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The unbound nucleus 18Na, the intermediate nucleus in the two-proton radioactivity of
19Mg, is studied through the resonant elastic scattering 17Ne(p,17Ne)p. The spectro-
scopic information obtained in this experiment is discussed and put in perspective with
previous measurements and the structure of the mirror nucleus 18N.

1. Introduction

Near the proton drip-line, where nuclear binding energies are almost zero, the pair-

ing force could play a more important role than in stable nuclei. Sometimes it leads

to a situation where a drip-line nucleus is bound with respect to single-proton decay

but unbound to two-proton radioactivity.1 Then this phenomenon can proceed:

(i) either through simultaneous emission (2He emission) where the two protons

form a quasiparticle due to pairing force that facilitates the penetration of the

Coulomb barrier;

(ii) or by sequential emission through an intermediate state (or eventually the

tail of a resonant state) that can be described by genuine three-particle decay.

Very few intermediate nuclei A−1

Z−1
X are accessible experimentally. Among them,
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18Na, the intermediate nucleus in the 19Mg two-proton decay, was studied by strip-

ping reaction2,3 but its ground state and first excited states were not clearly identi-

fied. In this letter, new results concerning 18Na obtained from the resonant elastic

scattering experiment 17Ne(p,17Ne)p are presented.

2. Experimental Set-Up and Analysis

The elastic scattering reaction17Ne(p,17Ne)p was measured in inverse kinematics

with a 17Ne beam at 4 A.MeV produced by the Spiral facility at GANIL and an

intensity of 104 pps. It was impinging on a 150µm thick polypropylen (CH2) target

where the beam was stopped. With this method, the full excitation function up to

4 MeV in the center-of-mass framework was obtained all at once (for details on the

method see [4]). The outcoming protons were detected with two ∆E-E telescopes

Fig. 1. Left: Experimental set-up for the study of 17Ne(p,17Ne)p resonant elastic scattering (see
text for description). Right : Excitation function in the center -of-mass framework corrected from
12C background and residual βp background from 17Ne decay.

(see Fig. 1) : (i) the first one located at zero degree is composed of a 150µm thick

Silicon detector and a 6 mm Silicon-Lithium detector which was cooled down to

-20oC. It was covering from -2 to 2 degrees with a total resolution of 35 keV for

the telescope (ii) the second one, called CD-PAD detector5, is composed of a thin

(∼40µm) double-sided stripped Silicon detector and a 1.5 mm thick Silicon detector

covering from 5 to 25 degrees in the laboratory frame with an energy resolution

of 50 keV. Rough calibration of Silicon telescopes was performed with 3α source.

Then, more accurate calibration was obtained from 17O runs and comparison with a

previous measurement in direct kinematics of the 17O(p,p)17O reaction6. Moreover,

the contamination from 17Ne decay by βp (90%) was avoided by the use of a target

rotating at 1000 rpm. It was supplemented by a MultiChannel Plate (MCP) detector

for time of flight (TOF) measurement with an efficiency close to 100%.

3. Analysis and Results

The selection of the kinematic line from TOF measurement and of protons from

∆E-E identification matrix makes it possible to reconstruct the excitation function.
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This latter is shown on Fig. 1 (right) where all rings’ contributions in the CDPAD

detector have been summed after correcting from the angle of emission dependence.

The excitation function shows two contributions: the Rutherford scattering (mainly

at low energy) and some interfering resonances reflecting the compound nucleus
18Na structure. Indeed, the position of these resonances is linked with the excited

states of the compound nucleus whereas their widths give access to spectroscopic

factors.

3.1. Ground State

The first resonance in our excitation energy spectra (see Fig. 1) is found at a Sp=1,54

MeV corresponding to ∆M=25.30(2) MeV. This value is compatible with predic-

tions based on mass measurement7,8,9 and slightly above the second peak value

from ref [2] (see Table 1). From its mirror nucleus 18N spectroscopic information10

Table 1. Mass excess (in MeV) of 18Na from several references.

Theory Measurement

Audi [7] Jänecke [8] Pape[9] Fortune[3] Zerguerras [2] This paper

25.3 (4) 25.4 (2) 25.7 (2) 24.88 24.19 (16) /25.04(17) 25.30 (2)

(see Fig. 2), the ground state (g.s.) spin should be 1−. However the shape of a 1−

spin resonance obtained with the R-matrix theory code Anarχ11 is not compatible

with our peak. Only fits with 2− or maybe 3− spins lead to good agreement. Thus

Fig. 2. Left: Level schemes for 18Na as found from the Anarχ fit and for 18N, its mirror nucleus.
Right : Level scheme for two-protons radioactivity of 19Mg.

there are two possibilities : (i) either our first resonance is not the ground state and

there is a narrow resonance (Γ <5 keV) at lower energy that was not seen in this

experiment ; (ii) or there is a spin inversion between 18Na and its mirror nucleus.

In the first case, the position of the g. s. of 18Na was inferred from a fit of the 1−

g. s. of 18N with a Woods-Saxon nuclear potential model. It shows that this state
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should be located at an energy higher than 1.1 MeV with a width lower than 3 keV.

As it is difficult to see it experimentally even with our 15 keV resolution in center-

of-mass framework, we have tried to fit the excitation function with a 1− state at

low energy with no success. On the other hand, the second scenario is difficult to

understand as the Coulomb shift tends to lower down the 1− state.

3.2. Excited States

The best fit obtained with Anarχ takes into account four resonances and leads to

the level scheme of Fig. 2. In the scenario of ref. [2] where the peak at ∆M=25.04

MeV corresponds to the g.s. mass excess, the peak at ∆M=24.19 MeV corresponds

to the decay of an excited state of 18Na to the first excited state of 17Ne at E∗=1.288

MeV with a width of 230 (100) keV. It would place this excited state of 18Na at

E∗=0.44 MeV. In order to look for a compatible state in our level scheme, the

Table 2. Wigner width for the decay of excited states of 18Na to the first excited state of 17Ne.

Excited state of 18Na 320 keV 520 keV 1400 keV

ΓWigner to 17Ne∗ (1.288 MeV) 21.8 keV 105.6 keV 72 keV

maximum width for each excited state of 18Na decaying to the first excited state

of 17Ne has been calculated (see Tab. 2). The 1− state at 320 keV has a too small

Wigner width but the 2− state at 520 keV seems to be a good candidate.

4. Conclusion

From resonant elastic scattering method, we have found several states in 18Na but

spin assignment remains difficult. Moreover, whether the first resonance corresponds

to the ground state or not is difficult to assess for the moment. Further theoretical

calculations are needed to improve our understanding of the 18Na level scheme.
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