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2 Oscillation des |K • et | K •

Opérateurs et objet d'étude :

Pour pouvoir étudier l'oscillation des mésons K neutres, commençons d'abord par définir les opérateurs C, P et CP, pour ensuite introduire la composition du méson K • au niveau subatomique et ses propriétés, ainsi que l'action des opérateurs sur celui-ci. Pour l'étude du comportement des mésons K neutres, nous introduirons un hamiltonien T w qui rend compte de la dynamique des désintégrations subies par ces particules, ainsi que la transition entre ces deux particules. Enfin, avec les résultats précédents, nous serons amenés à construire des nouveaux états à partir de combinaisons linéaires des

|K • et | K •
dans le but de pouvoir simplifier l'étude du comportement des particules en question. Mathématiquement, cela se résume à trouver les états propres de l'opérateur T w . Dans tout ce chapitre, on se place sous l'hypothèse que les symétries CP et CPT sont conservées. le méson K • : Dans le cadre du modèle des quarks, les mésons K • et K • sont composés respectivement d'une paire de quarks d (down) et s (strange), de telle sorte que

K • = ds et K • = ds
Ils se désintègrent via l'interaction faible. Celle-ci autorise aussi le mélange des K • , ce qui permet les transitions entre les états propres de l'interaction forte K • et K • . Par conséquent, les mésons K neutres se propagent comme des états propres des interactions fortes et faibles, ou en termes mathématiques, comme des combinaisons linéaires des K • et K • . Les états des K • en question sont appelés respectivement K-short (K s ) et K-long (K l ), lesquels ont approximativement la même masse.

m(K s ) ≈ m(K l ) ≈ 498M eV
mais des durées de vie très différentes En effet,

τ (K s ) = 0.9 • 10 -10 s et τ (K l ) = 0.5 • 10 -7 s (2.1.1)
l'opérateur C : Appelé opérateur de conjugaison de charge, il change une charge en son opposée et vice versa. Dans le cas des K • , si on regarde au niveau de ses composantes (donc au niveau des quarks qui les composent), on a :

C|K • = C|ds = |s d = | K • De la même façon : C| K • = |K • (2.1.2)
l'opérateur P : Appelé opérateur de parité, il change les coordonnées de signe. Autrement dit, il inverse les coordonnées d'espace. Pour les mésons, la parité est liée au moment cinétique orbital par la relation suivante :

P = (-1) L+1 (2.1.3)
Où L est la projection du moment cinétique orbital de la particule en question par rapport à l'axe de rotation. Dans les cas des K • -K • , L=0. Ceci implique :

P |K • = -|K • et : P | K • = -| K • (2.1.4)
l'opérateur CP : L'opérateur CP effectue simultanément la conjugaison de charge, donc l'échange particule -antiparticule, et une inversion de l'espace. Cet opérateur a comme valeurs propres 1 et -1. Dans le cas des K • on a, en prenant compte les équations (2.1.2) et (2. 1.4) :

CP |K • = -| K • et CP | K • = -|K • (2.1.5)
Ces égalités montrent que ni |K • ni | K • sont des états propres de l'opérateur CP. On définit alors deux nouveaux états qui correspondent aux valeurs propres de CP par :

|K 1 = 1 √ 2 (|K • -| K • ) et |K 2 = 1 √ 2 (|K • + | K • ) (2.1.6)
tels que :

CP |K 1 = |K 1 et CP |K 2 = -|K 2 2.2 Modes de désintégration des |K 1 et |K 2
Dans ce modèle, je ne prends en compte que les désintégrations qui donnent des pions.

Désintégration en deux Pions : Il y a deux désintégrations possibles pouvant donner deux pions :

K • → π • π • ou K • → π + π -
L'ensemble des deux pions a un L = 0 pour les deux types de désintégrations explicitées. Cela a comme conséquence d'après (2.1.3)

P (π • π • ) = -1 • -1 = 1 et P (π + π + ) = -1 • -1 = 1 pour P.
De même pour, C on constate que C • |π 0 = |π 0 , donc que π 0 est un vecteur propre de l'opérateur C avec la valeur propre 1. De tout ça, il en suit que l'action de l'opérateur C sur le système π 0 -π 0 s'écrit :

C • (π • π • ) = C • π • • Cπ • = +1 • +1
Dans le cas de l'autre désintégration, C • |π + = |π -= -|π+ , donc que π + est un vecteur propre de l'opérateur C avec la valeur propre -1. De même que π -est un vecteur propre de l'opérateur C avec la valeur propre -1. De tout ça, il s'en suit que :

C • (π + π -) = C • π + • Cπ -= -1 • -1
On peut donc conclure que les opérateurs C et P ont un effet identique, d'où l'effet combiné de ses deux opérateurs est de laisser le système inchangé, comme le montre l'égalité suivante :

CP (π • π • ) = CP (π + π -) = +1
En conclusion : les K 1 , qui correspondent à la valeur propre 1 de CP, ne peuvent se désintégrer du point de vue de ce modèle que sous la forme π + π -ou π • π • .

Désintégration en πππ : Il y a deux désintégrations possibles pouvant donner trois pions

K • → π • π • π • ou K • → π • π + π -
L'ensemble des trois pions possède un L = 0 pour les deux types de désintégrations explicitées. Or cette fois, il y a deux moments angulaires mis en jeu L 1 et L 2 . L 1 résulte de la présence de deux pions, juste comme dans le cas précédant. L 2 résulte de la présence du troisième pion. La conservation du moment angulaire implique alors : L 1 + L 2 = 0. On en déduit donc que L 1 = L 2 et donc que d'après (2.1.3)

P (π • π • π • ) = -1 • -1 • -1 • (-1) L1 • (-1) L2 = -1 et P (π + π + π 0 ) = -1 • -1 = -1 • -1 • -1 • (-1) L1 • (-1) L2 = -1
Un raisonnement analogue à celui fait précédemment pour l'opérateur C, nous montre que : 

C • (π 0 π 0 π 0 ) = 1 • 1 • 1 = 1 et C • (π + π -π 0 ) = +1 • C • π + • Cπ -= +1 • -1 • -1 = 1
CP (π • π • π • ) = CP (π • π + π -) = -1 (2.2.1)
En conclusion : les K 2 , qui correspondent à la valeur propre -1 de CP ne peuvent se désintégrer du point de vue de ce modèle que sous la forme

π + π -π • ou π • π • π • .
Bilan : Si la symétrie CP est conservée lors de la désintégration des K • , on peut s'attendre à ce que ceux-ci se désintègrent sous la forme de pions selon les bilans établis précédemment. Les temps de vie des différents états propres de CP sont très différents ; en effet l'énergie disponible pour la désintégration sous forme de deux pions est :

m k -2m π ≈ 220MeV
tandis que l'énergie disponible pour la désintégration sous forme de trois pions est :

m k -3m π ≈ 80MeV
On peut donc alors distinguer un premier état qui a une courte durée de vie (par rapport à l'autre) K s lequel se désintègre sous la forme de deux pions et un autre de longue durée de vie K l qui se désintègre sous la forme de trois pions. L'absence de violation de CP nous permet donc d'affirmer que : 

|K s = |K 1 ≡ 1 √ 2 (|K • -| K • ) et |K l = |K 2 ≡ 1 √ 2 (|K • + | K • ) (2.2.2) avec K s → ππ et K l →

Désintégration des mésons K neutres en deux pions

Pour pouvoir mettre en place la matrice décrivant l'évolution des mésons K neutres, on se place dans un premier temps dans la base des |K • , | K • où un état quelconque |ψ peut s'exprimer sous forme de combinaison linéaire

|ψ = C + |K • + C -| K • (2.3.1)
Dans cette partie, on se base sur l'idée que les K • comme les K • peuvent se désintégrer en deux mésons π. Il doit donc exister une certaine amplitude pour que le K • puisse devenir un K • ainsi qu'une amplitude pour qu'un K • redevienne un K • , voir qu'un K • devienne (par l'intermédiaire d'une désitégration en deux pions) un K • . En écrivant cela par un schéma, on aurait la situation suivante :

K • ⇀ ↽ π + π -⇀ ↽ K •
Cela implique d'une part l'existence d'une amplitude par unité de temps pour qu'un K • se transforme en un K • à travers l'interaction faible, et d'autre part une amplitude qui décrirait la réaction exactement opposée. Dans ce cas, on peut traduire l'amplitude d'oscillation d'un méson à un autre par :

A = K • |T w |K • = K • |T w | K • et B = K • |T w |K • = K • |T w | K •
Avec A et B étant des nombres complexes pouvant s'écrire sous la forme :

A = 1 2 [(E 1 + E 2 ) - ih 2 (Γ 1 + Γ 2 )] et B = 1 2 [(E 1 -E 2 ) - ih 2 (Γ 1 -Γ 2 )]
Où E 1 et E 2 sont les énergies respectives des K 1 et K 2 , et les Γ i les inverses des τ i définis dans (2.1.1). De plus, comme dit déjà précédemment, tout état |ψ du méson K neutre, peut être défini en précisant les amplitudes pour qu'il soit dans un état ou un autre de la base en question. La conservation de CP dans la désintégration d'un méson K neutre en deux pions implique d'une part :

ππ|T w |K • = ππ|T w | K • et K • |T w |ππ = K • |T w |ππ (2.3.2)
Puisque :

(π + π -) * = π + π - et ( K • ) * = K •
avec les égalités trouvées en (2.3.2), on en déduit alors que

A = K • |T w |K • = K • |T w | K • et B = K • |T w | K • = K • |T w |K • 2.3.

Matrice du modèle

Notre matrice décrivant l'oscillation des mésons K neutres dans la base |K • et | K • peut donc être représentée comme suit :

T w = A B B A (2.3.3)
Soit, en reprenant les notations introduites précédemment :

T w =     1 2 [(E 1 + E 2 ) - ih 2 (Γ 1 + Γ 2 )] 1 2 [(E 1 -E 2 ) - ih 2 (Γ 1 -Γ 2 )] 1 2 [(E 1 -E 2 ) - ih 2 (Γ 1 -Γ 2 )] 1 2 [(E 1 + E 2 ) - ih 2 (Γ 1 + Γ 2 )]    
L'équation de Schrödinger prend donc la forme suivante :

ih d dt    C + C -    =     1 2 [(E 1 + E 2 ) - ih 2 (Γ 1 + Γ 2 )] 1 2 [(E 1 -E 2 ) - ih 2 (Γ 1 -Γ 2 )] 1 2 [(E 1 -E 2 ) - ih 2 (Γ 1 -Γ 2 )] 1 2 [(E 1 + E 2 ) - ih 2 (Γ 1 + Γ 2 )]        C + C -   
Il faut maintenant diagonaliser la matrice pour avoir les valeurs et états propres.

Pour alléger les notations, on repasse à la notation introduite dans (2.3.3)

χ(λ) = A -λ B B A -λ = 0 d´où : χ(λ) = (A -λ) 2 -B 2
Donc les valeurs propres sont :

λ 1 = A + B et λ 2 = A -B
Soit, en revenant aux notations d'origine,

λ 1 = E 1 -ih Γ 1 2 et λ 2 = E 2 -ih Γ 2 2
Avec les vecteurs propres respectifs :

|K s = |K 1 = 1 √ 2 (|K • + | K • ) et |K l = |K 2 = 1 √ 2 (|K • -| K • ) (2.3.4)

Solutions et interprétation

Introduisons maintenant deux amplitudes C 1 et C 2 qui sont les amplitudes pour que l'état |ψ introduit précédemment soit un méson K s ou un méson K l , définies donc comme suit :

C 1 = K 1 |ψ et C 2 = K 2 |ψ
De la définition de nos deux états par les équations (2.2.2) et (2.3.1), on a alors

C 1 = 1 √ 2 (C + + C -) et C 2 = 1 √ 2 (C + -C -)
On obtient ainsi les équations d'évolution des mésons K neutres dans la nouvelle base

|K 1 et |K 2 : ih dC 1 dt = (E 1 - ihΓ 1 2 )C 1 et ih dC 2 dt = (E 2 - ihΓ 2 2 )C 2 lesquelles admettent comme solution C 1 (t) = C 1 (0) exp -i E 1 h -i Γ 1 2 t et C 2 (t) = C 2 (0) exp -i E 2 h -i Γ 2 2 t (2.3.5)
Interprétation : La probabilité de trouver une particule dans l'état |K s à t quelconque est donc le carré de l'amplitude de probabilité donnée dans l'équation (2.3.5). Celle-ci sera donc proportionnelle à :

e -Γ1t
(à une constante multiplicative près). L'autre équation (toujours dans (2.3.5)) prédit que la probabilité de trouver une particule dans l'état |K l est de la forme :

e -Γ2t
(à une constante multiplicative près aussi).On est donc dans la situation suivante : si on met une particule K dans un état |K s , la probabilité de la retrouver dans le même état décroît de façon exponentielle, mais on ne retrouvera jamais cette particule dans l'état |K l et vice versa. En effet, la particule K se désintègre soit en deux mésons π avec une durée de vie moyenne de Γ 1 = 1 τ 1 soit en trois mésons pi avec une durée de vie moyenne de

Γ 2 = 1 τ 2
Expérimentalement, les résultats donnent

τ 1 = 0.9 • 10 -10 s et τ 2 = 0.5 • 10 -7 s (2.3.6)
Les égalités précédentes nous disent aussi que si on met la particule K dans l'état |K l (donc C 1 (0)=0 et C 2 (0)=1), celle-ci restera dans cet état pour tout t apparemment, vu que celle-ci a une durée de vie moyenne 600 fois supérieure par rapport au méson |K s . Donc, tant qu'on ne considérera que la désintégration en deux pions, l'état |K 2 est considéré comme ayant une durée de vie "infinie". Enfin remarquons que avec ce modèle, la probabilité totale n'est pas conservée. Cela s'avère être en adéquation avec ce modèle, on ne s'est intéressé qu'à un type de désintégration des mésons K neutres en particulier en négligeant toutes les autres (désintégration hadronique, avec ici les hadrons étant les π). Si toutes les autres désintégrations avaient été prises en compte lors de notre modélisation, la probabilité totale aurait été rigoureusement égale à un.

Désintégration des mésons K neutres en d'autres modes

Considérons maintenant le cas particulier où, à t=0, nous sommes dans un mélange avec 50% de K 0 et 50% de K0 . Mathématiquement, cela se traduit au niveau des conditions initiales par :

C 1 (0) = 1 √ 2 et C 2 (0) = 1 √ 2 (2.4.1)
Soit donc, en remplaçant les coefficients de (2.4.1) dans (2.3.5) :

C 1 (t) = 1 √ 2 exp -i E 1 h - Γ 1 2 t et C 2 (t) = 1 √ 2 exp -i E 2 h - Γ 2 2 t
Maintenant, il faut prendre en compte que les K s et les K l sont l'un l'autre des combinaisons linéaires de K 0 et K0 . Dans l'équation précédente, les amplitudes ont été choisies de sorte que à t = 0, les contributions de K0 s'annulent l'une l'autre par interférence, laissant seul l'état K 0 . Mais l'état |K s varie avec le temps, alors que |K l non. Au-delà de t = 0, l'interférence entre C 1 et C 2 donnera des amplitudes finies pour K • et K • .

Interprétation

Pour pouvoir interpréter cela, basons nous sur l'expérience suivante : un méson π -produit une particule Λ 0 et un méson K 0 qui voyage à travers l'hydrogène dans une chambre à bulles. Pendant que celui-ci progresse, il a une certaine chance de percuter un noyau d'hydrogène. Au début nous aurions pensé que la conservation de l'étrangeté empêcherait la particule K de créer un Λ 0 dans une telle interaction. Mais maintenant on voit que cela n'est pas vrai.Ceci est une conséquence du fait que bien que notre particule soit un K • lors de sa création, celle-ci ne reste pas dans un tel état. Donc, pour un certain t, il y aura une probabilité pour que celui-ci devienne un K • . On doit donc s'attendre à observer des fois un Λ 0 produit sur le parcours d'un K • au lieu d'un K • . Les probabilités d'avoir cet événement sont données par le coefficient C -, qui est relié aux conditions initiales par :

C -= 1 √ 2 (C 1 -C 2 ) = 1 2   e -iE 1 t h • e - Γ 1 t 2 -e -iE 2 t h • e - Γ 2 t 2   (2.4.2)
Et donc, la probabilité pour que une particule K 0 se transforme en un K0 est donnée par :

|C -| 2 = 1 4 (C 1 -C 2 ) 2 = 1 4 e -Γ1t + e -Γ2t -2e -(Γ 1 +Γ 2 )t 2 cos ∆Et h (2.4.3)
De même, la probabilité pour que une particule K 0 reste sous forme d´un K 0 est donnée par :

|C + | 2 = 1 4 (C 1 -C 2 ) 2 = 1 4 (e -Γ1t + e -Γ2t + 2e -(Γ 1 +Γ 2 )t 2 cos ∆Et h ) (2.4.4)
On retient donc le résultat suivant : quand un K 0 est produit, les chances pour qu'il se transforme en un K0 font que la mise en évidence d'autres particules telle que le Λ 0 varient avec le temps selon l'équation précédente. Le graphique suivant (Figure1) montre l'évolution des K 0 en fonction du temps. Dans celui-ci, la courbe en bleu modélise l'évolution K 0 t=0 → K 0 , tandis que la courbe rouge modélise l'évolution K 0 t=0 → K0 . De plus, on voit que après quelque temps, tous les K s sont "morts" et qu'il ne reste que des K l . 

|K s = 1 √ 1 + ǫ 2 (|K 1 + ǫ|K 2 ) et |K l = 1 √ 1 + ǫ 2 (|K 2 + ǫ|K 1 ) (3.1.1)
La violation de CP dans la désintégration K 1 → ππ fut découverte en 1964 par Christenson, Cronin, Fitch et Turlay [5].

Hamiltonien

Dans ce contexte, le hamiltonien n'est pas le même que celui présenté dans la première partie. En effet, pour le calculer il faut faire appel d'une part à la théorie des perturbations indépendantes du temps pour avoir l'expression des coefficients M ij , et d'autre part à la règle d'or de Fermi pour avoir les Γ ij . Je ne développerai pas les calculs pour trouver ces coefficients car cela s'avère être très lourd. Commençons par écrire notre opérateur T w de façon un peu différente de celle de la première partie, toujours dans la base des |K

• , | K • T w =     M 11 - ih 2 Γ 11 M 12 - ih 2 Γ 12 M 21 - ih 2 Γ 21 M 22 - ih 2 Γ 22    
La conservation de la symétrie CPT (qui est supposée être le cas tout au long de ce rapport) implique que

M 11 = M 22 = M ; Γ 11 = Γ 22 = Γ
La raison est la suivante : D'après la première partie, si l'opérateur CP agit sur T w , tout en restant dans la base |K • , | K • , on a la relation :

K • |CP -1 • T w • CP |K • = (-1) 2 K • |T w | K • (3.1.2)
Puisque l'opérateur CP effectue simultanément la conjugaison de charge et l'inversion d'espace. Si de plus, on fait agir l'opérateur T, lequel a pour effet d'"inverser" les bras en des kets et les kets en des bras, l'égalité (3.1.2) reste inchangée comme le montre l'égalité suivante :

K • |T -1 • T w • T | K • = K • |T w |K •
On obtient finalement la relation qui nous intéresse. À savoir :

K • |T w | K • = K • |T w |K •
Le même raisonnement a lieu pour les Γ. De plus, comme les objets en question représentent des opérateurs hermitiques M et Γ (mais la matrice T w n'est pas hermitique, ce qui s'avère être curieux car en mécanique quantique, tous les observables sont cencés être hermitiques), on a les égalités suivantes

M 11 = M * 11 ; M 22 = M * 22 ; M 12 = M * 21 ; et Γ 11 = Γ * 11 ; Γ 22 = Γ * 22 ; Γ 12 = Γ * 21 (3.1.3)
Donc notre Hamiltonien T w peut s'écrire, en tenant compte de tout ce qui a été dit précédemment comme :

T w =     M - ih 2 Γ M 12 - ih 2 Γ 12 M * 12 - ih 2 Γ * 12 M - ih 2 Γ     (3.1.4)
Comme dit auparavant, nous sommes dans la base des |K • , | K • où un état quelconque |ψ peut s'exprimer sous forme de combinaison linéaire comme dans le cas de (2.3.2). L'équation de Schrödinger prend alors la forme suivante :

ih d dt C + C - =     M - ih 2 Γ M 12 - ih 2 Γ 12 M * 12 - ih 2 Γ * 12 M - ih 2 Γ     C + C -
Diagonalisons la matrice pour avoir les valeurs et états propres de notre Hamiltonien.

χ(λ) = M - ih 2 Γ -λ M 12 - ih 2 Γ 12 M * 12 - ih 2 Γ * 12 M - ih 2 Γ -λ = 0 d'où : χ(λ) = M - ih 2 Γ -λ 2 -M * 12 - ih 2 Γ * 12 M 12 - ih 2 Γ 12 = 0
Donc les valeurs propres sont

λ 1 = M - ih 2 Γ + M * 12 - ih 2 Γ * 12 M 12 - ih 2 Γ 12 et λ 2 = M - ih 2 Γ - M * 12 - ih 2 Γ * 12 M 12 - ih 2 Γ 12
Après quelques calculs, les vecteurs propres respectifs sont donnés par :

|K s = 1 √ 1 + α 2 (|K • + α| K • ) et |K l = 1 √ 1 + α 2 (|K • -α| K • ) où α = M * 12 - ih 2 Γ * 12 M 12 - ih 2 Γ 12
On remarque bien que si les M 12 les les Γ 12 étaient réels, on retrouverait immédiatement les états définis dans la première partie.

Pour arriver au résultat énoncé dans l'introduction au problème, on introduit le paramètre ǫ défini par :

α = 1 -ǫ 1 + ǫ (3.1.5)
et remplaçons α par ǫ dans les équations précédentes. Après quelques calculs, on retombe bien sur les formes habituelles

|K s = 1 2(1 + ǫ 2 ) ((1 + ǫ)|K • + (1 -ǫ)| K • ) et |K l = 1 2(1 + ǫ 2 ) ((1 + ǫ)|K • -(1 -ǫ)| K • )
où ǫ est le facteur qui mesure la violation de CP associée au le mélange des |K 

K l |K s = (1 + ǫ) 2 -(1 -ǫ) 2 2(1 + ǫ 2 ) = 2ǫ 1 + ǫ 2
En prenant en compte que ǫ ≪ 1, et en négligeant les infiniment petits d'ordre supérieur à 1, on trouve 

K l |K s = 2ǫ (3.1.8)
|ψ = 1 + |α| 2 C + 2 |K l + |K s + C - 2α |K l -|K s
En réarrangeant un peu les termes, on arrive à l'expression :

|ψ = √ 1 + α 2 2 θ l |K l + θ s |K s (3.2.1)
où l'on a posé

θ l = C + + C - α et θ s = C + - C - α
En décomposant dans la base des |K • , | K • les relations précédentes et en leur appliquant l'équation de Shrödinger, on obtient les équations suivantes :

ih dθ l dt = M - ih 2 Γ 12 a + M 12 - ih 2 Γ 12 b + 1 α M * 12 - ih 2 Γ * 12 a + M - ih 2 Γ b
Après quelques calculs, on arrive a

ih dθ l dt = M - ih 2 Γ θ l + M * 12 - ih 2 Γ * 12 M - ih 2 Γ θ l soit donc ih dθ l dt = M l - ih 2 Γ l θ l avec M l = M + Re M * 12 - ih 2 Γ * 12 M - ih 2 Γ et Γ l = Γ -2Im M * 12 - ih 2 Γ * 12 M - ih 2 Γ
De la même façon, on trouve une équation pour θ s

ih dθ s dt = M s - ih 2 Γ s θ s avec M s = M -Re M * 12 - ih 2 Γ * 12 M - ih 2 Γ et Γ l = Γ + 2Im M * 12 - ih 2 Γ * 12 M - ih 2 Γ
à partir de ces expressions, on arrive enfin à la forme du Hamiltonien et donc aux nouvelles équations d´évolution :

ih d dt θ l θ s =    M l - ih 2 Γ l 0 0 M s - ih 2 Γ s    θ s θ l (3.2.2)
En résolvant ce système, on obtient, à une constante près,

θ l (t) = exp -iM l t + ih 2 Γ l t et θ s (t) = exp -iM s t + ih 2 Γ s t (3.2.3)
Ces équations nous montrent que les états propres du système |K • , | K • se comportent comme des particules indépendantes qui ont chacune non seulement des durées de vies différentes, mais aussi une masse qui leur est propre. Enfin dans le cas de la violation de CP, un état quelconque |ψ peut s´exprimer comme :

|ψ = θ l (t)|K l + θ s (t)|K s (3.2.4)

Comportement en fonction du type de désintégration

Pour pouvoir prédire la façon dont les |K • , | K • vont se désintégrer tout en sachant que ce sera en violant la symétrie CP, il est nécessaire de les exprimer à partir des expressions obtenues dans le paragraphe précédent. Commençons avec les |K • , | K • en tenant compte de la violation de CP

|K • = 1 + ǫ 2 2 1 1 + ǫ (|K l + |K s ) et | K • = 1 + ǫ 2 2 1 1 + ǫ (|K l -|K s ) (3.2.5)
En revenant aux expressions des |K s , |K l ,en considérant les fonctions θ introduites dans (3.2.3), (lesquelles traduisent leurs évolutions respectives) et l'expression de |ψ donnée par (3.2.4) on arrive à :

|ψ 1 (t) = 1 + ǫ 2 2 1 1 + ǫ (θ l (t)|K l + θ s (t)|K s ) et |ψ 2 (t) = 1 + ǫ 2 2 1 1 + ǫ (θ l (t)|K l -θ s (t)|K s ) Avec θ s (t) = exp -iM s + h 2 Γ s t et θ l (t) = exp -iM l + h 2 Γ l t
De plus, en remplaçant les expressions de |K s et |K l par celles données dans l'équation (3.1.1) et en ordonnant chaque terme avec celui qui lui correspond, on arrive à :

|ψ 1 (t) = 1 √ 2(1 + ǫ) (θ s (t) + ǫθ l (t))|K 1 + (θ l (t) + ǫθ s (t))|K 2 (3.2.6) et |ψ 2 (t) = 1 √ 2(1 -ǫ) (θ s (t) -ǫθ l (t))|K 1 + (θ l (t) -ǫθ s (t))|K 2 (3.2.7)
C'est à partir des relations (3.2.5), (3.2.6) et (3.2.7) que on l'on décrira le comportement des désintégrations tout en tenant compte de la violation de CP en considérant les probabilités suivantes

P (|K • (t) → ππ) = | K 1 |ψ 1 (t) | 2
(3.2.8)

P (| K • (t) → ππ) = | K 1 |ψ 2 (t) | 2 P (|K • (t) → πππ) = | K 2 |ψ 1 (t) | 2 P (| K • (t) → πππ) = | K 2 |ψ 2 (t) | 2
Je ne détaillerai pas tous les calculs pour arriver aux bons résultats. Je propose d'en faire un seul et pour le reste, j'écrirai les expressions finales seulement. Prenons par exemple l'expression (3.2.8) et développons la. 

| K 1 |ψ 1 (t) | 2 = 1 2(1 + ǫ) 2 |θ s (t) + ǫθ l (t)| 2
| K 1 |ψ 1 (t) | 2 = 1 -2Re(ǫ) 2 θ s (t) 2 + |ǫ| 2 θ l (t) 2 + 2Re(θ s (t) • θ l (t) * ) (3.2.10)
En considérant toutes les hypothèses énoncées précédemment, nous arrivons à l'expression finale :

| K 1 |ψ 1 (t) | 2 = 1 -Re(ǫ) 2 e -Γst + |ǫ| 2 e -Γ l t + 2|ǫ|e -(Γs +Γ l )t 2 cos (∆mt -φ) (3.2.11)
De même pour les autres probabilités, nous obtenons les relations suivantes

| K 1 |ψ 2 (t) | 2 = 1 + Re(ǫ) 2 e -Γst + |ǫ| 2 e -Γ l t -2|ǫ|e -(Γs +Γ l )t 2 cos (∆mt -φ) | K 2 |ψ 1 (t) | 2 = 1 -Re(ǫ) 2 e -Γ l t + |ǫ| 2 e -Γst + 2|ǫ|e -(Γs +Γ l )t 2 cos (∆mt -φ) | K 2 |ψ 1 (t) | 2 = 1 + Re(ǫ) 2 e -Γ l t + |ǫ| 2 e -Γst -2|ǫ|e -(Γs +Γ l )t 2 cos (∆mt -φ)
Le graphe suivant Figure2 montre l'évolution en fonction du temps des deux premières expressions des K 0 , K0 se désintégrant en ππ en tenant compte de la violation de CP.

Figure 2 -Le graphe montre comment le K s , présent au début de la courbe décroit. Ceci est la conséquence de son temps de vie très bref. À la fin de la courbe, le K l est tout seul, ce qui correspond bien aux hypothèses sur les différences de vie des deux types de mésons. [START_REF] Steinberger | [END_REF] Variation du temps de vie et régénération des |K • , | K •

Introduction au phénomène

Lorsque un faisceau de K l traverse une fine tablette de matière, la composante K s'avère être plus atténuée que la composante K, ayant comme résultat que le faisceau transmis par la tablette de matière contient aussi des composantes de K s . Cet phénomène est comparable à celui de la lumière polarisée. Pour illustrer comment les mésons K neutres se mélangent, considérons l'analogie avec la lumière du soleil. La lumière qui nous provient du soleil contient toutes sortes de polarisations (qui sont les directions du champ électromagnétique de l'onde lumineuse). Mais si cette lumière passait au travers d'un Polariseur orienté par exemple de façon verticale, une partie de la lumière resterait bloquée et seulement la portion de la lumière polarisée de façon verticale passerait. Dans ce faisceau, il ne peut pas y avoir de lumière avec une polarisation horizontale. Après ceci, plaçons un Polariseur sur le chemin du faisceau qui vient de quitter le premier obstacle avec une inclinaison de 45 • . La lumière qui émerge (qui a donc une intensité encore plus faible que précédemment) sera orientée aux mêmes 45 • . Cette lumière peut être considérée comme ayant une composante verticale et une horizontale. La preuve qu'une composante du faisceau est polarisée maintenant de façon horizontale (tandis que juste avant, la lumière était juste polarisée de façon verticale exclusivement) est que si on met sur la trajectoire de ce même faisceau un polariseur qui est orienté de façon verticale, un peu de lumière émergera de celui-ci. Ce même principe reste valable pour les mésons K neutres, à savoir que un peu de K 2 peut devenir du K 1 et vice versa tout comme la lumière dont sa polarisation initiale est verticale, se transforme en une polarisation horizontale. Cependant, au lieu de passer à travers de polariseurs, les mésons passent à travers de fines tablettes de matière dans lesquelles des faisceaux de K s sont "régénérés" à partir de faisceaux ne contenant que des mésons K l . La régénération s'avère être un outil pour préparer des faisceaux contenant un mélange de différentes compositions entre les K l et les K s . L'idée est reprise dans la figure ci dessous dans le cas de la polarisation d'une onde électromagnétique. 

Étude phénoménologique

L'étude du phénomène de régénération ne sera étudiée que dans une seule direction spatiale. Nous ne considérerons que l'onde cohérente transmise. Soit un état |ψ pendant qu'il traverse une tablette de matière d'épaisseur dx. La variation de notre état |ψ de d|ψ sera le résultat de deux processus : d'une part la variation de durée de vie de ses composantes (donc les K s et les K l ) d'autre part l'interaction au niveau atomique entre les composantes de la tablette en question et les mésons K neutres.

La contribution du matériau pour la variation d|ψ de notre état en question peut être exprimée de la façon suivante : Considérons la contribution dρ d'un anneau de rayon ρ dont le centre passe par l'axe des x.

d|ψ = 2πN dx +∞ 0 e ip √ ρ 2 +x 2 ρ 2 + x 2 ρdρ • f (θ) • |i Avec :
N = densité de noyaux f (θ) = amplitude de dispersion p = moment des mésons K ρ = rayon de l'anneau hypothétique par lequel passe la matière Dans ce modèle, les angles sont considérés comme petits. On prendra dans ce cas f (θ) = f (0) = constante, ce qui nous permet de le sortir de l'expression précédente. D'où :

d|ψ = 2πN dxf (0) +∞ 0 e ip √ ρ 2 +x 2 ρ 2 + x 2 ρdρ • f (θ)|i = 2πN dxf (0) -i p +∞ 0 d(e ip √ ρ 2 +x 2 )|i d'où : dψ = 2iπN f (0)dx p e ipx
Remarque : La contribution de e ip∞ a la variation de |ψ peut être remplacée par 0 en faisant l'hypothèse que le faisceau incident a un rayon fini et que à l'infini, le rayon de celui-ci tend vers 0. Ceci nous donne donc l'expression de la contribution de la durée de vie des mésons K neutres, que l'on doit ajouter à l'expression qui traduit leur oscillation au cours du temps. Plaçons nous tout d'abord dans le cas où la symétrie CP est conservée. On a donc comme expression finale pour l'oscillation de nos particules : 

ih d dt C + C - =     M - ih 2 Γ M 12 - ih 2 Γ 12 M 12 - ih 2 Γ 12 M - ih 2 Γ     C + C - - 2iN π m    f 0 0 f    C + C - avec m
ih d dx θ l θ s = m p    M l - ih 2 Γ l 0 0 M s - ih 2 Γ s    θ s θ l - iN π p    Σf ∆f ∆f Σf    C + C - (4.2.1) avec : ∆f = f + f et Σf = f - f
Le dernier terme est celui qui décrit correctement l'effet qu'a la tablette de matière sur la durée de vie des mésons K neutres. Il est possible de résoudre l'équation matricielle en la considérant sous une forme relativement plus simple en factorisant certains termes, et donc de pouvoir trouver une expression qui prédit la différence de durée de vie en fonction du matériau et de son épaisseur.

ih d dx |ψ ± = α ± |ψ ± et |ψ ± = |K l + A ± |K s (4.2.2)
Dans la suite, je prendrais h = 1 pour simplifier les calculs. De même, je ne donnerai pas le cheminement de la factorisation en question car le calcul s'avère être très long. Les termes A ± et α ± sont donnés par les expressions suivantes : [htb] Dans ce genre de distributions, pour des t très petits, c'est l'exponentielle contenant le terme en Γ s qui domine. Pour des t plus grands (mais en restant toujours à une même échelle de grandeur) c'est l'exponentielle contenant le terme en Γ l qui domine, en emportant le terme en cos car alors la courbe n'oscille plus. Enfin, pour des temps intermédiaires, c'est le terme des interférences qui est dominant. Ce type de désintégration s'avère être interdit d'après la symétrie CP : en effet, cette situation se présente pour les K l et ne devrait pas avoir lieu dans le cas des K s . Si la symétrie CP était conservée, K s → 3π 0 serait "interdite", alors que K s → π + π -π 0 serait permise. Le principe pour mesurer ce genre de désintégrations repose sur le même principe que (4.3.1) : on définit deux coefficients qui mesurent les résultats de chacune des désintégrations. Ces coefficients sont : Cette expression fut déjà trouvée précédemment, c'est la 3e équation de (3.2.11). La seule différence, c'est qu'on a changé le paramètre ǫ par η 3π et que l'on a modifié l'amplitude, mais globalement, l'expression reste la même. Si η est petit, il s'avère être difficile de voir une différence par rapport aux autres courbes présentées précédemment puisque Γ s ≪ Γ l et donc la contribution de ce terme dans la représentation graphique n'est pas très visible. Cependant, la formule représente une situation totalement différente de (4.3.2). Expérimentalement, on trouve que |η 000 | ≈ 1, 5 et η +-0 ≈ 0.7. En comparant avec les valeurs des η introduits pour la désintégration sous forme de deux pions, on constate que, ici ils sont de l'ordre de l'unité, tandis que les autres sont de l'ordre de 1 • 10 -4 .

A ± = 1 E 1 ± 1 + E 2 et α ± = - im 2p ΣM - 2πN Σf m ± ∆m 1 + E 2 avec : ∆M = (M l -M s ) + i 2 (Γ s -Γ l ) et E =
|K l = A + |ψ --A -|ψ + A + -A - et |K s = |ψ + -|ψ - A + -A -
η ± = π + π -|T w |K l π + π -|T w |K s Pour K → π + π -; η 00 = π 0 π 0 |T w |K l π 0 π 0 |T w |K s Pour K → π 0 π 0 (4.
η ±0 = π + π -π 0 |T w |K l π + π -π 0 |T w |K s Pour K → π + π -
5 Conclusion, et autres modèles.

Mon approche tout au long du stage ne s'est basée que sur le cas de violation de CP indirecte, en laissant totalement de côté la violation de CP directe, celle-ci faisant appel à des concepts en physique théorique et en mathématiques que je ne possède pas encore. La violation de CP n'avait jamais été observée avant le cas des mésons K neutres. Malgré cela, celle-ci s'avère être violée dans des très faibles proportions. Dans ce rapport, j'ai exploré le phénomène et fait une application au niveau de la variation du temps de vie des K s et des K l . Cependant, d'autres applications sont possibles. L'une d'entre elles est peut être de pouvoir expliquer pourquoi la matière l'a emporté sur l'anti-matière lors de l'expansion de l'univers. Il existe d'autres modèles théoriques d'étude de la violation de CP directe et indirecte, parmi lesquels on trouve "l'analyse des isospins dans le modèle de la désintégration en deux pions [START_REF] Wu | [END_REF]", lequel fait appel à des concepts tels que l'isospin, la G-parité ou des théorèmes comme le théorème de Whatson. Parmi ces autres modèles, on trouve aussi la "non conservation de C dans l'interaction électromagnétique " [8], le "modèle super faible " [9] ou encore les "modèles mini faibles et mini forts" [START_REF] Miller | the porc. 14th Int. on High-Energy Physics Viena ()[END_REF]. Enfin, reste à mentionner que la violation de CP a été observée dans d'autres systèmes oscillants plus récents tels que les bosons neutres.
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 1 Figure 1 -Dans ce graphe on peut voir que, après quelques oscillations par rapport à la période de K s lequel possède un temps de vie très bref, on ne se retrouve qu' avec des composantes K l , ce qui correspond à la moitié de |K • et la moitié de | K •

3. 2

 2 Comportement du système |K • , | K • avec la violation de CP 3.2.1 Oscillation des mésons K neutres avec la violation de CP Dans cette partie, nous devons pouvoir résoudre le système d'équations différentielles en diagonalisant l'Hamiltonien avec les équations précédentes dans le but de pouvoir mettre en équation le comportement des mésons K neutres. Pour cela commençons donc par exprimer un état quelconque ψ dans la base des |K • , | K • : |ψ = C + |K • + C -| K • En introduisant le paramètre α (voir (3.1.5)) et en exprimant les |K • , | K • en fonction des |K s et des |K l on arrive à :

  d'après l'expression (3.1.6) ǫ est complexe, on peut donc l'écrire sous la forme : ǫ = |ǫ|e iφ (3.2.9) De plus, comme le montre l'expression (3.1.7), | ǫ | ≪ 1, on peut donc faire un développement en série de Taylor au premier ordre d'où :

Figure 3 -

 3 Figure 3 -Dans un premier temps, on a une onde electro-magnétique avec une composante verticale et une horizontale qui passe à travers un polariseur orienté verticalement. Suite à cela, la composante verticale est la seule à être transmise à la sortie du polariseur. On met à la suite, un polariseur avec une orientation de 45 degrés. Ce qui a comme conséquence le passage de la lumière orientée à 45 degrés, laquelle peut être décomposée en deux orientations, une verticale et une horizontale. Suite à cela, on met un dernier polariseur incliné verticalement qui permet juste le passage de ondes orientées de cette façon.

Figure 7 -

 7 Figure 7 -régénérateur 3. Avec ρ = 0.521 : Dans ce cas, le terme d'interférences est encore plus aplati.
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 32 Cas de la désintégration K → 3π. Cas interdit : K s → 3π 0

  π 0 ; η 000 = π 0 π 0 π 0 |T w |K l π 0 π 0 π 0 |T w |K s Pour K → π 0 π 0 π 0L'étude de la désintégration conduit à une formule semblable à (4.3.2), à quelques facteurs près. Après calculs, nous obtenons l'expression suivante :I +-0 = Γ s,+-|η +-0 | 2 e -Γst +e -Γ l t + 2|η +-0 |e -(Γs +Γ l )t 2 cos (∆mt + φ η+-) (4.3.3)
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  Au cours de la partie précédente, nous avons vu que les deux valeurs propres de CP sont 1 et -1. Par ailleurs, on a vu que ces valeurs propres correspondent à la création de ππ et à la création de πππ, le tout résumé par les expressions (2.2.3). A savoir, la désintégration K s → ππ a une valeur propre égale a 1, tandis que la désintégration K l → ππ a une valeur propre égale a -1. Cela entraîne entre autres l'expression des états |K s et |K l en fonction des |K • et | K • données par (2.2.2). Or expérimentalement cela s'avère être faux, la désintégration du méson K neutre viole la symétrie CP. Ceci implique que les états |K 1 et |K 2 ne correspondent pas exactement aux états |K s et |K l (ce que l'on appellera violation de CP indirecte, laquelle est mesurée par un paramètre ǫ), ou alors que un |K l = |K 2 se désintègre directement en πππ et en ππ (violation de CP directe, mesurée par un paramètre ǫ'). Les deux contribuent à la violation de CP, mais la première citée a une contribution plus importante dans le phénomène. Expérimentalement les états |K s et |K l s'avèrent être en réalité des combinaisons linéaires des états |K 1 et |K 2 . Ceci veut donc dire que un état |K s contiendra un peu de |K 2 , et que un |K l contiendra un peu de |K 1 . Mathématiquement, ceci peut se traduire par la modification des états trouvés dans la première partie comme suit :

	3.1.1 Introduction au problème

  • , | K • , soit, dans des termes plus corrects, ce qu'on appelle la violation de CP indirecte. L'expression théorique de ǫ en fonction des expressions introduites pour le Hamiltonien est donnée par Cette expression met en jeu des coefficients réels et complexes, ǫ est donc complexe. On se servira de cette constatation plus tard pour l'écrire sous la forme "a • e iφ ", avec a le module du nombre complexe et φ son argument.

	ǫ =	M 12 -M 12 -	ih 2 ih 2	Γ 12 -M * 12 -Γ 12 + M * 12 -	ih 2 2 ih	Γ * 12 12 Γ *	]	(3.1.6)
	Expérimentalement,							
		|ǫ| = 2, 2 • 10 -3				(3.1.7)

On constate aussi que les nouveaux états "short" et "long" ne sont plus orthogonaux entre eux. En effet, le produit scalaire entre ces deux vecteurs donne

  la masse des mésons K neutres. Si maintenant nous passons dans la base |K s , |K l et l'on pose :

	d dx	=	m p	d dt
	nous avons : voir(3.2.2)			

  E étant le facteur qui mesure le taux de régénération des mésons K de la tablette de matière sur laquelle on fait l'expérience. Les équations définies par (4.2.2) donnent après intégration, la forme d'évolution des mésons K neutres en fonction de l'épaisseur et de la nature de la tablette en question. (il est inutile d'intégrer au delà de l'épaisseur de la tablette car ce qui nous intéresse c'est ce qui se passe dans la tablette).La formule (4.2.4) nous montre l'influence d'une tablette d'épaisseur D sur les états |K l et |K s respectivement lorsqu'ils la traversent. En effet, d'après la deuxième expression de (4.2.2), on voit qu'il est possible d'introduire les états "short" et "long" de la façon suivante :

	2πN ∆f m∆M	(4.2.3)
	Après intégration, nous avons :	
	|ψ ± (D) = |ψ ± (0) e α±D	(4.2.4)

  , on peut définir le taux de régénération comme le rapport des |K s sur les |K l une fois que le faisceau a traversé la tablette :ρ = -e α+De α-D A + e α-D -A -e α+D (4.2.7)Cette expression nous est utile pour faire un développement limité sur le facteur E et pouvoir trouver des expressions approchées des |K s , |K l ainsi qu'une expression approchée de la courbe qui nous donne le taux de régénération avec moins de paramètres. Après avoir fait des développements limités sur la formule précédente et l'équation (4.2.2) on arrive aux résultats suivants :|ψ -= |K l -K|K s ; |ψ + = |K s + K|K lSi la symétrie CP était conservée lors de la désintégration, les états |K s et |K l seraient des états propres de l'opérateur T w avec les valeurs propres respectives -1 et 1. De même, les π produits auraient un spin égal à zéro et CP = 1. Or la désintégration K l → ππ n'est pas permise selon le principe de CP (ce qui a été vu dans le premier chapitre). Afin de pouvoir mesurer la violation de CP lors de la désintégration K → ππ, on introduit deux quotients pour pouvoir mesurer les désintégrations de K l et K s (toujours dans le cas de la désintégration en deux pions) :

	pour |K s : 4.3 Application aux modes de désintégration e α+D -e α-D A + -A -|K l + 4.3.1 Cas de la désintègration K → 2π	A + e α+D -A -e α-D A + -A -	|K l	(4.2.6)
	Où l'on a pris : ψ(0) = 1. À partir de (4.2.5) et (4.2.6); ρ = -Rappel du problème :	K 2	  1 -e	im∆M D p	  
	La représentation de la dernière équation, en prenant comme axe des ordonnées |	2ρ K	| 2 nous donne le graphique suivant :
	Figure 4 -Dans ce graphique, on peut voir l'intensité de régénération en fonction de l'épaisseur D. L'intensité varie sous forme de parabole pour des très faibles valeurs de D, puis arrive à une asymptote d'équation y = | 2ρ K | 2 . Un ordre de grandeur de la magnitude de régénération,pour le cuivre est d'environ |ρ| 2 = 0.01
	Lesquels donnent après avoir traversé la tablette de matière d'après la loi d'évolution établie dans (4.2.4) une combinaison
	des deux états :					
	pour |K l :	A + e α-D -A -e α+D A + -A -	|K l -	e α+D -e α-D A + -A -	|K s	(4.2.5)
		et				

  3.1)Ces deux quotients mesurent ce qu'on obtient sur ce qu'on devrait obtenir. Si la violation de CP a lieu, ces deux quotients sont différents de 0. Reste à mentionner que T w contient des termes complexes et que en conséquence, nos deux quotients seront des nombres complexes. Leurs modules sont déterminés à partir de la période partielle Γ l,+-, Γ l,00 et les périodes de vie des K s et K l . La détermination expérimentale de ces deux coefficients se fait sans problème au niveau de la désintégration π + π -. Expérimentalement, |η +-| = 1.90 • 10 -3[START_REF] Cronin | Proc. 14th Int. Conf. on Hight-Energy Physics[END_REF]. Par contre, celle-ci s'avère être laborieuse au niveau de la désintégration π 0 π 0 . En effet, plusieurs expériences fournissent des résultats différents. Ils vont de 5.05 • 10 -6 à 14, 1 • 10 -6 . On retient |η 00 | = 2, 6 • 10 -3[START_REF] Cronin | Proc. 14th Int. Conf. on Hight-Energy Physics[END_REF]. La question de savoir si les deux η sont égaux n'est pas encore résolue. Pour étudier les interférences entre les K l et les K s pendant qu'ils se désintègrent sous forme de pions, considérons un état |ψ = |K l + ρ|K s . Cet état peut être préparé en faisant passer un faisceau de K l à travers un régénérateur, comme vu dans la partie précédente, ou alors en produisant des mésons K et en étudiant les K l et les K s assez près de la cible pour que les composantes K

	-(Γs +Γ l )t 2	cos (∆mt + φ ρ -φ η+-)	(4.3.2)
	De même, le terme d'amplitude d'interférence :		
	1 -Re(ǫ) 2		
	est remplacé par Γ		

s ne se soient pas toutes désintégrées. La forme de la désintégration en deux pions a déjà été introduite à la fin du chapitre 2 (cf :(3.2.11)). Ici, la formule change un peu car il ne s'agit plus du même état. De plus, nous ne sommes pas dans le cas de la violation de CP pour le moment, donc l'ǫ définit précédemment dans (3.2.11) n'a plus lieu d'être présent dans notre expression. Dans ce nouveau cas, la formule s'écrit (en s'aidant des expressions établies dans (3.2.2)) :

I +-= Γ s,+-|ρθ s (t) + η +-(t)| 2 = Γ s,+-|ρ| 2 e -Γst + |η +-| 2 e -Γ l t + 2|ρ| • |η +-|e s,+-.

Les autres termes ont la même signification que ceux définis pour (3.2.11). Les courbes suivantes montrent comment la désintégration en deux pions varie en fonction des différentes valeurs que peut prendre ρ. Il est important de signaler que si un générateur est utilisé comme une source de K s , alors ρ peut être choisi en fonction de la nature du matériau et de son épaisseur. Le problème expérimental est que le régénérateur introduit une phase, comme le montre un des termes du cosinus dans l'équation (4.3.2). Figure 5 -régénérateur 1. Avec ρ = 1 : dans ce modèle, tout se passe comme si "on n'avait" rien fait. On retrouve la même courbe que dans les chapitres précédents Figure 6 -régénérateur 2. Avec ρ = 0.521 : dans ce cas, on constate déjà une déformation de la courbe. Le terme d'interférences (donc celui du milieu) est un peu plus aplati car la composition du faisceau de K l et K s n'est plus la même.