Hot Electrons Transverse Refluxing in Ultraintense Laser-Solid Interactions - Archive ouverte HAL Access content directly
Journal Articles Physical Review Letters Year : 2010

Hot Electrons Transverse Refluxing in Ultraintense Laser-Solid Interactions

(1) , (2) , (1) , , , , , (1) , , (3) , (2) , , , (4) , (4) , , (1) , (4) , , (4) , , , , (1) , , , , (2) , , (1)
1
2
3
4
L. Romagnani
A. N. Andreev
  • Function : Author
K. Zeil
  • Function : Author
M. Amin
  • Function : Author
T. Burris-Mog
  • Function : Author
S. Fourmaux
  • Function : Author
Sophie Gaillard
  • Function : Author
S. Kraft
  • Function : Author
G. Sarri
  • Function : Author
T. Toncian
U. Schramm
  • Function : Author
M. Tampo
  • Function : Author
O. Willi
  • Function : Author
T. E. Cowan
  • Function : Author
H. Pepin
  • Function : Author
M. Borghesi
  • Function : Author
J. Fuchs

Abstract

We have analyzed the coupling of ultraintense lasers (at 2 1019 W=cm2) with solid foils of limited transverse extent (10 s of m) by monitoring the electrons and ions emitted from the target.We observe that reducing the target surface area allows electrons at the target surface to be reflected from the target edges during or shortly after the laser pulse. This transverse refluxing can maintain a hotter, denser and more homogeneous electron sheath around the target for a longer time. Consequently, when transverse refluxing takes places within the acceleration time of associated ions, we observe increased maximum proton energies (up to threefold), increased laser-to-ion conversion efficiency (up to a factor 30), and reduced divergence which bodes well for a number of applications.

Dates and versions

in2p3-00525616 , version 1 (12-10-2010)

Identifiers

Cite

S. Buffechoux, J. Psikal, M. Nakatsutsumi, L. Romagnani, A. N. Andreev, et al.. Hot Electrons Transverse Refluxing in Ultraintense Laser-Solid Interactions. Physical Review Letters, 2010, 105, pp.015005. ⟨10.1103/PhysRevLett.105.015005⟩. ⟨in2p3-00525616⟩
13 View
0 Download

Altmetric

Share

Gmail Facebook Twitter LinkedIn More