Clusterization in the shape isomers of the *’Ni nucleus
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The interrelation of the quadrupole deformation and clusterization is investigated in the example
of the 55Ni nucleus. The shape isomers, including superdeformed and hyperdeformed states, are
obtained as stability regions of the quasidynamical U(3) symmetry based on a Nilsson-calculation.
Their possible binary clusterizations are investigated by considering both the consequences of the
Pauli-exclusion principle and the energetic preference.
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I. INTRODUCTION

Clusterization is an important phenomenon both in
light and in heavy nuclei. The two basic natural laws
governing the clusterization (just like the composition of
nuclei from nucleons) are the energy-minimum principle,
and the Pauli exclusion principle. In a fully microscopic
description of clusterization both aspects are taken into
account. This treatment is, however, rather limited, it is
applicable mainly to light nuclei, due to the large calcu-
lational difficulties.

Many interesting aspects of the clusterization, like e.g.
the appearance of exotic cluster configurations, show up
only in heavy nuclei. Phenomenological approaches are
applied both to light and to heavy nuclei, on an equal
footing, but these models do not really contain the ef-
fects of the antisymmetrization, or it is not under control,
what aspects of the exclusion principle are incorporated.

In this paper we apply a method, which involves both
the energetic preference and the exclusion principle [1, 2].
We investigate the possible binary clusterizations of the
shape isomers of the °6Ni nucleus. The recent exper-
imental discoveries of the superdeformed bands in the
N = Z nuclei give special importance to this kind of
questions. Molecular resonances in light heavy-ion reac-
tions can also populate some shape isomers, and here we
pay special attention to clusterizations observed experi-
mentally (e.g. 28Si+28Si and 32S+24Mg).

In the next section we review briefly the shape isomers
of the Ni nucleus known in the literature, both from
the experimental and from the theoretical side. Then we
present our own results concerning the elongated states,
being especially important from the viewpoint of cluster-
ization. This includes superdeformed and hyperdeformed
shapes as well as triaxial states related to molecular res-
onances.

Both in the determination of the shape isomers,

and in the investigation of their possible clusterizations
symmetry-considerations play an important role. In par-
ticular, the quasi-dynamical (or effective) U(3) symme-
try is used [3]. It is a generalization of the concept of the
real U(3) symmetry, known to be approximatelly valid in
light nuclei [4]. The quasi-dynamical symmetry is more
general in the following sense. The Hamiltonian breaks
the symmetry in such a way that the U(3) quantum num-
bers are not valid for its eigenvectors either (contrary to
the case of the real U(3) dynamical symmetry). In other
words neither the operator is symmetric (i.e. it is not a
U (3) scalar), nor its eigenvectors (i.e. they do not trans-
form according to a single irreducible representation) [5].
Yet, the symmetry is present is some sense.

An asymptotic Nilsson-state serves as an intrinsic state
for the quasi-dynamical SU(3) representation. Thus
the effective quantum numbers are determined by the
Nilsson-states in the regime of large deformation [6].
When the deformation is not large enough, then we can
expand the Nilsson-states in the asymptotic basis, and
calculate the effective quantum numbers based on this
expansion [7].

The SU(3) quantum numbers uniquely determine the
quadrupole shape of the nucleus [8], thus we obtain
the shape isomers from them. In particular, a self-
consistency calculation is performed with respect to the
quadrupole shape of nucleus. It is based on the applica-
tion of the quasi-dynamical U(3) quantum numbers [9],
and in those cases when a detailed comparison can be
made with the more traditional energy-minimum calcu-
lations, the results are very similar [9-11].

Once the shape isomers have been found, the next
question is how they are related to cluster configurations.
To find their connection we use the Harvey prescription
and the U(3) selection rule [11]. They can incorporate
the effects of the exclusion principle, only in an approxi-
mate way, of course. But it is a well-defined way, and its



validity can be checked by making a comparison with the
results of the fully microscopic description, where they
are available. In geometrical terms the U (3) selection rule
expresses the similarity of the quadrupole-deformation of
the cluster configuration and the shell-model (or collec-
tive model) state.

Energetic preference represents a complementary view-
point for the selection of clusterization. We incorpo-
rate it in three different ways: i) by applying simple
binding-energy arguments [12], ii) via the application of
the extended collective model [13] and iii) by perform-
ing double-folding calculations, according to the dinu-
clear system model [14, 15].

II. SHAPE ISOMERS

A. Previous studies

Two deformed bands were observed in [16], with even
(2—12) and odd (9 — 17) angular momenta, respectively,
from a heavy-ion fusion experiment of 28Si(3¢Ar,2«), us-
ing the Gammasphere combined with charged particle
and neutron ancilliary detectors. The band with even
angular momenta could be described by both a p — f
shell-model calculation, having a dominant 4p — 4h char-
acter, and by mean-field (cranked Hartree-Fock, Hartree-
Fock-Bogolyubov) calculations [16]. In these descriptions
the band of odd angular momenta states have different
structure. It is remarkable that the energies of the states
(from both bands) follow, to some approximation, that
of a rotation sequence. The calculated moments of iner-
tia of the two bands have also extremely similar values.
These bands were considered later on [17] as examples of
superdeformed bands.

The molecular resonances of the 28Si+28Si and other
heavy-ion systems exhibit another important section of
the experimental investigations since the first observation
in [18]. The correlation between the intermediate width
resonances in the 28Si+28Si and 4°Ca+'60 reactions have
been realized in [19]. Recent data and a review of the
previous experiments are presented in [20].

Ternary cluster decay was reported in [21] from an
3284 24Mg experiment, in which the incident energy
was chosen to correspond to a broad resonance in the
28Gi4-28Si channel. The quasi-bound state is thought to
correspond to the hyperdeformed shape isomer of ®6Ni.

Nilsson-model calculations have been performed in [22]
in order to obtain the potential energies of doubly even
p — f shell nuclei, and in [23] for a general discussion of
superdeformation.

The stability of the equator-to-equator configuration of
two oblate 28Si has been shown by calculations of molec-
ular models [24, 25], and associated to the 28Si+28Si res-
onances.

In [26] alpha-cluster model calculations showed a su-
perdeformed, a triaxial and a hyperdeformed state of
5Ni, corresponding to 4w, 16Aw, and 32hw shell-

model excitations, respectively. They were associated
to 49Ca+160, 28Si(0)+28Si(0) equator-to-equator, and
28Si(p)+28Si(p) cluster configurations (o and p refer to
oblate and prolate, respectively).

Mean-field calculations showed the appearance of
alpha-nucleus-like cluster structure in the hyperdeformed
state in [27].

B. Present investigations

We investigate the stability of the nuclear deformation
in terms of U(3) symmetries, as mentioned in the Intro-
duction. The effective or quasi-dynamical U(3) symme-
try, may survive even for heavy nuclei, in spite of the
strong symmetry-breaking interactions [3]. Then the en-
ergy eigenstates are:

Varim = BerpCat \uK PeruK IM, (1)

where ¢exur s s a basis vector for an SU(3) irreducible
representation (irrep), and ¢ stands for all the quantum
numbers not belonging to the SU(3) group [6]. The
Caexuk coefficients of the linear combination are inde-
pendent of JM, i.e. within a band the contribution of
different SU(3) basis states is the same. When calculat-
ing the matrix elements of the SU(3) generators between
these states the result may approximate the matrix el-
ements of an exact representation. In such a case we
speak about an approximate embedded representation,
and related to it, about an approximate quasi-dynamical
or effective SU(3) symmetry.

The concept of effective symmetry is applicable also
to light nuclei, and when the simple leading representa-
tion approximation is valid, the real and effective U(3)
quantum numbers usually coincide [7].

In [6] a method was developed for the determination
of the effective U(3) quantum numbers of the heavy nu-
clei, based on the occupation of the asymptotic Nilsson
orbits. The procedure, which was originally invented for
the large prolate deformation, was extended in [7] for
the oblate shape and small deformations as well, based
on the expansion of single-particle orbitals in terms of
asymptotic Nilsson-states.

Therefore, the quasi-dynamical U(3) quantum num-
bers are obtained from Nilsson-calculations [6, 7], and a
sort of self-consistency calculation can be performed to
obtain the possible shape isomers of a given nucleus. It
consists in the continuous variation of the quadrupole de-
formation (3;,), as an input for the Nilsson-model, and
determination of the effective U(3) quantum numbers or,
from them, the corresponding (,,¢ quadrupole deforma-
tion. This method for the determination of the shape
isomers is an alternative of the usual energy-minimum
calculation. For lighter nuclei, like 2*Mg and 28Si, where
more detailed comparison could be made, the results of
this kind of calculation are in very good agreement with
that of the traditional method [9-11].
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FIG. 1: Quadrupole deformation of the **Ni nucleus from the
Nilsson-model with the effective U(3) quantum numbers and
schematic illustrations of the shape at the plateaus. For the
explanation of (;, and [Bou: see the text.

The result for the stable elongated shapes of the 56Ni
nucleus, which is relevant for clusterization is shown in
Figure 1. It is also listed in Table I, together with some
similar states from other considerations. In this figure it
is not the minima, rather the horizontal plateaus, which
correspond to the stable shapes. (They are insensitive to
the small changes of the input parameter. Furthermore,
these deformations fulfill the self-consistency argument
between the input and output deformation-parameters
to some approximation.)

As it is seen from the figure, the triaxial ground-state
(for which the experimental deformation is B = 0.173)
is followed by a prolate-like deformed state of Ohw exci-
tation. The next region of stability corresponds to the
superdeformed shape. This state represents 4 nucleon
excitation, being very much in line with [16, 26]. Then
appears an even more deformed state with triaxial shape,
and two pronounced hyperdeformed shapes close to each
other.

Figure 1, and Table I show the result of the calculation
with v;, = 0° (apart from a single exception for the triax-
ial state, where in addition a v;, = 16° result is also pre-
sented, marked by *). The calculations were performed
with several other ~;, values as well. For small 3-values
(cca < 1.0) the results are in complete coincidence up to
cca v, = 30°, showing the stability of the (symmetry
and the) shape. For the triaxial state we show the result
also with v;, = 16°. It is a little different from that of
~Yin = 0°. For the hyperdeformed states also slight differ-
ences can be observed for the different v values. In these
cases we take the values which fulfill the self-consistency
requirement between 7;,, and ., to a better approxi-
mation. For the triaxial state it is the ~;, = 16° value,
while for the hyperdeformed ones the ;,, = 0° value turn
out to be the best approximation.

It is remarkable that a superdeformed, a triaxial and

TABLE I: Shape isomers in the °Ni nucleus. ~ is given in
degrees. (e) stands for effective, (c) for cylindrical, (h) for sim-
ple harmonic oscillator configuration; (al) means alpha-cluster
calculation, and (eq) indicates equator-to-equator (completely
parallel) configuration of two oblate 2Si clusters. The last
column shows the ratio of the major axes.

State U(3) B2 | v |hw| Ratio
ground(e) [40,38,30] [0.15]49.1| 0 |1.3:1.1:1
ground(c) [40,40,28] [0.20] 60 | 0 |1.2:1.2:1
ground(h) 40,36,32] 0.12] 30 | 0 |1.1:1.1:1
deformed(e) 50,31,27] {0.35| 9.4 | 0 |1.4:1.1:1
deformed(c) 52,28,28] [0.40] 0 | 0 | 1.4:1:1
deformed(h) 52,32,24] 10.42|16.1| 0 [1.5:1.2:1

superdeformed (e 62,26,24] | 0.6 | 2.7 | 4 |1.7:1.0:1
superdeformed(c,al) | [64,24,24] |0.65| 0 | 4 | 1.8:1:1
triaxial(e) 74,25,21] 10.80| 3.9 |12 (2.1:1.1:1
triaxial(e*) [71,28,22] 0.72] 6.4 | 13]2.0:1.1:1
triaxial(h) [72,28,20] |0.76| 8.2 | 12 (2.1:1.2:1
triaxial(al) 80,32,12] [0.93[16.6| 16 |2.7:1.5:1
triaxial(eq) [92,32,8] |1.11(16.1{24|3.3:1.7:1
hyperdeformed(el) | [94,21,17] {1.11] 2.6 |24 |2.7:1.1:1
hyperdeformed(c) |[108,16,16]|1.31| 0 |32] 3.1:1:1
hyperdeformed(e2) |[118,16,14]|1.42| 1.0 | 40 |3.5:1.0:1

a hyperdeformed state appear both in the alpha-cluster-
model calculation [26], and in our (Nilsson-model-based)
quasi-dynamical symmetry consideration. The superde-
formed states seem to correspond to each other exactly,
both of them being a 4hw excitation. Then we observe
a largely deformed triaxial state with 12fw, which is not
completely identical, but similar to that of the alpha-
cluster model (with 16fiw). This latter state is consid-
ered to be a candidate for the 28Si+28Si molecular res-
onances, in which the two oblate 28Si are thought to
have an equator-to-equator position. For comparison we
have also indicated the state which corresponds exactly
to this configuration. (The one from alpha-cluster study
or from the present result contains the 22Si clusters in
a slightly bent position, as will be discussed in the next
section.) The alpha-cluster-model gives also a hyperde-
formed state, and our calculation have two candidates for
that. Based on their possible cluster-structure the lower-
lying one seems to be very similar to that of the work
[26].

IIT. CLUSTERIZATION

A. Microscopic structure considerations

For a binary cluster configuration the U(3) selection
rule reads:

[nl’ n2, n3] = [ngl)’ nél)’ nél)]®[n§2)7 ng2)7 ngQ)]®[n(R)’ 0, O]

(2)



where [n1, ng, ng] is the set of U(3) quantum numbers of
the parent nucleus, the superscript (¢) stands for the ith
cluster, and (R) indicates relative motion.

Characterizing the nuclei (clusters) by their U(3) sym-
metry means that they are supposed to be in their ground
intrinsic states, but collective excitations (belonging to
the same irreducible representation) are incorporated.
The only exception we take is the case of the ?8Si nu-
cleus, being exactly at the middle of the sd shell, which
has a coexisting prolate and oblate shape in the low-
energy region. In this case we take into account both
shapes.

To the extent the leading U (3) approximation is valid
in light nuclei this rule can be applied for the selection
of the Pauli-allowed subspace of the cluster model.

It should be mentioned that the U(3) selection rule,
which deals with the space-symmetry of the states, is
always accompanied by a similar U7 (4) [28] selection
rule for the spin-isospin degrees of freedom.

Applying the U(3) quantum numbers of the free nu-
cleus for the description of the corresponding cluster
means that the quadrupole shape of the cluster is taken
into account, without any simlifying assumption. It
can be spherical, prolate, oblate or triaxial. No con-
straint is applied for their relative orientation either.
The quadrupole consistency of the (mostly) prolate (or
oblate) shape isomer of the *°Ni nucleus and the seem-
ingly different cluster configuration is due to the effect
of the antisymmetrization, which can easily wash out the
difference between the contradictory (naive) geometrical
pictures.

In addition to the U(3) selection rule, there is another
simple recipe, which is also based on the microscopic pic-
ture, yet it is easy to apply systematically. This is Har-
vey’s prescription [29]. Both of them apply the harmonic
oscillator basis, thus there is a considerable similarity be-
tween them. However, they are not identical, rather, they
are complementary to each other in a sense. Therefore,
they should be applied in a combined way [11].

When the real U(3) symmetry is not valid anymore,
then the effective U(3) can still provide us with effective
(or average) U(3) quantum numbers, and based on that
a selection rule can be formulated. Due to the average
nature of these quantum numbers, however, the effect of
the selection rule is different from that of the real U(3)
selection rule. It gives information on the matching, or
mismatching of the average nucleon distributions in the
cluster configuration and in the shell-model-state. There-
fore, it acts like a self-consistency check of the quadrupole
deformation and the clusterization.

The fact that for light nuclei the quasi-dynamical and
real U(3) coincide [7] gives a straightforward way for the
extension of the simple selection rule consideration.

When a cluster configuration is forbidden, we can char-
acterize its forbiddenness quantitatively in the follow-
ing way [30]. The distance between a U(3) reaction
channel and the irrep of the parent nucleus is defined
as: min(y/(An1)? + (An2)? + (Ang)?), where An; =
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FIG. 2: Reciprocal forbiddenness as a function of the mass-
number of the lighter cluster for the ground-state of the *Ni
nucleus. The lines are just to guide the eye.
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FIG. 3: The same as Figure 2, but for the deformed state.
The multiple appearance at A = 28 is due to the prolate and
oblate states of the 28Si cluster.
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FIG. 4: The same as Figure 2 and 3, but for the superde-
formed state.
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FIG. 5: The same as Figure 2, 3, and 4, but for the largely
deformed triaxial state.
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FIG. 6: The same as Figure 2, 3, 4, and 5, but for the hyper-
deformed state.

In; — ng,|. Here n; refers to the U(3) representation of
the parent nucleus, while n¢; stands for the U(3) repre-
sentation of Channel c, obtamed from the right-hand-side
of Eq.(2), with the k index distinguishing the different
product-representations. Based on this quantity we de-
termine, for reasons of convenience, the reciprocal forbid-
denness S in such a way, that 0 < 5 < 1:

5= 1+ min(y/(An1)2 + (Ang)? + (Anz)?) ¥

Then S = 0, and S ~ 1 correspond to completely forbid-
den and allowed clusterizations, respectively.

Figures 2-6 show the reciprocal forbiddennes for the
sates of Table I, while Figure 7 illustrates those binary
alpha-like cluster configurations of the shape isomers, in
which the main axis of the clusters are parallel and per-
pendicular to the molecular axis.
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FIG. 7: Shape isomers of the ®°Ni nucleus from Nilsson-
model calculations, and their amalgamation from two clus-
ters. The central part shows the shell-model results for
the deformed (at the bottom), superdeformed, triaxial,
and hyperdeformed (at the top) states. The left column
corresponds to the **Mg+32S clusterization. ~The right
side illustrates the ®?Fe+*He, 2°Ne4-*6Ar, 28Si(p)+25Si(o),
ONe+36Ar, 0 Ca+1°0, 28Si(0)+22Si(0), 2*Si(p)+*Si(p) con-
figurations (from the bottom), respectively.

S+Mg

B. Energetic preference
1. Binding energies

The criterium of maximal stability [12], requires the
largest value of the summed differences of the measured
binding energies and the corresponding liquid drop val-
ues:

D(1,2) = [B(1) = BL(1)] + [B(2) = BL(2)], (4)

where B(7) is the experimental binding energy of the ith
cluster [31], while By, (i) stands for the liquid drop value.

In the generalised version of the method, as we apply
it here, a further condition is also taken into account,
which is called dipole constraint [12]. It is based on the
observation that electric dipole transitions are very weak,
therefore, the decomposition Ay — A; + Az (here T
stands for total) is expected to be close to satisfying the
constraint:

Z
1 T 2

The alpha-like clusterizations turn out to be more sta-
ble than the others. Their numerical values are given in
Tables IV and V.



2.  Eaxtended liquid drop model

Within a generalized liquid drop model the *°Ni nu-
cleus is thought to evolve in a quasi-molecular shape val-
ley, as illustrated by Fig. 8. Its stability is governed
by angular momentum (L) dependent potential barriers,
which have been determined in Refs. [21, 32, 33]. In this
model, the energy of a deformed nucleus is obtained as

E = EV + ES + EC + ERot + EProw' (6)

For one-body shapes the volume and surface energies are
(in MeV):

By = —15.494(1 — 1.8/ A, (7)

Es = 17.9439(1 — 2.6.%) A%/3(S/4n R2), (8)

where ¢ is the relative neutron excess: ¢« = (N — Z)/A.
The Coulomb energy is:

Ec = 0.662(Z2/R0)><0.5/(V(9)/V0)(R(0)/R0)3sin 6de.
(9)

Here S is the surface of the one-body deformed nucleus,
and Ry is the radius of the spherical nucleus. V() is the
electrostatic potential at the surface and Vj is the surface
potential of the sphere.

For two-body shapes the volume and surface energies
are the sum of the contributions of each fragment, while
the Coulomb energy has contribution from the one-body
and two-body terms.

The rotational energy is determined within the rigid-
body ansatz :

ERot = (10)

where I, is the moment of inertia for the rotational axis
[13]. The surface energy results from the effects of the
surface tension forces in a half space. When there are
nucleons in a neck or there is a gap between separated
fragments an additional proximity energy must be added
in order to take into account the effects of the nuclear
forces between the close surfaces. This term is essential
to describe smooth transition from the one-body to two-
body shape, as well as to obtain reasonable fusion and «
decay barriers. It can be calculated as:

hmaz

Eproc(r) =2y / ® [D(r, h)/b] 27chdh, (11)

hnLin

where h is the distance varying from the neck radius or
zero to the height of the neck border. D is the distance
between the surfaces, and b = 0.99 fm is the surface
width. & is the proximity function. The surface param-
eter v is the geometric mean between the surface param-
eters of the two nuclei or fragments [13].

FIG. 8: Quasi-molecular shape sequence within the extended
liquid drop model from the fusion point of view.

The specific feature of the selected deformation chan-
nel is that the neck between the fragments is very deep
and, consequently, the surfaces are very close to each
other. Therefore, the proximity forces between the nu-
cleons at the surfaces play a main role. In this general-
ized liquid drop model the integration of the proximity
function is effectively done in the neck, and the prox-
imity energy depends explicitly on the shape sequence.
As a consequence, the top of the L-dependent deforma-
tion barrier corresponds always to two separated spheres
maintained in an unstable equilibrium by the balance be-
tween the repulsive Coulomb forces and the attractive nu-
clear proximity forces. With increasing angular momenta
the minimum in the deformation barrier moves from the
spherical shape to super and hyperdeformed (but always
to one-body) shapes.

The characteristic quantities of these minima and of
the saddle-points are as follows: the distance between
the centres of mass of the two halves of the system, the
energy relative to the ground state energy at L = 0, the
perpendicular moment of inertia, the 8 deformation pa-
rameter and the electric quadrupole moment. They are
given in Tables II and III for symmetric and asymmet-
ric binary configurations, respectively. The minimum
evolves towards more deformed shapes with increasing
angular momenta. For a given angular momentum, the
energy of this minimum varies only slightly with the
mass-asymmetry of the clusters, while the moment of
inertia decreases strongly. The behavior of the potential
barrier for the symmetric system is illustrated in Fig. 9,
where the shell effects, treated by Strutinsky’s method
and the two-center shell model, have been added. These
effects do not change strongly the macroscopic picture
at high angular momenta. For the details and applica-
tions of the two-center shell model we refer to the works
[34-36].

8. Double folding calculations

A more microscopic calculation of the energetic pref-
erence can be carried out within the Dinuclear System
Model (DNS). According to this description the clus-



TABLE II: Characteristics of the L-dependent energy minimum and maximum in the 2®Si+2?®Si quasi-molecular deformation
valley from the generalized liquid drop model. R (in fm) is the distance between the two halves of the nuclear system. E (in
MeV) is the energy relative to the ground state energy at L = 0. I (in h*MeV ') is the perpendicular moment of inertia, 3 is
the deformation parameter and @ (in e-barn) is the electric quadrupole moment.

L(h) Rmzn Emzn [mzn Bmzn szn Rmaz Emaz Ima.r Bmam Qmaz
25 | 48 [30.2(14.2]0.62| 29 | 87 |49.2|323]|1.15]| 10.7
30 | 5.3 |395(159|0.75| 3.8 | 86 | 53.6 |31.4|1.14| 104
40 | 6.2 | 59.6 {19.3(091| 53 | 86 | 653 |294|1.12| 9.6
45 | 6.5 | 704 1206]094| 59 | 80 | 728 | 28 |1.10| 8.9

L
6 7 8 9 10
r(fm)

FIG. 9: Potential barrier for the symmetric fusion or fission
from the extended liquid drop model.

terization process involves the motions in charge nz =
(Zl — ZQ)/(Zl + ZQ) and mass n= (Al — AQ)/(Al + AQ)
asymmetry coordinates, where Z; (A1) and Zy (Aq) are
the charge (mass) numbers of the heavy and light nuclei
of the dinuclear system [14, 37] formed by two touching
nuclei or clusters, and in the relative separation coor-
dinate R between the centers of mass of clusters. The
charge (mass) asymmetry 1z (1) is the relevant collective
variable describing the partition of nucleons between the
nuclei forming the DNS. The wave function in 7z can be
thought as a superposition of the mononucleus configu-
ration with |nz|=1 and different cluster-type configura-
tions. The relative contribution of each cluster compo-
nent to the total wave function is ruled by the potential
U(nz) which is the DNS potential energy for |nz|< 1
[38-41]

Unz) =V(R= Rpn,nz)+ Bi(nz) + B2(nz) — B. (12)

The internuclear distance is R,, = R; + 0.5fm corre-
sponds to the minimum of the nucleus-nucleus potential
V. Here R; is the touching distance between the clus-
ters which depends on their relative orientation. The
quantities B; and By, which are negative, are the bind-
ing energies of the clusters forming the DNS at a given
7, and B is the binding energy of the parent nucleus.
The experimental ground state masses and quadrupole

TABLE III: Same as Table II but for asymmetric configura-
tions.

Reaction |L(A)|Rmin | Emin | Imin | Rmaz | Fmaz | Imaz
THe+>?Fe | 30 | 5.0 [39.0 |12.7] 7.5 | 476 | 14.1
‘He+52Fe | 40 | 5.2 | 66.5 |13.0] 6.9 | 73.5 | 13.2
‘He+5%?Fe | 45 | 5.3 [83.0 [13.1| 6.1 | 91.0 |12.3
8Be+™Cr| 30 | 44 [425]12.1] 7.9 | 54.9 [18.0
8Be+*Cr| 40 | 5.6 | 69.9 |14.4| 7.3 | 75.4 | 16.5
8Be+*Cr| 45 | 5.8 | 84.7 |14.5| 6.4 | 89.8 | 14.7
2C+¥Ti] 30 | 4.3 [ 42.8[12.1] 8.2 | 55.8 [22.2
204471 | 40 | 5.8 | 67.3 |15.7| 7.6 | 72.5 |20.4
204471 | 45 | 6.0 | 80.8 |16.1| 6.6 | 84.0 | 17.1
BO0+MCal 30 | 5.3 | 42.0[15.1] 84 | 54.9 [26.0
160440Ca | 40 | 5.9 | 64.0 |17.1| 8.0 | 69.1 |24.0
604+%9Ca| 45 | 6.2 | 76.3 |17.8| 7.6 | 78.3 | 22.4
2ONe+3%Ar| 30 | 5.1 | 42.9 [14.8] 85 | 58.3 [28.8
2ONe+36Ar| 40 | 5.9 | 64.7 |17.6| 8.1 | 71.0 [ 26.9
20Ne+36Ar| 45 | 6.2 | 76.5 [ 18.8| 7.8 | 79.3 | 25.5
TMg+32S| 30 | 5.2 [41.3 153 8.6 | 56.4 [30.8
2Mg+32S| 40 | 6.0 | 622 |18.7| 8.2 | 68.3 |28.8
2Mg+32S | 45 | 6.3 | 73.319.8| 7.9 | 76.0 | 27.2

deformation parameters [31, 42] are used in the present
calculations. Since the values in Eq. (12) are given with
respect to B, U(jnz| =1) = 0.

For zero angular momentum the nucleus-nucleus po-
tential [41]

V(R,nz) =Ve(R,nz) + Vn(R,nz)

consists of the Coulomb Ve and nuclear interaction Vi
potentials. The nuclear part Vy(R) of the nucleus-
nucleus potential is taken in the double-folding form:

(13)

VN (R,nz) = /pl(rl)pg(R —r2)F(r1 —ra)dridrs.

The well-known two-parameter Woods-Saxon function
for nuclear densities

_ P00

1 =+ exp(|r - R172|/a01.2) ’

p1,2(r)

is used, where R4 2 is the radius vector of the nuclear sur-
face in the direction of r. Here, ppo=0.17 fm~3 is a sat-
uration nucleon density of nucleus, 79, ,=1.15 fm (apart



from alpha particle, where r9=1.0 fm) are nuclear radius
parameters, and ag, , denotes the diffuseness depending
on the mass number of the nucleus, as in Ref [38]. We
use in calculations ag =0.48, 0.52, and 0.55 fm for alpha
particle, Be, and nuclei with Z > 6, respectively. The
simplified Skyrme-type nucleon-nucleon forces

po(r1)
P00

F(r1—r2) =Cp (Fm
P00

A1 — 27 A2 — 279
Ay Ay

Fin,e:z = Cin,ew + Cv{n,ex

depend on the density of nuclei because pg(r1) = p1(r1)+
p2(R —r2). We used the following constants (;, = 0.09,
Cex = —2.59, ¢!, = 0.42, ¢!, = 0.54, Cyp = 300 MeV-fm?
from Ref. [43] where they were tested for nuclear struc-
ture purposes. The Coulomb potential for two deformed
nuclei V¢ is calculated as in Ref. [41].

The DNS potential energy as a function of nz (1) has
minima corresponding to some clusterizations of the sys-
tem.

The energetic preference in the dinuclear system model
was calculated in two ways (tables IV and V). The differ-
ence between them lies in the geometrical configuration.
First a simple pole-to-pole (pp) configuration was sup-
posed for each clusterization (as it is usual in this kind of
calculations), then a more complicated geometrical ar-
rangement was considered, which corresponds approx-
imatelly to the result of the microscopic consideration
(m). (In the DNS considerations the clusters are sup-
posed to have an axial symmetry.)

The energetic calculation of the DNS model is per-
formed for a binary cluster configuration, which has a
geometrical picture, different from those of the shape
isomers of the °Ni. The quadrupole shapes (of the de-
formed state and the cluster configuration) are, however,
consistent with each other, as discussed beforehand, in re-
lation with the microscopic selection rule. Furthermore,
in the DNS the neck is formed due to the overlap of the
tails of the nucleon densities of the two nuclei. Therefore,
the nuclear shape is rather smooth [44].

IV. DISCUSSION

In this section we discuss the results of the microscopic
structure calculations together with those of the energy-
preferences by different methods.

The connection between the shape isomers, found in
the Nilsson-model, and the possible cluster configurations
is established via the selection rule. The relation be-
tween these microscopically found cluster configurations
and the energy-considerations are as follows. The binding
energy-consideration depends only on the fragmentation,
it is not applicable to the different geometrical arrange-
ments of the clusters. The states from the generalized
liquid drop model can be associated to some of the shape

(1 20) ) e

TABLE IV: Energetic preferences of alpha-cluster-like config-
urations in *°Ni. Here D(1,2) stands for the binding-energy-
difference, thus the larger value corresponds to more probable
appearance. U means potential energy, calculated from the
dinuclear system model, therefore, smaller values correspond
to more stable cluster configurations. pp indicates the pole-
to-pole configuration, typical in DNS calculations with axial
symmetry, while m stands for the orientation corresponding

"to the microscopic consideration. (It is usually more compact

than the pp configuration.) All values are in MeV. See Table
I for the notation of the states.

C¢i+C: |D(1,2)|U(pp)| U(m)
He + °?Fe|10.88 | -0.17 [ 0.1 GS(e)
-0.1 GS(c)
-0.1 D(e)
-0.1 D(c)

)
)

®Be + *®Cr| 3.61 | 9.8 [6.4 D(e

2o 4+ 71| 211 | 11.8

80 4+ Cal 257 | 17.0
ONe + %°Ar| -1.11 | 204

Mg + *2S| 0.65 | 19.2

isomers (from the Nilsson-model, and cluster configura-
tions from the selection rule), but the relation is not very
well-defined, as we will show below. The double-folding
calculation on the other hand can be performed directly
for the cluster configurations, which are obtained micro-
scopically, although they are usually different from the
simple pole-to-pole configurations.

The alpha-like cluster configurations (N = Z = 2n)
are more deeply bound, than the others. It is also re-
markable that from different energy-calculations “He is
the most favoured, much ahead of ®Be, which is followed
by the group of 12C, 28Si, and 160. The sequence of these



TABLE V: Energetic preferences of alpha-cluster-like config-
urations in ®®Ni. Continuation of the previous table, with the
same notations.

Ci1+ Cs D(1,2)|U(pp)
*Si(p) + *®Si(p)| 3.37 | 16.0 [16.4 D(c)

(

(

3Si(o) + *®Si(o)| 3.37 | 13.3 [15.3 D(e)
)

e
%Si(o) + “®Si(p)| 3.37 | 16.1 [15.0 D(h)
(§

three ones are different: from the binding energy (*8Si >
12¢ > 160) and from the DNS (12C > 28Si > 160), but
with not much difference in between. The 2*Mg and 2°Ne
turn out to be the least-preferred alpha-like clusters.

When we try to find the correspondence between the
liquid drop model configurations and the shape isomers,
found in Nilsson-calculations, then the best guiding is
provided by the deformation () parameter. In this way
it seems that for the symmetric clusterization a connec-
tion can be established. Comparing Table I and Table
II, one gets the impression that the Si+Si quasimolec-
ular state corresponds approximatelly to the SD, triax-
ial and/or HD states. This seems to be very much in
line with the general understanding of the phenomenon,
based on other studies, and our general physical intuition.

As for the correspondence between the asymmetric
molecular states and the shape isomers, the situation
seems to be less easy. In this case the (perpendicular)
moment of inertia can help in the comparison.

The approximate values of the moment of inertia for
the states indicated in Table I are as follows. GS: 11-
12, D: 13, SD: 15, Tri: 17-18, HD: 23+. (There is a
small change depending on if one uses effective quantum
numbers, or simple shell-model configurations, etc.)

The first observation, one can make here, is that the
symmetric Si4-Si configuration again seems to correspond

TABLE VI: Corresponding cluster configurations and shape
isomers from the extended liquid drop model and microscopic
selection rules. The () parenthesis indicate less certain con-
nection, as follows. In the collective model the uncertainity
indicates that only low L; or I,.. allows the clusteriztion,
but I does not. In case of the microscopic considerations
it means that some candidates allow the configuration, but
not the majority of them.

[Clusters] Gen. Liq. D. | Microscopic ]
Fe-+He GS+(D) GS+D
Cr+Be (GS)+D+(SD) D+SD—+(Tri)
Ti+C |(GS)+(D)+SD+(Tri)| (D)+SD+(Tri)
Ca+0O SD+(Tri)+(HD) SD
Ar+Ne | (SD)+Tri+(HD) (D)+SD+Tri
S+Mg (SD)+Tri+(HD) |D+SD+Tri+HD
Si+4-Si (SD)+Tri+(HD) |D+SD+Tri+HD

to the SD, triaxial and HD shape isomers. This case
serves as a self-consistency check, because here also the
quadrupole deformation is available, and the two results
are in line with each other.

For the asymmetric configurations the comparison,
based on the moment of inertia, looks like that.

In addition to some disagreements, also remarkable
similarities can be detected, inspite of the fact that the
two methods are rather different. In short the compari-
son between the two sets of results could be summarised
as follows. For a configuration of open-shell clusters the
microscopic viewpoint with exclusion principle, ground-
state-like deformations, and with arbitrary orientations
but without intrinsic excitations on the one side; and the
collective model energetics with spherical colliding nu-
clei, cylindrically symmetric reaction picture, and with
neck-formation on the other side, give somewhat simi-
lar results. For the 4°Ca+'60 system, which consists of
two closed-shell clusters both methods indicate the cor-
respondence to the SD isomer, but for the other states
the conclusions are not unicvocal. The collective model
allows also more deformed states, like Tri ad HD, while
the microscopic method does not. This is obviously a
consequence of the fact that the neck-formation involves
internal cluster excitations, which are not included in our
microscopic approach. If we include them, then Tri and
HD states can also have a °Ca+4160 clusterization.

As for the cluster configurations of the selection rule
and the dinuclear system model are concerned, they are
in a one-to-one correspondence with each other. Based
on their joined conclusions the following can be said on
the possible clusterizations of the shape isomers.

In the ground-state the °?Fe+*He clusterization is the
only alpha-like cluster configuration which is allowed (as
far as both clusters are in their ground intrinsic state),
and this one is, of course, favourable from the viewpoint
of the energetics.

In the deformed state in addition to the “He, also the
8Be, the 28Si and the 2*Mg clusters can show up, with this



energetic preference. (A similar simple harmonic oscilla-
tor shell model state would allow 2C and 2°Ne, as well.)
Two oblate silicon can definitely build up this state, but
the simplified harmonic oscillator configuration is avail-
able for prolate ones, too. Their relative orientation are
neither parallel, nor rectangular.

In the superdeformed state the 52Fe+*He clusteriza-
tion is not allowed, if the clusters are in their ground
intrinsic states. (With properly excited ®2Fe cluster it
becomes allowed, of course.) The reason is very sim-
ple and understandable on the geometrical basis. The
ground-state-like 52Fe is so thick that it does not fit to
the narrower superdeformed °°Ni state. In fact, it is not
the alpha-cluster, which is forbidden, rather the ®2Fe(GS)
cluster. All other alpha-like clusters are allowed (except
for 9°Ca+160, which, however, becomes also allowed for
a somewhat simplified cylindrical configuration). Ener-
getically the ®Be is somewhat preferred, 2C and 28Si
are fairly similar. This state can be built up both from
prolate and from oblate silicons. Their orientation with
respect to each other and the molecular axis, is not trivial
again.

The largely deformed triaxial state can be built up
from two 28Si clusters. Oblate-oblate, oblate-prolate and
prolate-prolate configurations are allowed in the states
with effective U(3) symmetries, the first two in the alpha-
cluster state, while the exactly paralell equator-equator
configuration does not match with any prolate 2®Si clus-
ter. 24Mg+32S clusterization is also allowed (except for
the simple ”equator”-state), as well as ®Be, 12C, 2°Ne
clusters in the ”effective”-state. Their energetic prefer-
ence is: 8Be, 12C, 28Si, Mg, 2°Ne.

In the 1st ”effective”, and in the alpha-cluster hy-
perdeformed states the pole-to-pole prolate 28Si+28Si
configuration is allowed. The previous one contains
the 2*Mg+32S configuration, as well. From the ener-
getic point of view their preference is comparable, the
28Gi4-28Si is slightly deeper bound.

The second hyperdeformed candidate from our
Nilsson-calculation is not relevant from the viewpoint of
clusterization, since no binary configuration can build it
up with ground intrinsic-state clusters. Therefore, it is
not possible to populate it as a resonance in a reaction,
whith ground-state target and ground-state bombarding
nuclei.

V. SUMMARY AND CONCLUSIONS

In this paper we have considered the elongated shape
isomers of the Ni nucleus and their possible binary clus-
terizations. Both in finding the stable shapes and in de-
termining their relations to cluster configurations sym-
metry considerations were applied extensively.

We have determined the shape isomers from the
quasi-dynamical U(3) symmetry, obtained from Nilsson-
calculations. It was found that in addition to the triaxial
ground state a prolate shape appears with small defor-

mation, as Ohw excitation. In the region of larger de-
formation we have found a superdeformed state, a triax-
ial state, and a hyperdeformed state, in close similarity
with the results of alpha-cluster-studies [26]. The su-
perdeformed state turned out to be dominantly a 4hAw
configuration, in complete agreement with shell-model
and mean-field calculations, as well, which explained the
experimentally observed SD band [16].

In searching for the possible binary clusterizations of
the shape isomers we have taken into account both nat-
ural laws which govern the building up of a nucleus from
smaller constituents. The exclusion principle was taken
into account by applying a selection rule (in combina-
tion with Harvey’s prescription), based on the micro-
scopic configuration associated to the quasi-dynamical
U(3) symmetry. In this way the Pauli-principle is incor-
porated only in an approximate way, of course. But it is
done in a well-defined procedure, which can be checked
in simple systems by comparing with exact results. This
approximation can be illustrated in simple geometrical
terms, in spite of its abstract algebraic content: it mea-
sures, how similar the quadrupole deformations are in the
cluster configuration and in the shell-model (or collective
model) state.

The clusters were considered to have a deformation,
like the corresponding free nuclei (spherical, prolate,
oblate or triaxial), and no constraints were applied for
their relative orientation.

We have found that the ground state of *Ni prefers
asymmetric cluster configurations, from among the
alpha-like clusterization only *He+°?Fe is allowed. The
deformed, superdeformed and largely deformed triax-
ial states match with several clusterizations. Structure
considerations suggest that the correlated 2®Si+28Si and
10Ca+1%0 resonances correspond to the superdeformed
state of °°Ni, but not to the hyperdeformed one. In
the latter case the 4°Ca+'%0 configuration has a strong
structural forbiddenness [1]. The *Mg+32S cluster con-
figuration on the other hand, which is determined by
the entrance channel of the ternary fission experiment
matches both with the SD and HD states, and with the
largely deformed triaxial state in between.

The triaxial state is of special interest, because it is
thought to be related to the molecular resonances of two
ground-state-like (oblate) 28Si clusters in their equator-
to-equator configuration. This configuration is allowed in
the triaxial state from all cited studies. If the equator-to-
equator configuration is not exactly paralell, then other
alpha-like binary clusterizations, like e.g. 24Mg+32S, are
also possible.

The hyperdeformed state both from the alpha-cluster
and from our Nilsson-calculation prefers a binary config-
uration of prolate 22Si clusters with a pole-to-pole con-
figuration. The state from our quasi-dynamical consid-
erations allows 2*Mg+32S as well (again close to the po-
sition in which the longest major axes of both nuclei are
parallel with the molecular axis). The HD state from
alpha-cluster studies does not contain this configuration.



It is an interesting finding that different states can be
built up from the same two clusters, like e.g. two oblate
(ground-state-like) 28Si can result in the Ohw prolate de-
formed sates, the superdeformed state with 4Aw excita-
tion, as well as the largely-deformed triaxial state with
many particle-hole excitation. The difference in these
cases is the relative orientation of the two deformed clus-
ters. This observation is a consequence of the fact that
the Pauli-principle was taken into account, and no simpli-
fying assumptions were made on the shapes and relative
orientations of the clusters.

The energetic preference of the cluster configurations
were obtained from binding-energy arguments [12], from
the generalized liquid drop model [13], and from calcu-
lations based on the Dinuclear System Model [14]. The
latter ones were performed both for the pole-to-pole con-
figurations and for the ones derived from the microscopic
considerations. The “He+core configuration turned out
to be the most preferred one, followed by the 8Be+core
one. Then a group of the '2C, 28Si, and 6O clusters
come, with close-lying values, but in different order from
different calculations. The 24Mg and ?°Ne turned out to
be the least-preferred alpha-like clusters.

The methods we applied here seem to be applicable

in heavier nuclei, too. Symmetry considerations can be
helpful in studying both the shape isomers of nuclei, and
their clusterizations. As for this latter problem is con-
cerned we think that the preferred cluster configurations
are those ones which are favoured by the energetics, and
which are Pauli-allowed. From the viewpoint of the ap-
plication to heavier systems we consider it as a promising
sign, that the results of the present method [45] are very
similar to the ones from ab initio calculations for the
case of the #°Ca nucleus [46], where the fully microscopic
treatment was also applied.
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