists in a combination of 147 modules of 330 W. This 
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technology has been already extended to 500 MHz in the frame work of a SOLEIL-LNLS 

collaboration aimed at realising two 40 kW amplifiers for the LNLS storage ring. 

 

 

 
 

 
Figure 38 : 35 kW – 352 MHz solid state amplifier of the SOLEIL Booster 

 

Conclusions  

 

For the RF system of the ThomX storage ring, it is proposed to use one 500 MHz single cell 

cavity of the ELETTRA type. Maintaining at a tolerable level the CBMI driven by the cavity 

HOM is quite challenging. However, preliminary studies tend to demonstrate that it should be 

achievable with a proper control of the HOM frequencies, combining three different tuning 

means of the cavity : temperature, longitudinal elastic deformation and plunger. 

In a second stage, the damping of the CBMI could be improved by implementing single 

bunch feedbacks and/or a 3
rd

 harmonic Landau cavity. 

In order to achieve the required accelerating voltage of 500 kV, the cavity can be powered 

with a solid state amplifier ―SOLEIL-type‖, able to deliver up to 40 kW of power.  

The cavity voltage shall be controlled with typical stability of ± 0.1 % and ± 0.1° by means of 

conventional phase and amplitude loops (either analogue or digital) of few kHz bandwidths.  

Les transitoires de phase à l‘injection pourront être réduits à une fraction de degré grâce à une 

simple boucle de feedback RF direct. 

 

147 amplifier modules 

 & DC/DC converters 

on 8 water-cooled dissipaters 

330 W amplifier module 

600 W, 300 Vdc / 30 Vdc converter 
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4.6.4] Diagnostics and beam dump 

 

4.6.4.1] Charge, current and life time 

 

For the Linac and the transport line, beam charge monitors called ICT (Integrating Current 

Transformer) by its manufacturer (Bergoz Instrumentation), can measure the charge at a 50 

Hz repetition rate.  

For the Storage Ring, the best for accurate beam current and lifetime measurements would be 

a DCCT from Bergoz Instrumentation, which has a good absolute precision (1µA). It needs 

30 to 40 cm of longitudinal space for its insulating gap associated to a short bellow, the toroid, 

and two flanges. An electrical shielding and a magnetic shielding are also necessary.  

The electrically insulating gap can be made according to the Nelly Rouvière design [36] way, 

thanks to a high capacitance gap, the monitor presents a low impedance to the beam. The 10 

kHz bandwidth with a rise time of about 16 µs, will allow to measure the life time in less than 

20 ms.  

A cheaper alternative would be to install an FCT (fast current transformer) connected to an 

oscilloscope that measures the bunch charge (integration of the pulse) at each turn. Apart from 

the cost, the advantage would be a slightly reduced longitudinal space (25 to 35 cm). However, 

with an FCT, it is necessary to distinguish each turn for a good accuracy, which implies a 

bandwidth of several hundred Megahertz. Then a high capacitance gap is not appropriate and 

the impedance to the beam is higher than with a DCCT. 

 

4.6.4.2] Beam Position Monitors 

 

Eight button type Beam Position Monitors (BPM) are foreseen on the Storage Ring. Ten 

millimetre diameter button electrodes should be appropriate for obtaining a 10 µm resolution 

on most of a 1-to-30 mA dynamic range.  

The BPM impedance to the beam has to be checked after a first design is done. The two top 

electrodes will be mounted on a flange and the two bottom ones on another flange. In this way, 

the longitudinal space can be minimized to about 10 to 15 cm. Low-loss coaxial cables bring 

the electrode signals to the electronics, housed outside of the high radiation area. Due to the 

radiation levels expected in the Ring, the connectors on the BPM side of the cables must have 

their insulating material made of PEEK (PolyEtherEtherKeton), a radiation resistant material, 

instead of PTFE (Teflon).  

The Libera electronics from Instrumentation Technologies working at 500 MHz (25
th

 

harmonique) will be adequate after 500 MHz narrow band filters have been introduced 

between BPM and electronics. This is to improve the button electrode signal level (factor 

~25); otherwise, it would be too weak at the 20 MHz fundamental frequency. 

Both the Linac and the transport line require a Beam Position Monitor (BPM). These BPMs 

are of the stripline type, ¼ wave coupler at 500 MHz. The Libera electronics, identical to that 

of the storage ring BPMs, is appropriate. 

 

4.6.4.3] Bunch length measurements 

 

In order to check the bunch length after the lengthening chicane, an insertable OTR (Optical 

Transition Radiation) screen is installed at the end of the Linac. It will provide the visible 

light for measuring the bunch length with a streak camera.  

A streak camera is expensive, but it could be borrowed during the commissioning phase until 

the laser scan method, presented below, becomes possible. An alternative instrument instead 

of the streak camera could be a dissector commercialized by Femscan or from Novorsibirsk. 
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After the commissioning phase that will bring the Compton X-ray flux to a detectable level, it 

becomes possible to measure the amount of X-ray versus the laser trigger time with respect to 

the electron bunch after it is injected into the Storage Ring.  

For that application, one needs both the laser pulse length and the trigger stability to be about 

10 times less than the electron bunch length. 

 

4.6.4.4] Transverse profile measurements 

 

An emittance monitor after the quadrupole scan method is installed at the end of the Linac 

and another one at the end of the transport line before the beam is injected into the Ring. The 

low emittance requires a good beam size resolution; it can be reached with a YAG (Yttrium 

Aluminum Garnet) screen inserted into the beam.  

For the Storage Ring, the emittance can be monitored with a synchrotron radiation monitor. 

Although the critical wavelength is in the infrared (1.5 µm), there should be enough photons 

within the 0.4-to-0.8 µm sensitivity spectrum of standard CCDs.One can also think of 

transverse scans of the electron beam with a transversally smaller laser beam, but it looks like 

a delicate and tedious measurement. 

 

4.6.4.5] Beam dump 

 

A low power (3W) beam dump, similar to the SOLEIL Linac dump is foreseen at the end of 

the Linac. After 20 ms in the storage ring, the spent beam could be extracted and directed into 

a 3 W and 50 MeV dump. 

 

4.6.5] Vacuum 

 

4.6.5.1] Pumping distribution in the ThomX ring 

 
First calculations of outgassing have been realized in order to have a first estimation on the 

ion pumps localization . The calculation does not consider punctual and dynamical outgassing. 

In addition, the pressure gradient estimation has been carried out taking into account an 

approximate length and shape of the tube. Even the technology of the vacuum chamber is not 

definitively chosen. The main requirements are listed in table 17. The ion pump 

corresponding to the conductance of the pumping T are : 

 

 

- DN 40 : « VacIon Plus 40 Varian » S0 = 3.10
-2

 m
3
.s

-1
 (N2 equivalent) 

- DN 100 : « VacIon Plus  Varian » S0 = 6.10
-2

 m
3
.s

-1
 (N2 equivalent) 

 

A cylindrical inox chamber has been considered for the ring and a rectangular one for the 

optical cavity which is integrated in the dipole. The outgassing is uniformly distributed.  The 

repartition of the ion pumps on this specific low conductance chamber has been done in the 

ring available space. Then the outgassing rate necessary to obtain the limit vacuum along the 

chamber has been determined.  Two ion pumps have been disposed before the mirrors at the 

chamber end.  
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Designation  Value 

Vacuum pressure <3 10
-7

 Pa 

Diameter of the beam pipe 40 mm 

Specific conductance of the beam pipe 7.9 10
-3

 m
3 
m s

-1
 

Dimensions of the rectangular chamber of 

the optical cavity 

25 x 85 mm 

Specific conductance of the rectangular 

chamber of the optical cavity 

1.37 10
-2

 m
3
.m.s

-1
 

Outgassing rate considered for inox  2.10
-8

 Pa.m.s
-1

 

Conductance of the pumping T DN 40 : 6.4 10
-2

 m
3
.s

-1 
,DN 100 :0.25 m

3
.s

-1
 

Estimated area of the mirrors pots A 0.38 m
2
 

Table 17 : Vacuum system main requirements 

 

In figure 39, the repartition of the ion pumps is shown on a quarter of the ring. Space for 

insertions is available: 

 

- 1. Before the dipole, between the two quadrupoles 

- 2. After the dipoles, between the two quadrupoles 

- 3. At the middle of the free section 
 

                                                              1                                         2                                    3                                        

 
Figure 39 : Localization of the ion pumps on a quarter of the ring 

 

 

In fig.40, the repartition of the ion pumps is shown on a quarter of the ring with the optical 

cavity. Insertions are possibles: 

- 1. Before the dipole, between the two quadrupoles 

- 2. After the dipoles, between the two quadrupoles 

- 3. Before the mirrors pot 
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                                                                        1                               2                                    3                                                                                                                    
 

 

 

 

 

 

 
Figure 40 : Implantation of the ion pumps on a quarter of the ring with the optical cavity. 

 

 

Fig.41a,b illustrate respectively the pressure along the quarter ring including or not the optical 

cavity. The maximum vacuum pressure is attained between the pumps 2 and 3. Its value is 

3.23 10
-7

 Pa without considering the optical cavity and 4.18 10
-7

 Pa including the optical 

cavity. The minimum vacuum pressure is in both cases less than the desired value of 3 10
-7

 Pa. 

Neglecting the outgassing of the optical cavity, the desired vacuum pressure is almost attained 

on a quarter of the ring. However, as far as the optical cavity is concerned the vacuum 

pressure is affected. The desired pressure is obtained only on a half of the quarter of the ring. 

Additional available drift spaces should be envisaged especially near a sextupole. An 

increasing of the pumping T capacity can be also considered. In addition, it is possible to 

improve the outgassing rate of the beam pipe from 2 10
-8

 to 10
-9

 Pa. m. s
-1

. In all cases, it is 

necessary to in situ bake all the vacuum chambers (with a rate η < 2 10
-8

 Pa.m.s
-1

) to obtain 

this vacuum pressure values without electron beam. 
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    a)      b) 
Figure 41 : Pressure along the beam pipe. a) without the optical cavity, b) considering the outgassing of the 

optical cavity. In red: vacuum of the ring, in blue: vacuum of the optical cavity.  

 

 

4.6.6] Synchronization  

 

An efficient X-ray production requires a precise synchronization of the three main 

components of the set-up, namely the injector, the storage ring and the optical cavity.  

 

i. The time at which the electron bunches are injected in the storage ring must 

correspond to the synchronous phase of the ring RF cavity.  

 

ii. The electron bunches circulating in the ring and the photon bunches going back and 

forth in the Fabry-Perot cavity must go through the interaction region at the same time.  

 

iii. In order to minimize the linac (i.e. the injector) energy jitter, the laser light pulses that 

strike the photocathode must be synchronized with the phase of the RF wave that 

accelerates the photo-produced electrons. 

 

Let us look at these three constraints in some more detail. We will require that the overall 

decrease of the X-ray yield integrated over a machine cycle (whose duration is 20 ms), due to 

synchronization errors be less than ~30%, it follows that the loss due to errors in either one of 

the three synchronizations mentioned above must be less than ~ 15 %.(i) If the e

 bunches 

produced by the linac are injected in the storage ring when the RF cavity phase differs from 

the one of the synchronous particles, the electrons will undergo collective synchrotron 

oscillations whose damping is negligible during the 20 ms cycle. The effective bunch length is 

then increased and the luminosity reduced. An error in the injection time may come either 

Desired 

pressure 

Desired 

pressure 
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from an error in the timing of the linac gun laser or from some change in the length of the 

electrons‘ path between the photocathode and the injection point in the storage ring.  A t =1 

ps error in the injection time translates into a 0.18° shift with respect to the synchronous RF 

phase and generates coherent synchrotron oscillations whose amplitude is .3 mm for those 

electrons which are at the centre of the injected bunch and which have the nominal ring 

energy. For reference, the e

 bunch length is about 6 mm (rms) at injection, and then increases 

up to about 9.5 mm at the end of a cycle. It follows from these numbers that one must impose 

an upper limit of ~13 ps on t. As far as the e

 path length is concerned, it turns out that the 

constraint bearing on the linac energy jitter implies that the jitter of the transit time in the 

transfer line that connects the linac to the ring is negligible. 

(ii) One has to ensure a proper overlap of the electron and the photon bunches while they 

travel in opposite directions in the interaction region. Since the transverse dimensions of both 

bunches are ~ 70 m (rms) and the crossing angle is 2°, electron-photon collisions take place 

in a region whose total length is 8 mm.  The photon bunch is assumed to be 1.5 mm long 

(rms) during the whole machine cycle while, as stated above, the electron bunch length is 6 

mm (rms) at the beginning of a cycle, and is about 60% longer at the end of a cycle. Thus, at 

the beginning of a cycle, the two bunches would essentially miss each other if the difference 

between the times at which they pass the centre of the interaction region differ by more than ~ 

40 ps. In absence of collisions, the lengthening of the e

 bunch would be very slow and a low 

luminosity would prevail during the whole 20 ms cycle. In order not to loose more than ~15% 

of the X-ray produced over a cycle, the times at which the two bunches travel through the 

interaction region should not differ by more than ~10 ps. 

(iii) Finally, when the linac beam energy differs from the storage ring nominal energy, again 

the injected electrons undergo coherent synchrotron oscillations. More precisely, a E/E error 

in the linac beam energy generates synchrotron oscillations whose amplitude is ~20 mm x 

E/E, where E/E is expressed in %. Taking into account the initial e

 bunch length and its 

increase during a 20 ms cycle, one finds that the linac energy jitter should be kept below 

0.2 %. Let us recall (cf. the section devoted to injection matching in § 4.5.8) that the injection 

phase of the e

 bunch produced by the linac photocathode will be shifted by 6° with respect to 

the peak electric field phase, and that the transfer line between the linac and the ring will 

perform a rotation of the bunch energy-displacement ellipse. This injection procedure implies 

that the above constraint on the maximum energy jitter translates into a maximum 1 ps jitter 

of the e

 gun laser pulse.   

Furthermore, experience shows that in order to minimize energy jitter, the timing of the linac 

pulses must remain the same with respect to the mains‘ 50 Hz alternating voltage.  

 

Synchronization Purpose Maximum error 

e

 bunch injection time vs.  

the ring synchronous phase 

To avoid coherent 

synchrotron oscillations in 

the ring 

 

13 ps 

e

 bunch and photon bunch 

running through the 

interaction region 

To avoid luminosity losses  

10 ps 

Linac photocathode laser 

pulse wrt to the linac RF 

phase 

To avoid linac beam energy 

jitter that generate coherent 

synchrotron oscillations 

 

1 ps 

 

Linac pulse wrt the mains‘ 

alternating voltage 

To avoid linac beam energy 

jitter 

0.2 ms 
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Summary of the synchronization constraints 
 

The specifications obtained above are stringent but not beyond the present state-of-the-

art. To meet them, we propose to implement the synchronization scheme shown in fig.42.  Its 

main features are the following ones:  

 

(1) The overall timing is provided by a 10 MHz master clock whose signal is fed to 

frequency multipliers and dividers in order to drive each one of the items involved in 

the synchronizations described above.  

(2) The laser that feeds the Fabry-Perot cavity will be locked to the optical cavity 

resonance frequency.  

(3) Small drifts of the Fabry-Perot cavity frequency will be taken into account by feeding 

these changes back to a 500 MHZ synthesizer which is itself driven by the master 

clock.  

(4) The ring RF cavity will be driven by this 500 MHz synthesizer and thus its frequency 

will be locked to the resonance frequency of the optical cavity in order to avoid 

uncontrolled drifts between the times at which the electron and the photon bunches 

travel in the interaction region.  

(5) An input from the mains‘ 50 Hz alternating voltage will be used to fulfill the last 

requirement of § iii above. 

 

 
 
Figure  42: Sketch of the timing distribution 
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4.6.7] X ray beam extraction and characterisation 

 

The principle of the characterisation of the X-ray beam is shown on fig.43. The aim is to 

measure the X-ray beam spectral intensity distribution, the beam divergence and its transverse 

spatial shape.  

 

 
Figure 43 : Principle of the X-ray beam characterisation. 

 

Taking into account the position of the cavity mirrors located at 1 m from the electron beam-

laser beam interaction point, the angular acceptance of the X-ray beam is around 10 mrad. 

Hence, the transverse size of this polychromatic X-ray beam entering into the first optical 

element is around 1 cm. 

 

After passing through diaphragms, the polychromatic beam is diffracted by a monochromator 

which consists to a double Si crystal allowing to select and focus a wavelength of light passed 

through: as the angle of the monochromator is changed, the wavelength ―color‖ of the light 

exiting also change, as shown on fig.44.  

 

 

 
Figure 44 : Principle of a rotating double crystal monochromator: ―white‖ light enters from the left and 

―monochromatic‖ light exits to the right with a ―color‖ depending on the angle . 

 

 

The detection system could be a Cadmium telluride (CdTe) sensor [37] which has a good 

stopping power with efficiency around 100% up to 50 keV. By rotating the monochromator 
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and measuring the corresponding flux entering the CdTe photodiode, the spectral intensity 

distribution of the beam can be reconstructed. 

 

Also for measuring the transverse spatial shape, the position and the divergence of the X-ray 

beam,  a CCD X-ray detector with a large active diameter area (as a MarCCD camera [38] for 

instance) should be insert in the beam line as shown on figure 1. 
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CHAPTER 5:  Radioprotection and Integration 

 

5.1] Radiation Shielding Design 

 

The radiation safety design is based on calculations on radiation outside the shielding. The 

dose limit we employed at the boundary area is 0.5 μSv/h. 

 

The beam characteristics used for simulations are: energy 50 MeV, mean current 50 nA, mean 

power 2500 mW. 

The required thickness is obtained for worst-case conditions, i.e. intentional beam losses in 

beam dump mounted in the straight line of the electron beam pipe. The full beam power is 

scattered on a solid cylinder of copper target, placed in a cylindrical lead shield envelope. But 

we have to keep in mind that we have also an injection area in the storage ring where we loose 

a part of beam and another beam dump for the beam extracted from the storage ring. 

 

To do investigations we use a multi-particle transport code Fluka [1,2],  using a Monte Carlo 

method. To obtain a good estimation of the shielding we need 100 millions of requested 

annihilation samples. 

 

Owing to the incertitude on the location of the machine, we study two problems geometries. 

The first one is an existing room (10.60 m by 5.90 m) of Institut Gustave Roussy (IGR) and 

the second one is in a building so called ‖Aile7‖ of LAL.  The Aile7 building has a width of 

11.50 m where we have to build walls to enclose the accelerator. In each case we have to 

increase thickness of all existing walls. 

 

The first radiation leakage was calculated, using empirical formula and leads to a concrete 

(density 2.35 g/cm
3 

)
  
thickness of 1.7 m, which gives a starting point for the thickness of the 

walls. The aims of the calculations are to optimize the structure of the beam dump and to 

minimize walls. 

 

Most of the preliminary simulations are done in the IGR room hypothesis with only 5 millions 

of primary histories in the run to reduce the computer time. 

  

For the dump we choose a cylindrical beam dump located 2 m from the end of the linac, 

having a lead length of 40 cm and a radius of 30 cm, with inside, at 10 cm of  its entrance face, 

a copper cylinder of radius 4 cm and 4 cm length.  

 

With this type of beam dump, we found that walls composed of lead in front the concrete 

walls allow one to drastically reduce the thickness of the shielding (1.05 m instead of 1.7 m. 

The composition of these global walls is 25 cm of lead and 80 cm of concrete. As far as the 

roof is concerned we put 1.00 m of concrete and for the hall floor, 25 cm of concrete, 

assuming we are on ground, which is the case in the two hypotheses. 

 

In each implantation we have a 10 cm thickness door of lead with a chicane. 

 

In the figure the colour scale is in μSv/h 
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  Implantation IGR 
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   Implantation Aile7 
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CHAPTER 6 : ERL and LINAC solutions. Feasibility considerations  

 

6.1] Introduction 

 

Different accelerator scheme have been envisaged before choosing the ring solution. As 

shown in previous sections, the Compton interaction can spoil the quality of the beam and 

therefore the X-ray flux. It is therefore important to compare the two solutions, either with 

renewing the electron bunches after each interactions, or without  (storage ring case). Unlike 

storage ring, the electron bunches in single pass linacs are renewed at each Compton 

interaction. The significant advantage is that the beam quality is preserved for each 

interaction. In return, the difficulty lies in obtaining either a high repetition rate (normal 

conducting cavities) or large enough charge to achieve a similar flux as in storage rings. In 

this section, we will compare the alternative linacs possibilities for the project. 

 

6.2] Normal conducting LINAC 

 

The simplest configuration is to suppress the ring, and to keep the linac alone to interact with 

the laser in the Fabry-Perot. In this case, the bunch length can be smaller (4ps) than in the ring 

(20ps), but the repetition rate is decreased from 20.8 MHz to 100-200 Hz hence reducing 

drastically the Xray flux
 
(see Table 1). The flux can be enhanced with a bunch train inside the 

macropulse. In this case, the X-rays flux is no more continuous. Moreover, it is difficult and 

costly to produce such a scheme with a photoinjector. An experience has been already 

developed on ELSA at the CEA Bruyères le Châtel. ELSA can produced typically 10000 

electron bunches at 20 Hz (bunches are at 144 MHz of repetition rate) with 1 nC charge, a 

bunch duration of 30 ps and a normalised emittance of 3  mm mrad. The major drawback of 

such a scheme is the relatively high cost to produce such bunches with a photoinjector, and an 

X-rays flux, which is no more continuous. To decrease the cost and having a simplest user 

installation, thermoionic guns may be used instead of a photoinjector but the emittance can be 

consequently degraded. For example, with a thermoionic gun (or field-emission) one can 

provide at 20 Hz 10000 bunches (pulsed at 1-3 GHz) with 0.2 nC and an emittance 

(normalised) of 20  mm mrad. As a consequence, the fabry perot must be adjusted at the 

bunch repetition rate (reducing the cavity length or injecting several pulses in the optical 

cavity). Then, considering the same energy stored in the cavity, the level of energy per pulse 

is smaller in this case than for the ring case. 

. 

6.3] Superconducting LINAC 

 

Another competitive alternative is a superconducting linac enabling high repetition rate to the 

detriment of the cost being two to three times higher than the ring solution. In order to achieve 

a similar flux as in the case of the storage ring, studies have been done for a linac of the ERLP 

type [1]. Changes were made in order to meet the requirement of compactness of the project.  

A superconducting linear accelerator coupled to a DC photocathode gun is chosen to produce 

high repetition rate electron bunches. Achieving a similar emittance as the storage ring case 

leads to limiting the electron bunch charge in the hundreds of picocoulombs. The choice of 

high repetition rate and bunch duration (in the order of tens of ps) requires a JLAB DC gun-

type with a GaAs photocathode [2]. Because of the properties of this type of photocathode 

and the relatively low DC voltage (350 kV), electron bunches will be produced quite long. As 

the desired length is about 10 ps, it is necessary to use a buncher which could be a normal 

conducting cavity at 1.3 GHz, similar to that used at ELBE [3]. Two solenoids after the gun 
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and the buncher are necessary for transverse focusing and compensation of the increase in 

emittance due to the space charge force. Upwards of the second solenoid, the transfer line of 

the beam is identical to that employed for ERLP. Simulations were carried out using the 

computer code ASTRA [4], which takes into account the space charge effect. The laser is 

supposed to have a Gaussian longitudinal distribution of 20 ps rms duration and a radial 

distribution with a radius of 2.4 mm.  

 

 

 
Figure 1 : Electron bunch characteristics along the accelerator. a) rms transverse horizontal size, b) horizontal 

normalized emittance, c) rms longitudinal dimension, d) energy, e)energy spread. maroon) gun, red) solenoids, 

grey) accelerating cavities. 

 

Fig.1 illustrates the characteristics of the beam along the accelerator. After the gun (s = 0m) 

and a solenoid (s = 23 cm), the emittance reaches 4  mm mrad for a charge of 0.3 nC and an 
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energy of 350 keV. It is important to note that the total emittance results from several 

contributions, including a component of thermal emittance εth, a component related to the 

effects of space charge εsc, a RF component εrf, generated by field non linearities and it 

expressed as follows: 

 

6.1) 222
, rfscthyx    

 

The lowest achievable emittance is limited by the thermal component. In our case, for a GaAs 

photocathode with a radius of 2.4 mm, it is 1  mm mrad [5]. Its contribution to the emittance 

may be reduced in the case of an ellipsoidal distribution of the laser (parabolic in the three 

directions). However, it remains reasonable in the case of a cylindrical distribution. The 

largest degradation is for a Gaussian distribution as presented here. The rf component is not a 

major contribution to the increase in transverse emittance. On the other hand, the longitudinal 

emittance is dominated by the space charge forces and the nonlinearity of the rf fields. 

Although solutions exist to compensate for the non-linearities, the longitudinal emittance 

being not a limiting factor for the Compton radiation, they will not be considered here.  

Due to the space charge forces, the bunch lengthens up to 9.8 mm (33 ps). For this reason, a 

cavity (s = 1.24 m) is necessary to shorten the bunch with "velocity bunching" [6], which 

reduces the length down to 3.3 mm (11 ps). At this energy of 360 keV, the bunch is sensitive 

to transverse fields in the cavities since the transverse dimension is large. Accordingly, it is 

necessary to adjust the transverse dimension of the bunch at the entrance to the first 

accelerating cavity. This focusing is produced through a second solenoid (s = 1.65 m), which 

allows to compensate partially the second increase of emittance (6 mm mrad) due to the 

reduction of the bunch length. 

The use of TESLA-type cryomodules [7], which contain 8 superconducting cavities of nine 

cells, is proposed. Two such cryomodules are needed for accelerating the beam up to 50 MeV. 

The main difficulty lies in the first booster cavity for which the electrons are not relativistic 

and therefore the phase of the bunches with respect to the RF field will vary in time. The 

initial phase and the amplitude of the field must be precisely adjusted. In order to make the 

accelerator more compact, the accelerating gradient of the first cavity has been increased up to 

19MV/m with a phase shift of 25°, as compared to 9 MV/m and 20° in the ERLP case. In the 

following cavities the theoretical maximum gradient at 27 MV/m is used with a zero phase 

shift. 

The characteristics of the beam at the end of the linear accelerator are summarized in Table 1. 

The emittance is 6.4  mm mrad for a charge of 0.3 nC. The emittance can be improved by 

shaping the pulse of the laser illuminating the photocathode. 

 

6.4] Comparison of x rays fluxes 

 

Table 1 summarizes the characteristics of the three accelerator schemes. It appears that the 

ring and the SC linac cases give rise to very similar fluxes but the spectral width is larger in 

the SC linac case (see fig.2). One must notice that in the SC linac case the bunch is renewed 

for each interaction, and therefore the flux is constant versus time. The NC Linac achieves 

worse performances due to its low repetition rate. Contrarily to the ring, the linac can be 

extended by a magnetic compressor, which can reduce the bunch length and moreover, linacs 

alone can operate at different beam energies. Concerning the NC linac, we can refer to the 

performances of CTF3 [8], which can generate about 2000 bunches in few microseconds at 10 

Hz repetition. 
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 SC LINAC RING NC LINAC 

Energy (MeV) 53 50 50 

rms transverse emittances (.mm.mrad) 6.6 4 4 

rms energy spread (%) 0.7 0.3 0.6 

RMS bunch length (mm) 3.3 6 1.2 

Bunch charge (nC) 0.3 1 1 

Repetition rate (MHz) 80 20 100 10
-6

 

Mean Current (mA) 24 20 1 10
-4

 

Expected X Ray flux 2.0 10
13

 1.2 10
13

 1.3 10
8
 

Table 1: Electron bunch characteristics in the superconducting linac, storage ring and normal conducting linac 

cases 

 
Figure 2 : Spectral distribution of the scattered Xray photons. The red and the blue curves panels respectively the 

SC LINAC case (or ERL) and the ring case 

 

6.5] Energy Recovery Linac 

 

The RF power needed to operate the SC linac is about 1.2 MW. A way of recovering this 

energy is to recirculate the beam with an opposite RF phase to the cavity RF field. In our case, 

one or both cryomodules can be energy recovered thus reducing also drastically the power 

absorbed by the beam dump.  

In the ERL the cumulative effect of cavity misalignments may lead to instabilities. Indeed, 

when an electron bunch passes through a cavity off-axis, it excites transverse high order 

modes of the cavity. This excitation creates a transverse force disrupting the particle 

transverse momentum at the next passage of the bunch in the cavity. Particles transfer energy 

to transverse modes. By cumulative effect, beyond a given current threshold, the transverse 

position of the particles can grow exponentially, resulting in the loss of the beam, hence the 

name of instability: Beam Break Up (BBU) [9]. This instability limits the average current of 

the accelerator, despite the performance of the gun. It is especially noticeable in the case of an 

ERL for which instability can be interpreted as a feedback loop between the beam and RF 

cavities. 
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In our simulations (using the bi code [10]), we assumed a recirculation loop injected at 24 

MeV (see fig.3). The first cryomodule (or booster), which is out of the recirculation loop, will 

be powered without the energy recovery mode. Accordingly, the recirculation loop includes a 

single "small" cryomodule. The loop contains the cryomodule and a triplet of quadrupoles on 

both sides of the cryomodule. The focusing is achieved with a constant gradient which is 

perfectly adapted to the case of an ERL with low energy electrons. The quadrupoles magnetic 

length is 15cm and their deflection parameter of 0.5 m
-2

. The optical functions are 

symmetrical between the acceleration and deceleration and thus maximize the current 

threshold of the BBU instability, which is evaluated around 130 mA. In our case, with 80 

MHz and 0.3 nC, the average current is 24 mA, which is largely below the BBU current 

threshold.  

 

Fig 3 : schematic representation of the ERL for the ThomX project 

 

6.6] Conclusion 

 

Alternative solutions as the SC ERL is very attractive in terms of X-ray flux produced. This 

solution has been excluded mainly because of the high cost of the installation and the 

constraint on the maintenance (e. g. Cryogeny), which need an operation expertise. So, this 

type of accelerator scheme can not be reasonably envisaged for a user installation. Other 

cheeper installation such as normal conducting linac has been also excluded due to the low 

level of the X-ray flux produced compared to the ring case. To conclude, the ring 

configuration appears to be the best arbitration between X-ray source performance, cost and a 

dedicated to users installation. 
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CHAPTER 7:  Risk analysis, planning, budget, and industrialization 

 

 

7.1] Risk analysis 

 

The ThomX design relies on a conservative approach and was carried out by people having a 

long experience in this field. Therefore we expect no unmanageable risks during the 

development phase. Main issues are already well prepared thanks to prior investment and 

developments such as the PHIL test facility to perform photo-injector optimization and the 

high finesse Fabry-Perot which already demonstrated very promising results. These key on-

going developments are far ahead the general schedule and will induce no delays to the global 

program. 

However, even if the required technology is well under control, the beam dynamics of the ring 

is quite unusual which makes quite challenging the mastering of the Compton X-ray 

production so as to reach in a stable, reliable and reproducible manner the expected photon 

flux. This is why such an R&D program is essential. 

Moreover there are essential components that will require prototyping (e.g. the laser system at 

40 MHz). 

 

Probably the main risk is associated with the limited available resources in skilled people to 

handle such a large program: the tradeoff is between minimization of costs (but with a risk of 

a longer development) and subcontracting part of the engineering tasks (with a need of budget 

increase to cover the associated expenses).    

 

7.2] Planning 

 

The first task will be to perform the complete engineering of the machine (TDR) including: 

 Full systems analysis with detailed modelling of the beam dynamics, vacuum 

and thermal calculations, command/control detailed analysis, drawing for RF, 

vacuum, electrical and cooling connection     

 Complete breakdown of the system in well specified subassemblies 

 Subassembly specifications and freezing of the main parameters and well 

defined interfaces with the other subsystems and the building. 

 Detailed drawing for the parts that are not purchased on specifications 

This task is planned on a 9 month period 

 

Manpower requirements for the TDR phase: 

 FTE FTE (BE) 

Photoinjector Gun 1.2 0.5 

LINAC 1.4 0.4 

Transport line and ring 2.8 0.6 

Fabry Perot 0.1 0.1 

Laser and fiber amplifier  2.2 0.2 

Control-Synchro       1.0  

Infrastructure, support & cabling 1.6 0.8 

Total 10 2.6 
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A prototyping phase in the TDR concerning the high power laser is strongly recommended. 

This should increase the required budget of ~100 k€. 

 

The next step will be to develop the key subassemblies that have to be delivered within two 

years. This allows a sufficient time to prepare the LAL Aile 7 building to accommodate the 

machine in order to start integration & tests   

  

The integration & tests phase is expected to last one year and will permit to finely tune the 

machine to the goal performances. It will be done in the exact final configuration as required 

by the C2RMF (Louvre laboratory) in order to minimize the integration there.  

 

Then, the machine will be dismantled (1 month) and re-assembled identically in the Louvre 

facility. No major issue is expected during this period and we expect a very quick 

reinstallation (5 months). This period will include proper training of the future users of the 

machine.   

 

This scheme permits to limit the integration duration in the Louvre premises to minimum 

while offering the highest reactivity during the primary installation & tests of the machine due 

to close connection with LAL/SOLEIL specialists. 

 

 

7.3] Budget 

 

A preliminary budget estimate has been made, based on what is known at this early CDR 

stage. It doesn‘t include any contingency to cover the lack of accuracy in the cost evaluation 

of the unidentified expenses that may show up when working out a TDR. Usually, at this 

stage a 15% contingency is considered. 

This primary budget estimate considers only the direct costs of the various parts of the 

machine without any staff costs, and associated management, engineering tasks, integration & 

tests costs. As a typical rule of thumb for systems of this complexity the total cost including 

manpower is twice the hardware cost. Overhead shall also be included in case of 

subcontracting. 

  

 

This budget estimate also excludes the costs required for: 

o The diagnostics and X-Ray optical components to characterize the photon beam (flux, 

energy, energy spectrum...)  

o The building and associated infrastructure (cooling station, power station, air 

conditioning, lighting…) 

o The radioprotection (shielding, personnel safety system, radiation monitors,.), 

o The transportation  

o The industrialization costs. 
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ThomX parts cost estimate: 

 

Photoinjector Gun 422 

LINAC 1176 

Transport Line 219 

Ring  1919 

Fabry Perot 339 

Laser and fiber amplifier 246 

Control-Synchro & Services 490 

Infrastructure & cabling 200 

X ray beam extraction and characterisation 200 

Spares 222 

total cost for parts (k€ - VAT excluded) 
3
 5433 

 

7.4] Industrialization 

 

Industrialization can be split into two main tasks: 

 

 Adaptation of the ThomX  performance to specific requirements 

 

 Adaptation of the  ThomX machine to meet industrial standard criteria 

 

Adaptation of the ThomX performance to specific requirements 

 

The main trends will be:  

 To increase the instantaneous and/or total flux : this will be performed by 

optimisation of the parameters of the ThomX machine and careful control. In 

particular the interaction area will be minimized as well as the photon flux within 

the Fabry Perot cavity. 

 To increase the X-ray photon energy: this will be done by increasing the electron 

beam energy and/or adapting the Fabry Perot design to operate at 532 nm. 

 To  tune the machine to various X-ray energies : this will be done by setting the 

LINAC energy accordingly and by optimizing the associated ring parameters 

 To condition the X-ray output to specific needs. Various techniques to 

monochromatize or to control the X-ray beam can be used but have to be adjusted 

on a case by case basis depending on the requirements.  

 To decrease the X-ray pulse duration 

 

Adaptation of the ThomX machine to meet industrial standard criteria 

     

The industrial criteria are also key parameters for acceptance by a customer. Among them are 

the following: 

 

 Availability:  

 

                                                 
3
 no provision for risk has been taken 
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The availability of an industrial system depends on two issues  

o Reliability:  

Usually reliability issues arise during the first operation period, ThomX 

extensive tests will permit to localize potential weak points in the design or in 

the technology choices.  

o Maintainability:  

Preventive maintenance associated with tele-diagnostics and local spare parts 

will minimize the fault risks and will shorten the repairing time. The training of 

the people who will perform operation and preventive maintenance is also very 

critical to achieve optimal availability 

 

 Ease of use 

 

The command control shall be easy to use, even for non expert. In particular no action 

leading to catastrophic issue shall be permitted by the system. In case of a defect, clear 

information and guidance shall be provided to the operator   

 

 Performance 

 

Required performance depends on the application and shall be adjusted with the 

simpler possible architecture. R&D beyond ThomX delivery will be necessary to 

implement some of them. Part of ThomX operation time shall be kept for such 

developments..  

    

 Affordability 

 

Effort shall be made to lower the machine cost since the present ThomX cost is too 

high (or the potential application not enough mature) to lead to large machine 

production. 

  

 

ThomX machine design shall meet these criteria whenever possible (i.e. whenever this 

can be done without risks increase or performance degradation) and the remaining 

extra works have to be planned to prepare the industrialization phase whenever these 

criteria are not fully met by the initial ThomX machine. 

In particular the low operating voltage and high modularity policy already experienced 

for the RF power source of SOLEIL will be expanded to the klystron modulator. 
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Annexe 1:  Main source parameters  

  

INJECTOR LINAC 
 

 

  

RF GUN  

Charge per bunch [nC] 1  

Number of bunches per train 1 - 4 

Normalised r.m.s. emittance [ mm mrad] 5 

R.m.s. energy spread [%] < 1% 

R.m.s bunch length [ps] < 5 

RF linac frequency (MHz) 2998 

Repetition frequency [Hz] 50 - 100 

Q0 15244 

Shunt impedance [MW/m] 54 

Peak power [M] 4 

 [µs] 81 

  

LINAC  

Linac Energy [MeV] 50. 

Normalized  r.m.s. emittance @ extraction ( mm.mrad) 4.2 

Non-normalized  r.m.s. emittance @ extraction ( mm.mrad) 0.0426 

R.m.s. transverse sizes @ extraction (x/y) [mm] 1.2 

R.m.s. bunch length [ps] 4.6 

R.m.s. energy spread [%] 0.68 

  

TRANSFER LINE FOR INJECTION BEAM MATCHING  

Chicane compression factor R56 [m] - 0.3 

RF redresser gradient [MV] 2 

RF redresser frequency [GHz] 3 

RF redresser phase [degrees] 90 

  

STORAGE RING 

 

 

  

GENERAL CHARACTERISTICS  

Circumference [m] 14.47 

Nominal energy [MeV] 50 

Period [ns]  48.5  

Synchrotron frequency [kHz] 498.7  

Revolution frequency [MHz] 20.7 

Betatron tunes x, z 3.4, 1.4 

max x,z [m] 11, 11 

Max dispersion function [m] 0.9 


*
 x,z [m], beta function @ IP [m] 0.1, 0.1 

R.m.s. transverse size @ IP [m] 70 
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Dispersion function @ IP [m] 0 

Momentum compaction factor  0.0148 

Max current : Ib  [mA] 20.83 mA 

Natural chromaticities x,z -3.2, -8.2 

  

RF SYSTEM  

RF frequency [MHz] 500  

Harmonic number 24 

Peak accelerating voltage [kV] 500  

  

RING MAGNETS  

Dipole number, family & field [T] 8  / 1  / 0.5 

Dipole current per coil [A turns] 8000  

Dipole gap radius [mm] 40 

Dipole iron length [mm] 300 

Dipole weight [kg] 260 

Dipolr cooling Yes 

Quadrupole number, families & field [T/m] 24 / 6 / <3 

Quadrupole current per coil [A turns] 360 

Quadrupole gap radius [mm] 50 

Quadrupole iron length [mm] 150 

Quadrupole weight [kg] 60 

Quadrupole cooling No 

Sextupole number, families & field [T/m
2
] 12 / 2 / <30 

Sextupole current per coil [A turns] 120 

Sextupole gap radius [mm] 50 

Sextupole iron length [mm] 60 

Sextupole weight [kg] 10 

Sextupole cooling No 

Kicker deviation [degrees], [rad] 1.5,  0.0262 

Kicker field integral [mT m] 4.4 

Kicker field [mT] 8.7 

Kicker peak current [A] 449 

Kicker charging voltage [kV] 24 

Kicker coating thickness [nm] 20-40 

Septum deviation [degrees], [rad] 7,  0.1222 

Septum field integral [mT m] 20.4 

Septum field [mT] 68 

Septum peak current [A] 810 

Septum charging voltage [kV] 0.096 

  

VACUUM SYSTEM  

Design vacuum pressure [Pa] < 3 10
-7

  

Diameter of the beam pipe [mm] 40 

Specific conductance of the beam pipe [m
3 

m s
-1

] 0.0079 

Dimensions of the rectangular chamber of the optical cavity [mm x mm] 25 x 85 

Specific conductance of the optical cavity rectangular chamber [m
3 

m s
-1

]  
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LASER AND CAVITY SYSTEM – IP  

Number of photons/pulse  1.6012 10
17

 

R.m.s. transverse size [m] 40  

R.m.s. longitudinal size [ps] 1  

Wavelength [m] 1.06  

Angle between electron bunch trajectory and the laser one [degrees], [rad] 2, 0.0349 

  

COMPTON BACKSCATTERING RADIATION CHARACTERISTICS 

 

 

Thomson cross section [m²] 6.66 10
-29

  

Initial flux [photons s
-1

] 1.2 10
13

 

Energy loss per electron and per turn [eV] 2.3 

Maximum, mean energy of CBS radiation [keV] 50, 25 

Period [ns] 48 

Transverse damping time [s] 2.1 

Longitudinal damping time [s] 1.1 

Equilibrium energy spread [%] 1.8 

Equilibrium non-normalised Emittance [p mm mrad] 6.9 10
-8

 

Transverse damping time with synchrotron radiation [s] 1.2s 

Longitudinal damping time with synchrotron radiation [s] 0.6 s 

Equilibrium energy spread with synchrotron radiation [%] 1.4 % 

Equilibrium non-normalised emittance with synchrotron radiation [ mm 

mrad] 

6.5 10
-8

 

  

SYNCRONIZATION CONSTRAINTS  

Bunch injection time with respect to the ring synchronous phase [ps] 13 

Bunch and photon bunch running through the interaction region [ps] 10 

Linac photocathode laser pulse with respect to the linac RF phase [ps] 1 

  

ALTERNATIVE SOURCES CHARACTERISTICS 

 

 

  

SUPERCONDUCTING LINAC – ENERGY RECOVERY LINAC  

Energy {MeV] 53 

R.m.s. transverse emittances [.mm.mrad] 6.6 

R.m.s. energy spread [%] 0.7 

R.m.s. bunch length [mm] 3.3 

Bunch charge [nC] 0.3 

Repetition rate [MHz] 80 

Mean Current [mA] 24 

Expected X Ray flux [photons sec
-1

] 2.2 10
13
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Annexe 2:  Costing 

 

ThomX SYSTEM MAIN EQUIPMENT 

BREAKDOWN quantity unit cost 
intermediate 

cost 
subassembly 

cost 

    
(k€ - VAT 
excluded)     

          

         

Photoinjector Gun       422 

         Girder 1 15 15   

         Gun cavities 1 20 20   

Gun magnets 2 10 20   

Gun magnet power supplies 2 30 60   

Laser and optical beam transport 1 150 150   

preparation chamber 1 120 120   

Vacuum          

      Ionic pumps 1 7 7   

     Vacuum Vanes  1 5 5   

Diagnostics         

      Integrating current transformer 1 25 25   

LINAC       1176 

Accelerating section 1 180 180   

Injector girder 1 15 15   

Waveguide feeder 1 20 20   

Timing and LPRF cabinet 1 85 85   

     low power 3 GHz reference 1 20 20   

     3 GHz Amplifier 1 40 40   

     RF measurement  1 10 10   

Vacuum & cooling cabinet 1 110 110   

Magnet supply cabinet 1 5 5   

Klystron Amplifier         

       Klystron with coil 1 200 200   

       Modulator 1 300 300   

      Coil power supply 1 30 30   

RF waveguide 1 30 30   

RF Circulator 1 30 30   

RF Phase Shifter 1 20 20   

Diagnostics         

      Integrating current transformer 2 25 50   

Vacuum         
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      Ionic pumps 3 7 21   

     Vacuum Vanes  2 5 10   

Transport Line       219 

              Girder 1 15 15   

              Beam pipe 1 10 10   

              Diagnostic         

         Integrating current transformer 1 25 25   

Vacuum         

              Ionic pump 1 7 7   

              Vacuum vane 2 5 10   

         Dipole 45° 4 13,5 54   

                 dipole power supply 1 10 10   

         Dipole 8° 1 7 7   

                 dipole power supply 1 10 10   

         Quadripole 5 4,2 21   

                quadripole power supply 5 10 50   

Ring        1918,6 

              Girder 1 22 22   

              Beam pipe 1 20 20   

              Dipôles 8 13,5 108   

              Dipôle power supply 1 10 10   

              Quadripôles 24 4,2 100,8   

              Quadripôle power supply 6 10 60   

     Vacuum 1 150 150   

          Ionic pumps 3 7 21   

          Vacuum Vanes  2 5 10   

              Sextupoles          

                  Type 1 (8) 8 3,9 31,2   

                  Sextupôle T1 Power Supply (1) 1 10 10   

                  Type 2 (4) 4 3,9 15,6   

                  Sextupôle T1 Power Supply (1) 1 10 10   

              RF 500 MHz cavity (1) 1   300   

              LLRF (MO,distribution,réguls,mesures)     100   

              RF 40 kW amplifier     150   

              Diagnostics     500   

              Pulsed elements     300   

Fabry Perot 1 300 300 339 

              Optical table 1   0   

              Mirror vessel 2   0   
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              Mirror positioning system 2   0   

              Vacuum         

                      Vacuum vanes 3 5 15   

                      Ionic pump 2 7 14   

              Beam pipe 1 10 10   

Laser and fiber amplifier       246 

              Low noise ps oscillator 1 80 80   

              Optical table 1 4 4   

              Large core microstructured Yb doped fiber 3 10 30   

              Wavelengths stabilized diodes 1 30 30   

              Optics 1 20 20   

              Mounts and mechanics 1 20 20   

              VBG 2 6 12   

              Diagnostics 1 30 30   

              Custom mechanics 1 20 20   

Others       490 

     Command Control 1   200   

     Synchronization     50   

     Cooling system 1 180 180   

     Beam dump 2 30 60   

Infrastructure & cabling     200 200 

Spares        222 

            Gun magnet power supplies 1 30 30   

            Ionic pumps 1 7 7   

           Vacuum Vanes  1 5 5   

              Dipôle power supply 1 10 10   

              Quadripole Power Supply 1 10 10   

              Sextupôle T1 Power Supply (1) 1 10 10   

          various optical parts 1 50 50   

          various electronics parts 1 50 50   

          various mecanical parts 1 50 50   

X ray beam extraction and characterisation  

               

200                200 200 

     

     

        Total cost 

        5433 
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CONCLUSIONS 

 

There is an industrial and scientific growing interest in bright monochromatic and tunable X-

ray sources. These sources are being widely used in various research, medical, technology and 

industrial fields. Synchrotron Radiation (SR) is currently the primary high quality X-ray 

source that satisfies both brilliance and tunability. The high cost, large size of SR facilities are 

however serious limitations for a large local diffusion of these devices. There are compact (or 

even table-top) X-ray sources already in use, as X-ray tubes or experimental exotic sources 

using moderate electrons energy interacting periodic layer structures. However, these sources 

suffer from a modest photon flux and that the emitted photons energy is relatively low. 

Nevertheless, recent results have shown that laser Compton Back Scattering (CBS) with 

relativistic electrons can produce directional, quasi-monochromatic and polarized photon 

beams with intensity order of magnitude higher than these already existing compact sources. 

In this latter process, the backscattered photon from an eV laser is kinematically boosted up to 

the keV range also taking into account moderate electron energy (few MeV). X-ray sources 

based on this process may become inexpensive and attractive. 

 

Based on the combined recent progress in both accelerator and laser technologies, we propose 

a compact CBS X-ray able to produce an X-ray flux in the region of 10
13

 ph/s. The photon 

energy spectrum cut off is ~ 50 keV. To meet this high flux, both electron bunch and laser 

pulse are stacked respectively in a compact ring and a high gain optical cavity. The laser-

electron interaction occurs at each revolution (20 MHz) by means of a dedicated 

synchronisation system. The photon pulse in the high gain Fabry-Pérot cavity is continuously 

injected by a laser system of high average power (100 W).  

As consequence, the stacked pulses energy increases up to a few mJ (typically 25 mJ). The 

electron bunches are delivered by RF gun followed by a 3 GHz warm linac at an energy of 50 

MeV. At this low energy the cumulative injection in the same bucket of the ring is not 

possible since the synchrotron damping time is longer that the instabilities growing time. 

Hence, a high charge (~ 1 nC) and low emittance (5 mm.rad) is directly injected in the ring. 

As mentioned, at this low energy and high charge bunches, the dynamics in the ring is very 

sensitive to various perturbations (collective effects, intra beam scattering, CBS recoil effect, 

etc ...). As a consequence, to prevent from X-ray flux degradation, we estimate that the 

electron bunches have to be stored to a maximum of about 20 ms. They are then renewed with 

a rate of 50 Hz. For this purpose, we design a compact dedicated storage ring (Circ= 15 m) 

with an original CBS interaction scheme located in between dipoles. It offers the advantages 

to free the long straights sections, to locate the optical mirror outside of the ring and to have 

the X-ray extraction cone close to the interaction point. Therefore, a dedicated optical cavity 

design has been provided taking into account the different integration constraints. It is based 

on a 2D crossed geometry that naturally accommodates the ring dipole gap geometry. 

 

All the subcomponents, from the electron RF gun to the Fabry-Pérot cavity as well as the laser 

systems of the proposed machine, are very performing but they are widely in use in various 

facilities. The real challenge will be the locking of the high power laser with a very high 

finesse optical resonator and, to meet the high flux X-ray, the high electron charges and laser 

pulse energy stored respectively in the ring and the optical cavity. It is then strongly advised 

to consider a gradual approach for the commissioning phases.  

The construction of this machine will strongly benefit of the momentum provided by the 

―Plan Campus‖, a special operation launched by the French government to upgrade 
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infrastructure facilities in the Orsay campus. The building in which the prototype will be 

installed will be refurbished starting in 2010, starting with the necessary electrical power plant, 

ground preparation and clean room assembly. LAL infrastructure teams will be fully 

mobilised to accomplish these various tasks.  

The commissioning of this machine will require a lot of careful coordination and a detailed 

plan will be prepared well in advance to optimize its strategy.  It will also be a very exciting 

adventure that will attract many students, engineers and physicists. We are therefore really 

looking forward this exciting goal. 
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