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Fusion of heavy ions is largely hindered because of the appearance of an inner barrier between the
contact point of the two colliding nuclei and the compound nucleus. But there are still quantitative
ambiguities on the size of the barrier and on the role of the dissipation. In this paper we stress the
importance of the neck of the composite system on the hindrance of the fusion of heavy nuclei. We
show that the “denecking” process is very quick compared to the other collective degrees of freedom
as the relative distance. This behavior of the neck will change the potential seen by the relative
distance on the way to fusion and its effective initial value through a dynamical coupling. Both
effects contribute to the hindrance of fusion.

PACS numbers: 25.70.Jj,24.10.-i,24.10.Pa

I. INTRODUCTION

Fusion of heavy ions is largely hindered by comparison
to what is observed for lighter systems. This fact that
has been observed experimentally since many years ago
[1, 2] is nowadays qualitatively understood: after cross-
ing the Coulomb barrier, the fusing system at contact
have to overcome a second barrier under strong dissipa-
tion. This inner barrier does not exist for lighter systems
that directly reach the compound state after crossing the
Coulomb barrier. Such an interpretation is commonly ac-
cepted [3–16], but there are still quantitative ambiguities
on the dynamics of the fusion mechanism and predictions
might not be reliable.

Experimentally, it is very difficult to distinguish be-
tween the fusion-fission events that have reached the com-
pound state and the quasi-fission ones that re-separate
after crossing the Coulomb barrier. This leads to a lack
of reliable data on fusion cross-sections that could assess
the models. The assessment of the various models used
to describe the complete fusion process is then one of the
main challenges of the field. For a recent review, see e.g.
Ref. [17].

Theoretically, the fusion process is divided into two
steps corresponding to the crossing of the two consecutive
barriers [8]. For the Coulomb barrier, an extrapolation
of the simple models used for lighter systems without
hindrance is sometime used [15, 18, 19] and we can rely
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on the experimental capture cross sections. Actually, the
dissipation process cannot be neglected during this step
for heavy ions because of the large Coulomb field. It leads
to a partial explanation of the fusion hindrance [20, 21].
Coupled channel codes can nicely reproduce experimental
data for light systems, even far below the barrier. But,
the inclusion of some dissipation mechanisms that would
be necessary for energies over the barrier is still under
development [22–24].

The main contribution to the fusion hindrance ob-
served in heavy ions is due to the second step, consisting
of a diffusion process over an inner potential barrier. The
main features of the dynamics of this so-called formation
phase are well understood: most of the models are based
on stochastic equations [6–16]. This is justified by the
fact that the intrinsic degrees of freedom had enough time
to thermalize during the crossing of the Coulomb barrier.
But ambiguities remain on the size of the barrier and the
strength of the dissipation.

Another difficulty arises from the fact that the two
steps of the fusion process cannot be treated with a sin-
gle formalism. We have to deal with a parameterization
for the two-body system crossing the Coulomb barrier
and with another one for the composite from the contact
point to the compound shape. The treatment of the con-
nection between the two decriptions is a delicate problem
that can change the final results.

As we will show in this paper, the fusion process is
very sensitive to the treatment of the evolution of the
neck between the two colliding nuclei at contact, because
the size of the barrier that has to be overcome strongly
depends on it. See Fig. 1. The formation probability
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depends exponentially on this barrier and depending on
the treatment, the final fusion cross section can differ by
orders of magnitude. It is important to note that some
of the previous studies on the effect of the neck on the
fusion process are related to the Coulomb barrier [25, 26].
Here, we focus our work on the inner barrier.

In some studies, the neck was supposed to be frozen
at a given value, that was arbitrarily fixed [13, 14] or ad-
justed to fit some experimental fusion cross sections [8].
Refs. [27, 28], claim that the previous hypothesis is cor-
rect: a dynamical study suggests that the neck does not
evolves much during the fusion process. In some other
works [10–12], the inner potential barriers are evaluated
by minimization with respect to the neck. “Denecking”
process, i.e. disappearance of the cleft between the two
nuclei at contact, is also very fast in the fusion trajectory
chosen in [29, 30] to calculate the potential barriers. In
preliminary versions of this work reported in conferences
[31–34] and in Refs. [35, 36], it is shown on dynamical
arguments that it is correct. Finally, in [15, 16] the neck
degree of freedom is not mentioned.

The previous models are based on macroscopic ap-
proaches. There are also tentatives to describe the fu-
sion process with microscopic models based on mean field
theory or molecular dynamics. But there are very few
connections between microscopic and macroscopic ap-
proaches. In Ref. [21], macroscopic parameters were
extracted from a mean field approach, but this study is
limited to the Coulomb barrier. To our knowledge, Ref.
[35] is one the rare study of the dynamics of the neck
studied from a microscopic approach based on molecular
dynamics.

How is the neck evolving during the fusion process?
What is the most suitable value of this variable? What
does it mean for the other collective variables? We have
to answer to these questions in order to understand the
fusion mechanism.

II. SIMPLIFIED NECK DYNAMICS

The neck parameter ε is related to the cleft between
the two touching nuclei. ε = 1 corresponds to two hard
touching spheres and ε = 0 to the absence of cleft. More
precisely, in our calculations, the neck parameter is taken
from the Two-Center parameterization [37] and is defined
by the potential shape of the interacting nuclei. The dis-
sipation is calculated with the wall-and-window formal-
ism [38, 39].

The dynamics of the formation phase is frequently
based on coupled stochastic equations [6–16]. The other
two variables are the relative distance between the cen-
ters of mass of the two nuclei and the mass-asymmetry of
the colliding system. These collective degrees of freedom
are connected through the Liquid Drop Model (LDM) po-
tential, the collective inertia and friction. But as a first
step, we will study the dynamics of the neck separately.

As for the LDM potential, it turns out that it is al-

FIG. 1. [Color online] Top: LDM potential energy of the sys-
tem 110Pd+110Pd as a function of the elongation coordinate
for various neck parameters. ε is the neck parameter and R0

the radius of the compound nucleus. The vertical dashed line
on the top panel represents the contact position. Bottom:
LDM potential energy as a function of the neck parameter
along the contact line.

most linear in the neck parameter at contact. See Fig.
1. Then, for a simple analysis of the neck dynamics, we
solve analytically the Smoluchowski equation with a lin-
ear potential,

∂N(ε, t)

∂t
= C

∂N(ε, t)

∂ε
+D

∂2N(ε, t)

∂ε2
, (1)

where C = f/γ and the diffusion coefficient D = kT/γ.
Here f is a constant parameter such as V (ε) = f · ε and
γ is the friction coefficient. Since the neck parameter is
limited to the [0, 1] interval, we will add two reflective
boundaries in ε = 0 and ε = 1.

With a single reflective boundary in ε = 0 and an ini-
tial distribution taken as N1(ε, 0) = δ(ε−ε0), the Smolu-
chowski equation (1) was solved in Refs. [40–42],

N1(ε, t) =
1√

4πDt
exp

[
− C

2D
(ε− ε0)− C2t

4D

]
×
(

exp

[
− (ε− ε0)2

4Dt

]
+ exp

[
− (ε+ ε0)2

4Dt

])
+
C

2D
exp

[
−Cε
D

]
· erfc

[
ε+ ε0 − Ct

2
√
Dt

]
. (2)

For large times, this expression becomes a Boltzmann dis-
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tribution. The average value of the neck was calculated
in Ref. [43],

〈ε(t)〉 = ε0 − Ct+
1

2

(
D

C
− ε0 + Ct

)
erfc

[
ε0 − Ct√

4Dt

]
− D

2C
exp

[
Cε0
D

]
erfc

[
ε0 + Ct√

4Dt

]
+

√
Dt

π
exp

[
− (ε0 − Ct)2

4Dt

]
. (3)

We also solved the problem with the two reflective
boundaries, following the method of Refs. [41, 44] and
get,

N2(ε, t) =
C

D

exp
[
−CεD

]
1− exp

[
−CaD

]
+ exp

[
− C

2D
(ε− ε0)− C2t

4D

]
×
∞∑
k=1

{
exp

[
−k

2π2D

a2
t

]
2

a(1 + C2a2

4D2k2π2 )(
cos(

kπε

a
)− C

2D

a

kπ
sin(

kπε

a
)

)
(

cos(
kπε0
a

)− C

2D

a

kπ
sin(

kπε0
a

)

)}
. (4)

For the sake of generality, we denote the position of the
second reflective boundary by a. The average value of the
neck as a function of time can be obtained in a similar
way,

〈ε(t)〉 =
D

C
+

a

1− exp
[
Ca
D

]
+32aπ2D4 exp

[
C

2D
ε0 −

C2t

4D

]
×
∞∑
k=1

{
exp

[
−k

2π2D

a2
t

]
k2

(a2C2 + 4D2k2π2)2(
cos(

kπε0
a

)− C

2D

a

kπ
sin(

kπε0
a

)

)
(

(−1)k exp

[
−Ca

2D

]
− 1

)}
. (5)

In Fig. 2, we plot the neck distribution and its average
value as a function of time for the two cases. With such a
strong slope of the potential, the reflecting wall in a does
not play any role. If we arbitrarily decrease this slope,
the curves corresponding to the two situations differ in a
clear manner.

It appears that the neck evolves very quickly to its
asymptotic distribution for both cases. For small times,
the average value of the neck is approximately

〈ε(t)〉 ' ε0 − Ct. (6)

There is an ambiguity on the initial value of the neck pa-
rameter since the denecking process might already start

FIG. 2. [color online] Neck distribution and its average value
as a function of time. The solid line corresponds to the case
with one reflecting wall in ε = 0 and the dashed one to the case
with two reflective walls, in ε = 0 and 1. Here C = 2.5 MeV/~
and D = 0.125 MeV/~, which are typical values. Time is
indicated in ~/MeV. Here, the initial value of the neck is
arbitrarily chosen as ε0 = 0.95.

before crossing the Coulomb barrier [25, 26]. With the
extreme hypothesis that the initial neck parameter is
close to one, the time scale to reach small values for the
neck parameter is then of the order of 1/C = γ/f . Typ-
ical values of C are ranging from 1.1 to 2.7 MeV/~.

The time scale of the fusion process along the relative
distance was evaluated with a similar approach in Ref.
[45]. For a diffusive process corresponding to the actual
situation, the typical time to overcome the potential bar-
rier is about one order of magnitude longer. Then, the
time scale of the evolution of the neck is far shorter than
the radial one and we can, as a first approximation, con-
sider that the neck is completely thermalized during the
second stage of the fusion process.

Actually, the potential shown in Fig. 1 is not linear for
small values of ε. Unfortunately, analytical solutions are
not available for higher order potentials with reflective
boundaries. But, the linear approximation is valid for
the initial values of the neck. A dynamical study with a
more realistic potential will not change the characteristic
time for the neck to reach small values. It will only affect



4

the final thermal distribution.
Ref. [35] shows the time evolution of the neck calcu-

lated with a microscopic model and it appears that it is
also shorter than the time characterizing the evolution
of the relative distance. The velocity is peaked as func-
tion of time and vanishes on a time scale of the order of
100 fm/c or 0.5 ~/MeV, which is similar to our result.
Our conclusion differs from the one of Refs. [27, 28] that
claim that the neck is frozen around a value of about 0.7,
but is in agreement with the hypothesis done in Refs.
[10–12, 29, 30].

Our analysis gives a quantitative confirmation of the
discussion of Ref. [12]: the neck degree of freedom is
quickly drifted by a strong potential slope, which is due
to the large surface energy gain of the denecking pro-
cess. With typical values of the potential for heavy nuclei,
the thermalized neck parameter is very small, around or
lower than 0.1.

III. APPEARANCE OF THE HINDRANCE

The size and the location of the inner barrier along
the relative distance that is calculated with the LDM are
very sensitive to the neck. See Fig. 1. Depending on
the relative position of this barrier to the contact point
of the two colliding nuclei, the fusion will be hindered or
not. Then, the experimental appearance of the hindrance
should give some constraints on the location of the inner
barrier and then the size of the neck [9, 33].

For symmetric reactions, the large hindrance phe-
nomenon appears somewhere between the 100Mo +
100Mo and the 110Pd+110Pd systems [2]. Then the over-
lap of the inner barrier and the contact point should oc-
cur between these two systems if one considers the con-
tact point as the injection point of the formation process.
For the 100Mo + 100Mo system, the LDM potential land-
scape calculated within the two-center parameterization
[37] is plotted in Fig. 3. It can be seen that the contact
point is beyond this barrier, whatever the neck parame-
ter. Then, after contact, the composite system is driven
to the compound shape without hindrance. The situa-
tion differs for the 110Pd+110Pd system, see Figs. 1 and
3. For small values of the neck ε, there is a large barrier
between the contact point and the compound shape. For
larger values of ε, the contact position is closer to the
edge of the potential map. Then the neck parameter has
to be smaller than 0.6 to explain the large hindrance of
the fusion that is experimentally observed.

Although data are missing on symmetric systems be-
tween 100Mo + 100Mo and 110Pd+110Pd to have a more
precise analysis, this simple argument is in favor of our
claim that the neck parameter should be small when the
system crosses the inner barrier. The analysis presented
here is limited to symmetric reactions. We did a system-
atic analysis of the border between hindered and non-
hindered reactions that confirm the fact that the neck
should disappear quickly [9, 46].
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FIG. 3. [Color online] LDM potential map for 100Mo+100Mo
(top) and 110Pd+110Pd (bottom) as a function of the relative
distance and neck parameter.

IV. COUPLING OF THE NECK TO THE
OTHER DEGREES OF FREEDOM

We are now convinced that the denecking process oc-
curs very quickly compared to the typical time scale of
the other degrees of freedom determining the fusion. The
main argument is based on the potential landscape: the
dynamics of the relative distance between the centers of
mass of the two nuclei is governed by the diffusion over
a potential barrier, which is a slow process [45], whereas
the neck is driven by a strong potential slope towards
its asymptotic value. But these collective variables are
also coupled dynamically through the inertia and friction
tensors.

Here, for the sake of simplicity, we only consider two
degrees of freedom: the relative distance between the two
centers R and the neck ε. This will limit our analysis to
symmetric reactions. The formation dynamics can be
described by the two-dimension Langevin equation

γ

[
ε̇
ṙ

]
= −

[
∂V/∂ε
∂V/∂r

]
+

[
ρ1(t)
ρ2(t)

]
, (7)
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for which we have neglected the inertia term, in order
to be consistent with the Smoluchowski approximation.
The random force satisfies the fluctuation-dissipation
theorem,

〈ρi(t)ρj(t′)〉 = 2Tγijδ(t− t′). (8)

In this equation, r is a dimensionless variable defined as
r = R/R0, R0 being the radius of the compound nucleus.

We will assume here that around the saddle, the fric-
tion tensor γ is independent of r and ε. The potential
map is such as it has a U shape for the neck variable and
a barrier shape for the radial one. Then, the fast neck
dynamics could be approximately studied as follow,

ε̇ = −[γ−1]εε
∂V

∂ε
− [γ−1]rε

∂V

∂r
+ rε(t) (9)

' −[γ−1]εε
∂V

∂ε
− [γ−1]rε

∂V

∂r

∣∣∣∣
r=r0

+ rε(t). (10)

We will assume further that r0 is close to the saddle point
and

∣∣∂V
∂ε

∣∣
ε=ε0

�
∣∣∂V
∂r

∣∣
r=r0

. Then, we can neglect the

second term of the r.h.s. of Eq. (10),

ε̇ ' −[γ−1]εε
∂V

∂ε
+ rε(t). (11)

Once the neck has reached its asymptotic value, the large
confinement potential confines the neck variable.

The differential equation governing the evolution of r,

γrεε̇+ γrr ṙ = −∂V
∂r

+ ρ2(t), (12)

should be studied on two time scales: first, during the
quick evolution of the neck variable, the average value
can be approximated by

γrε〈ε̇〉+ γrr〈ṙ〉 ' 0, (13)

which means that

∆〈r〉 ' −γrε
γrr

∆〈ε〉. (14)

Here, we have also neglected the term ∂V
∂r because dur-

ing this transient regime ∂V
∂ε is dominating. The initial

variance of the relative distance is also related to the fi-
nal variance of the neck variable corresponding to the
Boltzmann distribution:

〈δr2(0)〉 =
γ2rε
γ2rr
〈δε2(∞)〉. (15)

Then, once the neck is confined, i.e. ε̇ ' 0, one has

γrr ṙ ' −
∂V

∂r
+ ρ2(t), (16)

which is a simple one dimension Langevin equation for
the relative distance only, with an initial condition that
is shifted according to equations (14) and (15).

This approximate dynamical evolution can be checked
on a simple test case based on a harmonic potential that
is not meant to be realistic,

V (ε, r) = Vs +
1

2
gε2 − 1

2
h(r − rs)2, (17)

for which the coupled differential equations (7) can be ex-
actly solved [47]. With such a potential, the approximate
evolution of r is characterized by,

〈r(t)− rs〉 =

(
(r0 − rs) +

γrε
γrr

(ε0 − ε∞)

)
exp

[
ht

γrr

]
(18)

and

〈δr2(t)〉 =
T

h

(
exp

[
2ht

γrr

]
− 1

)
+ 〈δr2(0)〉 exp

[
2ht

γrr

]
.

(19)
Fig. 4 shows the comparison of this result with the ex-
act solution given in Appendix A and the uncoupled case
(γrε = 0) for the average trajectory and the fusion prob-
ability,

P (t) =

∫ rs

−∞
exp

[
− (r − 〈r(t)〉)2

2δr2(t)

]
dr√

2πδr2(t)
(20)

=
1

2
erfc

[
〈r(t)− rs〉√

2δr2(t)

]
. (21)

Here we took ε∞ = 0 as given by the Boltzmann distribu-
tion. The approximate solution of equations (18,19,21)
agrees quite nicely with the exact solution, although
g/h = 3 is quite weak. For larger values of g/h, the
accuracy is even better. Note that this simple model and
its approximation are only valid nearby the saddle.

It appears clearly that the fast evolution of the neck
variable allows to study the evolution of the other de-
grees of freedom separately. In the previous sections, we
showed that the potential map is very sensitive to the
value of the neck. Here, we find that the dynamical cou-
pling through the dissipation tensor shifts the effective
initial value of the relative distance. See Eq. (14).

Initially, the neck is far from its equilibrium value. Its
large and fast variation shifts the effective initial value
of the relative distance. After this transient regime, the
fusion will then follow the path that minimizes the poten-
tial with respect to the neck and we can do an adiabatic
approximation.

With this simple model, the shift is of the order of few
femtometers, which is large enough to have an influence
on the hindrance of the fusion. It explains the large dif-
ference between the fusion probabilities of the uncoupled
case and the approximate or exact coupled case that can
be observed on Fig. 4. The shift of the initial value of
the relative distance is always positive in this model and
enlarges the size of the barrier that has to be crossed
to reach the compound shape. The fusion is then more
hindered.
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FIG. 4. [Color online] Average trajectory (top) and fusion
probability (down) as a function of time for a parabolic po-
tential. The solid blue line represents the exact solution.
The green dotted-dashed one represents the uncoupled one
(γrε = 0). The dashed red curve represents the approximate
solution. See text. Here γεε/γrr = 0.6, γrε/γrr = 0.5, g/h = 3
and T/h = 0.2. The time unit is γrr/h.

The effect of the shift of the effective injection point
on the long time limit of the fusion probability,

P (t→∞) =
1

2
erfc

[√
V (ε∞, rs)− V (ε∞, r0 − rs + ∆r)

T

]
,

(22)
is the larger the heavier the system. For systems close to
the hindrance border like the 110Pd+110Pd, r0 is close to
the saddle and the potential is quite flat. For heavier sys-
tems, the potential has a steeper slope near the contact
point. Therefore, the shift ∆r will cause a larger change
of the potential barrier for heavier systems.

Of course, the model here is crude: the potential lan-
scape is simple, we neglected the inertia and we assumed
that the friction tensor is constant. It confirms the adi-
abatic approximation that is usually done in the various
models, but it shows that the dynamical coupling be-

tween the neck and radial degrees of freedom induces a
shift of the effective initial value of the relative distance.
We will publish another paper with a more comprehen-
sive study on its magnitude.

Actually, in their so-called “fusion by diffusion” model,
Świa̧tecki et al [12] introduced an initial shift of the in-
jection point considered to be an adjustable parameter
ranging from 0 to 3 fm. Here, we propose a justification
to it. More recently, Liu et al [48] explore numerically
the effect of the non-diagonal term of the friction tensor
on the injection point. They conclude that the average
injection point is not shifted. This is in contradiction
with our results.

V. CONCLUSION

Since super-heavy elements are produced in extremely
small numbers, their main characteristics are not acces-
sible yet. But, using a fission-evaporation code, it is pos-
sible to constrain strongly the shell correction energy of
their ground state [33, 49] if we know the fusion proba-
bility. Unfortunately, experimental fusion cross sections
are not reliable because it is very difficult to distinguish
between fission and quasi-fission. Fusion models should
then be assessed by other means.

In this article, we have stressed the importance of the
neck parameter that can change the fusion cross sections
by orders of magnitude. We have shown that the neck
degree of freedom evolves faster than the relative distance
between the two fusing nuclei. Then the approximation
of using an asymptotic value of the neck is justified.

The rapid evolution of the neck parameter changes
the potential landscape seen by the other collective vari-
ables. The experimental appearance of the hindrance of
the fusion for symmetric reactions confirms this conclu-
sion. This rapid evolution of the neck also changes the
initial value of the other collective variables through a
dynamical coupling. For the relative distance, the shift
is not negligible and should be included in the models.
Our analysis gives a theoretical justification to the ad-
justable shift introduced by Świa̧tecki et al [12] in order
to reproduce the data. Finally, it is important to note
that both effects enlarge the hindrance of the fusion.

This analysis of the influence of the neck dynamics on
the fusion of heavy nuclei is mainly based on simplified
analytical models and is therefore limited to symmetric
reactions. The asymmetry degree of freedom complicates
the analysis which cannot be simply handled with ana-
lytical toy models. Therefore, a more complete study will
be published in another paper.
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Appendix A: Exact solution of the diffusion over the
parabolic potential

Following the method of Ref. [47], it is possible to solve
exactly the diffusion problem in the overdamped limit on
the potential landscape of Eq. (17). The distributions
are Gaussian characterized by

〈ε(t)〉 = ε0
ea+t + ea+t

2
+
ea−t − ea+t

2
√

∆

×[2(r0 − rs)γrεh+ ε0(γεεh+ γrrg)] (A1)

〈δε2(t)〉 =
Tγrr

γrrγεε − γ2rε

{
e2a+t − 1

2a+
√

∆
(
√

∆ + 2
hγ2rε
γrr

−γεεh− γrrg) +
e2a−t − 1

2a−
√

∆
(
√

∆

−2
hγ2rε
γrr

+ γεεh+ γrrg)

}
, (A2)

with

a± =
γεεh− γrrg ±

√
∆

2(γrrγεε − γ2rε)
(A3)

∆ = (γεεh− γrrg)2 + 4gh(γrrγεε − γ2rε). (A4)

Here the friction tensor is symmetric: γrε = γεr. With-
out off-diagonal term (γrε = 0), these expressions simply

become,

〈ε(t)〉 = ε0e
− gt
γεε (A5)

〈δε2(t)〉 =
T

g

(
1− e−2

gt
γεε

)
. (A6)

With the approximation of Eq. (10), we have,

〈ε(t)〉 ' −γrε
γrr

h

g
(r0 − rs)

(
1− e−g[γ

−1]εεt
)

+ε0e
−g[γ−1]εεt (A7)

〈δε2(t)〉 ' T

g

(
1− e−2g[γ

−1]εεt
)
. (A8)

Then, for long times, we take the average value given by
the Botzmann distribution as an asymptotic value of the
neck variable, 〈ε(t→∞)〉 = ε∞.

Similarly, for r, the exact solution is characterized by

〈r(t)〉 = rs + (r0 − rs)
ea+t + ea+t

2
+ [2ε0γrεg

+(r0 − rs)(γεεh+ γrrg)]
ea+t − ea−t

2
√

∆
(A9)

〈δr2(t)〉 =
Tγεε

γrrγεε − γ2rε

{
e2a+t − 1

2a+
√

∆
(
√

∆− 2
gγ2rε
γεε

+γεεh+ γrrg) +
e2a−t − 1

2a−
√

∆
(
√

∆

+2
gγ2rε
γεε
− γεεh− γrrg)

}
. (A10)

When the two variables are uncoupled (γrε = 0), these
expressions simply become,

〈r(t)〉 = rs + (r0 − rs)e
ht
γrr (A11)

〈δr2(t)〉 =
T

h

(
e2

ht
γrr − 1

)
. (A12)

The approximate solution is characterized by Eqs (18,19).
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