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The characteristics of the new N=16 shell gap at the neutron drip-line can be
deduced from the neutron excitations of 24O. An experiment was carried out
to investigate the unbound excited states of 24O using the proton elastic and
inelastic proton scattering. It was performed in the BigRIPS line and combines
the unique intensities of the RIBF 24O beam with the state-of-the-art particle
detector array MUST2. The method is explained.
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1. Resonances of the nuclei close to or at the drip-line

1.1. Motivations

The nuclear models disagree for the predictions of the spectroscopy of nu-

clei far away from the valley of stability, due to the different assumptions

on nucleon-nucleon interactions and few-body correlations. The studies of

the structure and spectroscopy of nuclei with a high ratio of N/Z, close



July 8, 2011 18:24 WSPC - Proceedings Trim Size: 9in x 6in LIA11RIBF24Oppvlx

2

to the drip-lines, are important for our understanding of the evolution of

the nuclear shell structure with the isospin. Drip-line nuclei also combine

several aspects like very diffuse nuclear surfaces, halos or neutron skins,

resonant states, new shell gap effects. They are weakly-bound with few or

no bound excited states, and the coupling to the continuum is playing a

significant role since the scattering states are much closer to the continuum

states than those in stable nuclei. All these aspects are stringent tests for

the microscopic structure calculations, and the drip-line nuclei appear as

benchmarks for the nuclear models [1]. The existence and position of the

low-lying resonant states in the light exotic nuclei would provide crucial

information to constrain and to test the validity of the models.

1.2. Resonances of the light neutron-rich 6He halo nucleus

6He has low neutron thresholds (Sn = 1.87 and S2n =0.97 MeV) and no

bound excited states. Under 12 MeV, only the characteristics of the first

excited state, a 2+ at 1.8 MeV( Γ = 113 keV) have been firmly established.

Various models predict a series of 2+, 1+, 0+ states above the 2+
1 , but dis-

agree on the energies of these states. We have investigated the spectroscopy

of 6He using the 2-neutron transfer 8He(p,t)6He reaction. The experiment

was carried out at GANIL with the SPIRAL 8He beam at 15.4 A.MeV,

with no contaminant. The average intensity was 1.8 × 104 part/s. The re-

action target was a 50 µm-thick foil of polypropylene (CH2)n. The beam

profile and incident angle on the target were monitored event by event by

two beam tracking detectors, CATS. The light charged particles were mea-

sured using 5 position-sensitive Si-strip telescopes MUST2 [2]. One MUST2

module was composed by a first stage of a 300µm double-sided Si-strips de-

tector (DSSD) with an active area of 10*10 cm2 and 128(x,y) strips, each

strip providing energy and time-of-flight (TOF) measurements. The DSSD

is backed up by a 4 cm-thick CsI-crystal detector, providing the remaining

energy Er. Each strip detector has a minimum energy threshold of 0.5 MeV

with intrinsic position, angular and energy resolutions of 0.76 mm, 0.3◦ (at

15 cm from the target) and 45(5) keV (FWHM), respectively. The particles

can be identified using the standard correlation techniques between the en-

ergy deposited in the Si-strip stage, ∆E, and TOF, and between ∆E and

Er [2]. The excitation energy (Ex) spectra were calculated by the missing

mass method from the measured total kinetic energy and angle of the triton

detected in coincidence with forward scattered particles, either 6He or 4He.

The analysis is described in Ref. [3], two new resonances were observed:

at 2.6 ± 0.3 MeV (width Γ = 1.6 ± 0.4 MeV) and at 5.3 ± 0.3 MeV with
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Γ = 2 ± 1 MeV. The angular distributions were analyzed in the frame-

work of the coupled-reaction-channel (CRC) calculations. This method was

successful to describe consistently the previous data set measured at 15.6

A.MeV: 8He(p,p), (p,d) and (p,t) to the 6He g.s. and 2+

1 [4]. It was found

that the new states correspond to a 2+ and to a L = 1 states, respectively.

The resonances were compared with the results obtained recently by var-

ious theoretical frameworks, the ab-initio calculations [5] and the models

including an explicit treatment of the continuum couplings (CC) of bound

and scattering states [6–8]. These CC models give calculated positions of

the states rather close to the experimental values but they overestimate

the width. The new states, challenging the nuclear theories, could be used

as benchmarks for checking the microscopic inputs of the newly improved

structure models.

1.3. Study of the shell effect associated to N=16

Experimentally the neutron drip-line is known up to the oxygen chain, with
24O being the last bound isotope. In the region of the neutron-rich nuclei

around 24O, the neutrons occupy the sd-fp shells and new effects have been

found, indicated or predicted for the shell structure, in contrast with the

shell occupation known for the stable nuclei. Experimentally, N=16 has

been indicated as a new possible magic number [10], theoretically inter-

preted as an enhancement of the neutron shell gap between the 2s1/2 and

1d3/2 subshells, with respect to the sd shell in the stable nuclei, this effect

being driven by the tensor proton-neutron force [11]. To explore the proper-

ties of this new shell effect, the low-lying spectroscopy of 24O was studied:

at GANIL, no gamma-ray associated to 24O was found [12], showing that

the excited states are unbound. At MSU, via invariant mass method from
24O fragments and neutrons, possible states were indicated [13] around 4.5

and 5.3 MeV, above the neutron threshold Sn at 4.19 MeV [9], but not

clearly identified. An alternative technique to study the neutron excitation

is to measure the proton elastic and inelastic scattering, and to use the

particle spectroscopy.

2. Spectroscopy of 24O using the (p,p’) reaction

From the detection of the recoil proton the (p,p’) kinematics can be re-

constructed and the Ex spectrum can be obtained via the missing mass

method. Our 24O(p,p’) measurement became feasible with the advent of

the RI Beam Factory operated by RIKEN Nishina Center and CNS, Uni-
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versity of Tokyo. The experiment (RIBF57) was performed in 2010 using

the MUST2 detector array and the secondary beams produced by the frag-

mentation on a Be target of the 48Ca beam at 345A.MeV. The beams were

separated using the BigRIPS line [14]. With the exceptional rates of 48Ca,

(60 up to 180 particle nA), 24O was produced at 263A.MeV with unique

intensities, 1100/s on average (2000, maximum).

2.1. Experimental set-up and kinematics
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Fig. 1. Top view of the set-up inside the reaction chamber; plot of the 24O (p,p’)
kinematics calculated for three hypothetical states, located at 4.5 MeV, 6 and 7 MeV.

The reaction chamber was mounted in the F8 area with 8 MUST2 detec-

tors, assembled in two blocks. The 2.7 mg/cm2-thick (CH2) reaction target

was rotated at 45 deg. towards the left block. The left telescopes were lo-

cated at 23 cm downstream of the target, to cover lab. angles between

(65-90) deg. The experimental set-up located in the F8 area is presented in

Fig. 1 with the angular and energy domain covered by the left block. The

measured angular domain for the elastic cross sections is between 5-30◦

c.m.

The (p,p’) kinematics were obtained by the correlations of the proton en-

ergies with the scattering angle deduced from the proton trajectories mea-

sured in MUST2 and from the incident trajectories reconstructed using 3

PPACs located upstream of the target.
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2.2. Particle identification

The incident particles were identified by Bρ-ETOF-∆E technique in the

(F3-F7) stages, and the ejectiles in the ZD [15] spectrometer. The rate

of 24O represented 4% of the total beams, including the light nuclei with

A/Z=3 (t, 6He, 9Li). Amongst the heavy ion beams (Z > 3), it represented

22% of the total; contaminants were 20,21,22N ('30%), 22,23O ('20%), 25F

('12%) and 26F (' 5%).

3. The analysis of the Ex spectra
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Fig. 2. The kinematics and Ex spectra for 22O, showing the known 2+

1
at 3.2 MeV.

To check the kinematical reconstruction of the reactions, the 22O(p,p’)

at 262.5A.MeV were measured as a reference. The kinematics and the pre-

liminary Ex spectra are shown in Fig. 2, the energy straggling effects in

the target are taken into account.

The next steps are the extraction of the excitation spectra for 22O and for

its contaminants. The angular acceptance and detector efficiencies will be

evaluated and compared with the estimates done using a Monte-Carlo sim-

ulation program. The elastic (p,p) angular distributions will be extracted

and compared to model calculations. We will check the consistency of the

data obtained for 22O with the previous measurements done at GANIL at

46 MeV/n [16]. The analysis is also in progress for 24O(p,p’). The data was

collected with different settings of the magnetic rigidity tuned to center

either the 23O fragment or the 22O at the focal plane of the spectrometer.

For the event selection and the reconstruction of the 24O Ex spectra we

will take into account the correlations with the outgoing nucleus produced

by the decay of the unbound states of 24O, either 23O (Ex above Sn) or
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the 22O isotope (above S2n=7.5 MeV).

Perspectives

The results will be compared with the recent microscopic calculations,

including the interplay between cluster, single-particle and continuum-

coupling effects [7,17,18]. From the characteristics of the excited states,

we expect to deduce the properties of the N=16 shell gap in 24O.
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