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Bases of finite-dimensional Hilbert spaces (in dimension d) of relevance for quantum information and quantum computation are constructed from angular momentum theory and su(2) Lie algebraic methods. We report on a formula for deriving in one step the (1 + p)p qupits (i.e., qudits with d = p a prime integer) of a complete set of 1 + p mutually unbiased bases in C p . Repeated application of the formula can be used for generating mutually unbiased bases in C d with d = p e (e ≥ 2) a power of a prime integer. A connection between mutually unbiased bases and the unitary group SU (d) is briefly discussed in the case d = p e .

The use of symmetry adapted functions (or state vectors) is of paramount importance in molecular physics and condensed matter physics as well as in the clustering phenomenon of nuclei. For instance, wavefunctions adapted to a finite subgroup of SU(2) turn out to be very useful in crystal-and ligand-field theory [1]- [START_REF] Kibler | Symmetry adaptation and two-photon spectroscopy of ions in molecular or solid-state finite symmetry[END_REF].

It is the purpose of the present work to report on state vectors adapted to the cyclic subgroup C d of SO(3) ∼ SU(2)/Z 2 . Such vectors give rise to bases of SU(2), the so-called mutually unbiased bases (MUBs), to be defined in Section V. They play a fundamental role in quantum information and quantum computation in view of the fact that these bases describe 1 From a talk presented at the 13th International Conference on Symmetry Methods in Physics (Dubna, Russia, 6-9 July 2009) organized in memory of Prof. Yurii Fedorovich Smirnov by the Bogoliubov Laboratory of Theoretical Physics of the JINR (Russia) and the ICAS at Yerevan State University (Armenia).

qudits (the analogs of qubits in dimension d).

A single formula for MUBs is obtained in this paper from a polar decomposition of SU [START_REF] Vonsovski | Crystal-Field Theory and Optical Spectra of Partly Filled d Shell Transition Ions[END_REF] and analysed in terms of quantum quadratic discrete Fourier transforms, Hadamard matrices, generalized quadratic Gauss sums, and special unitary groups SU(d).

Before dealing with the main body of this work, we continue this introduction with a brief survey for nonspecialists of some particular aspects of quantum computation and quantum information for which the concept of MUBs is useful.

According to the law by Moore, the size of electronic and spintronic devices for a classical computer should approach 10 nm in 2018-2020, i.e., the scale where quantum effects are visible, a fact in favor of a quantum computer. This explains the growing interest for a new field, viz., the field of quantum information and quantum computation. Such a field, which started in the 1980's, is at the crossroads of quantum mechanics, discrete mathematics and informatics with the aim of building a quantum computer. We note in passing that, even in the case where the aim would not be reached, physics, mathematics, informatics and engineering will greatly benefit from the enormous amount of works along this line.

In a quantum computer, classical bits (0 and 1) are replaced by quantum bits or qubits (that interpolate in some sense between 0 and 1). A qubit is a vector |φ in the twodimensional Hilbert space C 2 :

|φ = x|0 + y|1 , x ∈ C, y ∈ C, |x| 2 + |y| 2 = 1, (1) 
where |0 and |1 are the elements of an orthonormal basis in this space. The result of a measurement of |φ is not deterministic since it gives |0 or |1 with the probability |x| 2 or |y| 2 , respectively. The consideration of N qubits leads to work in the 2 N -dimensional Hilbert space C 2 N . Note that the notion of qubit, corresponding to C 2 , is a particular case of the one of qudit, corresponding to C d (d not necessarily in the form 2 N ). A system of N qudits is associated with the Hilbert space C d N . In this connection, the techniques developed for finite-dimensional Hilbert spaces are of paramount importance in quantum computation and quantum calculation.

From a formal point of view, a quantum computer can be considered as a set of qubits, the state of which can be (controlled and) manipulated via unitary transformations. These transformations correspond to the product of elementary unitary operators called quantum gates acting on one or two qubits. Measurement of the qubits outcoming from a circuit of quantum gates yields the result of a (quantum) computation. In other words, a realization of quantum information processing can be performed by preparing a quantum system in a quantum state, then submitting this state to a unitary transformation and, finally, reading the outcome from a measurement.

Unitary operator bases in C d are of pivotal importance for quantum information and quantum computation as well as for quantum mechanics in general. The interest for unitary operator bases started with the seminal work by Schwinger [START_REF] Schwinger | Proc. Nat. Acad. Sci. USA[END_REF]. Among such bases, MUBs play a key role in quantum information and quantum computation [START_REF] Ivanović | [END_REF]- [17]. The various irreducible representation classes of the group SU(2) are characterized by a label j with 2j ∈ N. The standard irreducible matrix representation associated with j is spanned by the irreducible tensorial set

B 2j+1 = {|j, m : m = j, j -1, . . . , -j}, (2) 
where the vector |j, m is a common eigenvector of the Casimir operator j 2 and of the Cartan operator j z of the Lie algebra su(2) of SU(2). More precisely, we have the relations

j 2 |j, m = j(j + 1)|j, m , j z |j, m = m|j, m , (3) 
which are familiar in angular momentum theory. (We use lower case letters for operators and capital letters for matrices so that j 2 in (3) stands for the square of a generalized angular momentum.)

Following the works in [18,19], let us define the linear operators v ra and h by

v ra = e i2πjr |j, -j j, j| + j-1 m=-j q (j-m)a |j, m + 1 j, m| (4) 
and

h = j m=-j (j + m)(j -m + 1)|j, m j, m|, (5) 
where

r ∈ R, q = e 2πi/(2j+1) , a ∈ R. (6) 
It can be checked that the three operators

j + = hv ra , j -= (v ra ) † h, j z = 1 2 h 2 -(v ra ) † h 2 v ra , (7) 
where (v ra ) † stands for the adjoint of v ra , satisfy the commutation relations

[j z , j + ] = +j + , [j z , j -] = -j -, [j + , j -] = 2j z (8) 
of the algebra su(2). (In angular momentum theory, the operators j + and j -are connected to j 2 via j 2 = j ± j ∓ + j z (j z ∓ 1).)

The operator v ra is unitary while the operator h is Hermitian. Thus, Eq. ( 7) corresponds to a polar decomposition of su(2) with the help of the operators v ra and h. It should be noted that v ra can be derived in terms of operators acting on the tensor product of two commuting quon algebras associated with two truncated harmonic oscillators. The latter oscillators play a central role in the intoduction of k-fermions which are supersymmetric objects interpolating between fermions and bosons [START_REF] Daoud | The k-fermions as objects interpolating between fermions and bosons[END_REF][START_REF] Daoud | [END_REF].

It is evident that v ra and j 2 commute. Therefore, the {j 2 , v ra } scheme constitutes an alternative to the {j 2 , j z } scheme. This yields the following result.

Result 1. For fixed j, r and a, the 2j + 1 vectors

|jα; ra = 1 √ 2j + 1 j m=-j q (j+m)(j-m+1)a/2-jmr+(j+m)α |j, m , (9) 
with α = 0, 1, . . . , 2j, are common eigenvectors of v ra and j 2 . The eigenvalues of v ra are given by v ra |jα; ra = q j(a+r)-α |jα; ra , [START_REF] Kibler | Finite symmetry adaptation in spectroscopy[END_REF] so that the spectrum of v ra is nondegenerate.

For fixed j, r and a, the inner product

jα; ra|jβ; ra = δ α,β (11) 
shows that {|jα; ra : α = 0, 1, . . . , 2j} is an orthonormal set which provides a nonstandard basis for the irreducible matrix representation of SU(2) associated with j.

III. QUANTUM QUADRATIC DISCRETE FOURIER TRANSFORM

In view of the interest of the bases {|jα; 0a : α = 0, 1, . . . , 2j} for quantum information and quantum computation, we shall continue with the case r = 0. From now on, we shall also assume that a = 0, 1, . . . , 2j. Furthermore, by making the following change of notation

n ≡ j + m, |n ≡ |j, m , d ≡ 2j + 1, (12) 
Eq. ( 9) gives

|jα; 0a = 1 √ d d-1 n=0 q n(d-n)a/2+nα |n . (13) 
Alternatively, the change of notation

k ≡ j -m, |k ≡ |j, m , d ≡ 2j + 1 (14) leads to |jα; 0a = 1 √ d d-1 k=0 q (k+1)(d-k-1)a/2-(k+1)α |k . (15) 
Equations ( 13) and ( 15) were used in [22] and [23,24]. They are equivalent as far as quadratic discrete Fourier transforms and mutually unbiased bases (MUBs) are concerned.

Both Eqs. ( 13) and ( 15) correspond to quantum quadratic discrete Fourier transforms which can be inverted to give

|n = 1 √ d q -n(d-n)a/2 d-1 α=0 q -αn |jα; 0a (16) 
and

|k = 1 √ d q -(k+1)(d-k-1)a/2 d-1 α=0 q α(k+1) |jα; 0a . (17) 
Note that the word quantum in quantum quadratic discrete Fourier transform refers to the fact that the vectors |n or |k (corresponding to |j, m ) are used in the quantum theory of generalized angular momentum.

In the following we shall adopt the change of notation ( 12) and shall re-define |jα; 0a as |aα . In other words

|aα = 1 √ d d-1 n=0 q n(d-n)a/2+nα |n (18) 
or, in an equivalent way,

|n = 1 √ d q -n(d-n)a/2 d-1 α=0 q -αn |aα . ( 19 
)
Note that the action of the operator v 0a on the vector |n reads

v 0a |n = q -(n+1)a |n + 1 (20) modulo d. It is clear that the basis B 0a = {|aα : α = 0, 1, . . . , d -1} (21) 
is an alternative to the basis B d ≡ B 2j+1 . There are d = 2j + 1 bases of this type for a in the ring Z/dZ. Each basis B 0a spans the regular representation of the cyclic group C d .

IV. QUADRATIC DISCRETE FOURIER TRANSFORM

The expression

(H 0a ) nα = 1 √ d q n(d-n)a/2+nα , (22) 
occurring in (18), defines the nα th matrix element of a quadratic discrete Fourier transform.

To be more precise, for fixed d and a, let us consider the transformation

x = {x(n) ∈ C : n = 0, 1, . . . , d -1} ↔ y = {y(α) ∈ C : α = 0, 1, . . . , d -1} (23) 
defined by

y(α) = d-1 n=0 (H 0a ) nα x(n) ⇔ x(n) = d-1 α=0 (H 0a ) nα y(α). (24) 
The particular case a = 0 corresponds to the ordinary discrete Fourier transform which satisfies

(H 00 ) 4 = I d , (25) 
where I d is the identity d × d matrix. For a = 0, the bijective transformation x ↔ y can be thought of as a quadratic discrete Fourier transform. The analog of the Parseval-Plancherel theorem for the usual Fourier transform can be expressed in the following way.

Result 2. The quadratic discrete Fourier transforms x ↔ y and x ′ ↔ y ′ associated with the same matrix H 0a , a ∈ Z/dZ, satisfy the conservation rule

d-1 α=0 y(α)y ′ (α) = d-1 n=0 x(n)x ′ (n), ( 26 
)
where the common value is independent of a.

It is to be observed that the matrix H 0a is a generalized Hadamard matrix in the sense that the modulus of each of its matrix element is equal to 1/ √ d. Such a matrix reduces the endomorphism associated with the operator v 0a . As a matter of fact, we have

(H 0a ) † V 0a H 0a = q (d-1)a/2         q 1 0 . . . 0 0 q 2 . . . 0 . . . . . . . . . . . . 0 0 . . . q d         , ( 27 
)
where the matrix

V 0a =             0 q a 0 . . . 0 0 0 q 2a . . . 0 . . . . . . . . . . . . . . . 0 0 0 . . . q (d-1)a 1 0 0 . . . 0             ( 28 
)
represents the linear operator v 0a on the basis

B d = {|n : n = d -1, d -2, . . . , 0}, (29) 
known as the computational basis in quantum information and quantum computation.

The Hadamard matrices H 0a and H 0b (a, b ∈ Z/dZ) are connected to the inner product aα|bβ . In fact, we have

(H 0a ) † H 0b αβ = aα|bβ = 1 d d-1 n=0 q n(d-n)(b-a)/2+n(β-α) . (30) 
Thus, each matrix element of (H 0a ) † H 0b can be written in the form of a generalized quadratic Gauss sum S(u, v, w) defined by [START_REF] Berndt | Gauss and Jacobi Sums[END_REF] S(u, v, w)

= |w|-1 n=0 e iπ(un 2 +vn)/w , (31) 
where u, v, and w are integers such that u and w are mutually prime, uw = 0, and uw + v is even. In detail, we obtain

aα|bβ = (H 0a ) † H 0b αβ = 1 d S(u, v, w), (32) 
with the parameters

u = a -b, v = -(a -b)d -2(α -β), w = d, (33) 
which ensure that uw + v is even.

The matrix V 0a can be decomposed as

V 0a = X 0 Z a , (34) 
where

X 0 =             0 1 0 . . . 0 0 0 1 . . . 0 . . . . . . . . . . . . . . . 0 0 0 . . . 1 1 0 0 . . . 0             (35) 
and

Z =             1 0 0 . . . 0 0 q 0 . . . 0 0 0 q 2 . . . 0 . . . . . . . . . . . . . . . 0 0 0 . . . q d-1             . (36) 
The unitary matrices X 0 and Z q-commute in the sense that

X 0 Z -qZX 0 = 0. (37) 
In addition, they satisfy

(X 0 ) d = Z d = I d . (38) 
Equations ( 37) and (38) show that X 0 (to be noted as X in what follows in order to conform to the notations used for Pauli matrices) and Z constitute a Weyl pair. Weyl pairs were introduced at the beginning of quantum mechanics [START_REF] Weyl | The Theory of Groups and Quantum Mechanics[END_REF] and used for building operator unitary bases [START_REF] Schwinger | Proc. Nat. Acad. Sci. USA[END_REF]. The Weyl pair (X, Z) turns out to be an integrity basis for generating a set {X a Z b : a, b ∈ Z/dZ} of d 2 generalized Pauli matrices in d dimensions (see for instance [23,24] and references therein). In this respect, note that for d = 2 we have

X = σ x , Z = σ z , XZ = -iσ y , X 0 Z 0 = σ 0 , (39) 
in terms of the ordinary Pauli matrices σ 0 = I 2 , σ x , σ y , and σ z . Equations ( 37) and ( 38) can be generalized through

V 0a Z -qZV 0a = 0, (V 0a ) d = e iπ(d-1)a I d , Z d = I d , (40) 
so that other pairs of Weyl can be obtained from V 0a and Z. 

| aα|bβ | = δ a,b δ α,β + (1 -δ a,b ) 1 √ d . (41) 
From Eq. ( 41), note that if two MUBs undergo the same unitary or antiunitary transformation, they remain mutually unbiased. It is well-known that the maximum number N of MUBs in C d is N = 1 + d and that this number is attained when d is a prime number p or a power p e (e ≥ 2) of a prime number p [13]- [15]. In the other cases (d = p e , p prime and e integer with e ≥ 1), the number N is not known although it can be shown that 3 ≤ N ≤ 1 + d (see for example [16]). In the general composite case d = i p e i i , we know that 1 + min(p e i i ) ≤ N ≤ 1 + d (see for example [17]). i.e.

su(p) ≃ v 0 ⊎ v 1 ⊎ . . . ⊎ v p (61) 
where the 1 + p subalgebras v 0 , v 1 , . . . , v p are Cartan subalgebras generated respectively by the sets V 0 , V 1 , . . . , V p containing each p -1 commuting matrices.

Result 4 can be extended when d = p e with p a prime integer and e an integer (e ≥ 2):

there exists a decomposition of su(p e ) into 1 + p e abelian subalgebras of dimension p e -1

[27]- [33] (see also [23,24]).

VII. CLOSING REMARKS

MUBs prove to be useful in classical information theory (network communication protocols), in quantum information theory (quantum state tomography and quantum cryptography), and in the theory of quantum mechanics as for the solution of the Mean King problem and the understanding of the Feynman path integral formalism (see [23,24] for an extensive list of references).

There exist numerous ways of constructing sets of MUBs. Most of them are based on discrete Fourier transform over Galois fields and Galois rings, discrete Wigner distribution, generalized Pauli operators, mutually orthogonal Latin squares, discrete geometry methods, angular momentum theory and Lie-like approaches. In many of the papers dealing with the construction of MUBs for d a prime integer or a power of a prime integer, the explicit derivation of the bases requires the diagonalisation of a set of matrices.

In the present paper, the generic formula (18) arises from the diagonalisation of a single matrix (the matrix V 0a ), for the N = 1 + p MUBs corresponding to d = p with p a prime integer. Repeated application (e times) of this formula can be used in the case where d = p e is the power of a prime integer. Results 1 and 3 of this paper concern the closed form formula (18). Its derivation is based on the master matrix V 0a . From V 0a we can deduce the Weyl pair (X, Z) through

X = V 00 , Z = (V 00 ) † V 01 . (62) 
The operators X and Z are known as the flip or shift and clock operators, respectively. For d arbitrary, they are at the root of the Pauli group, a finite subgroup of order d 3 of the group SU(d), of considerable importance in quantum information and quantum computation (e.g., see [34]- [36] and references therein for recent geometrical approaches to the Pauli group).

The Pauli group is relevant for describing quantum errors and quantum fault tolerance in quantum computation.

  From a very general point of view, MUBs are closely connected to the principle of complementarity introduced by Bohr in the early days of quantum mechanics. This principle, quite familiar in terms of observables like position and momentum, tells that for two noncommuting observables, if we have a complete knowledge of one observable, then we have a total uncertainty of the other. Equation (41) in Section V for a = b indicates that the development in the basis B a of any vector of the basis B b is such that each vector of B a appears in the development with the probability 1/d. This is especially interesting when translated in terms of measurements, the bases B a and B b corresponding to the (nondegenerate) eigenvectors of two noncommuting observables. II. A NONSTANDARD BASIS FOR SU (2)

V

  . MUTUALLY UNBIASED BASES From a very general point of view, let us recall that two orthonormal bases B a = {|aα : α = 0, 1, . . . , d -1} and B b = {|bβ : β = 0, 1, . . . , d -1} of the Hilbert space C d are said to be mutually unbiased if and only if the inner product aα|bβ has a modulus independent of α and β. In other words ∀α ∈ Z/dZ, ∀β ∈ Z/dZ :

Result 4 .

 4 For d = p, with p a prime integer, the Lie algebra su(p) of the group SU(p) can be decomposed into a direct sum of 1 + p abelian subalgebras each of dimension p -1,
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A. Mutually unbiased bases for d prime

For d = 2, it can be checked that the bases B 00 , B 01 , and B 2 are 1 + d = 3 MUBs. A similar result follows for d = 3: the bases B 00 , B 01 , B 02 , and B 3 are 1 + d = 4 MUBs. This can be generalized by the following result.

Result 3. For d = p, with p a prime number, the bases B 00 , B 01 , . . . , B 0p-1 , B p form a complete set of 1 + p MUBs. The p 2 vectors |aα , with a, α = 0, 1, . . . , p -1, of the bases B 00 , B 01 , . . . , B 0p-1 are given by a single formula (namely Eq. ( 18)).

The proof of Result 3 is as follows. First, Eq. ( 18) yields

a relation that holds for all k, a, and α in Z/pZ so that each basis B 0a is unbiased with B p .

Second, the generalized quadratic Gauss sum S(u, v, w) in (32), with d = p prime, can be calculated to give

for all a, b, α, and β in Z/pZ. This completes the proof.

We note in passing that, in the case where d = p is a prime integer, the product (H 0a ) † H 0b is another generalized Hadamard matrix.

To close this subsection, we may ask what becomes Result 3 when the prime integer p is replaced by an arbitrary (not prime) integer d. In this case, the formula (18) does not provide a complete set of 1 + d MUBs. However, it is possible to show [23,24] that the bases B 0a , B 0a⊕1 , and B d are three MUBs in C d (the addition ⊕ is understood modulo d). This result is in agreement with the well-known result according to which the maximum number of MUBs in C d , with d arbitrary, is greater or equal to 3 ([16]). Moreover, it can be proved [23,24] that the bases B 0a and B 0a⊕2 are unbiased for d odd with d ≥ 3 (d prime or nor prime).

B. Mutually unbiased bases for d power of a prime

Equation ( 18) can be used for deriving a complete set of 1 + p e MUBs in the case where d = p e is a power (e ≥ 2) of a prime integer p. The general case is very much involved.

Hence, we shall proceed with the example p = e = 2 corresponding to two qubits.

For d = 2 2 = 4, the application of ( 18) and ( 21) yields four bases B 0a (a = 0, 1, 2, 3). As a point of fact, the bases B 00 , B 01 , B 02 , B 03 , and B 4 do not form a complete set of 1 + d = 5

MUBs. However, it is possible to construct a set of five MUBs from repeated application of (18).

Four of the five MUBs for d = 4 can be constructed from the direct products |aα ⊗ |bβ which are eigenvectors of the operators v 0a ⊗ v 0b . Obviously, the set

is an orthonormal basis in C 4 . It is evident that B 0000 and B 0101 are two unbiased bases since the modulus of the inner product of

A similar result holds for the two bases B 0001 and B 0100 . However, the four bases B 0000 , B 0101 , B 0001 , and B 0100 are not mutually unbiased. A possible way to overcome this no-go result is to keep the bases B 0000 and B 0101 intact and to re-organize the vectors inside the bases B 0001 and B 0100 in order to obtain four MUBs. We are thus left with four bases

which together with the computational basis B 4 give five MUBs. In detail, we have

where

and the vectors of type |aα are given by the master formula (18). As a résumé, only two formulas are necessary for obtaining the d 2 = 16 vectors |ab; αβ for the bases W ab , namely

for all a, α, and β in Z/2Z.

It is to be noted that the vectors of the W 00 and W 11 bases are not intricated (i.e., each vector is the direct product of two vectors) while the vectors of the W 01 and W 10 bases are intricated (i.e., each vector is not the direct product of two vectors).

Generalization of ( 52) and ( 53) can be obtained in more complicated situations (two qupits, three qubits, . . . ). The generalization of (52) is immediate. The generalization of (53) can be achieved by taking linear combinations of vectors such that each linear combination is made of vectors corresponding to the same eigenvalue of the relevant tensor product of operators of type v 0a .

VI. MUTUALLY UNBIASED BASES AND UNITARY GROUPS

In the case where d is a prime integer or a power of a prime integer, it is known that the set {X a Z b : a, b = 0, 1, . . . , d -1} of cardinality d 2 can be partitioned into 1 + d subsets containing each d -1 commuting matrices (cf. [15]). By way of illustration, for d = p with p prime, the 1 + p sets of p -1 commuting matrices are easily seen to be

V 3 = {X a Z 2a : a = 1, 2, . . . , p -1}, (57) . . .

V p = {X a Z (p-1)a : a = 1, 2, . . . , p -1}.

Each of the 1 + p sets V 0 , V 1 , . . . , V p can be put in a one-to-one correspondance with one basis of the complete set of 1 + p MUBs. In fact, V 0 is associated with the computational basis while V 1 , V 2 , . . . , V p are associated with the p remaining MUBs in view of V 0a ∈ V a⊕1 , a = 0, 1, . . . , p -1.

(60)

Keeping into account the fact that the set {X a Z b : a, b = 0, 1, . . . , p -1} \ {X 0 Z 0 } spans the Lie algebra of SU(p), we get the following result.